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Abstract

This thesis focuses on the problem of processing combined queries in the MUFIN similarity
search system. The combined multi-metric queries allow a user to define the similarity func-
tion for any two objects, based on several descriptors of the objects (metrics). The existing
baseline algorithm is explored and a modification for approximate searching is proposed.
This novel method corresponds with the MUFIN distributed architecture and conforms to
the cost restrictions of an interactive application. The resulting implementation experimen-
tally evaluated on a large real-life data collection.
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Chapter 1

Introduction

Today’s society is often described as the Information Society, because information is its most
valuable property. People produce and use large quantities of information, most of which
exists in digital form nowadays and is freely accessible. However, the amount of digital
data rapidly grows in both size and variety. To cope with such volumes, we need ways of
efficient storing and retrieval of the relevant data and therefore suitable data structures and
algorithms have to be found.

This fact is well recognized from the beginning of computer science and a significant part
of research focuses in this area (which is confirmed by the big conferences VLDB, SIGMOD,
ICDE etc.). For the basic data types, the problem is solved by traditional retrieval techniques,
typically based on sorting routines and hash tables. However, as various new data types
such as multimedia appear, these methods are no longer sufficient. One of the reasons is
that sorting is impossible for many of the new data domains. For illustration, there is no
way of ordering colors. We can sort them according to their similarity with respect to a
specific hue, for example pink. But we can’t sort the set of all colors in such a way that, for
each hue, its immediate neighbor is the hue most similar to it.

Therefore, more flexible methods are required which take into account the needs of par-
ticular users and particular application domains. Similarity searching based on metric space
model is a feasible approach which has been studied in the last years. Its usability is very
wide, as it does not require the data to have any special properties – except for the ability to
determine the distance or similarity of any two data objects. Thus, similarity queries retrieve
objects similar to their query objects rather than ones exactly matching in some attributes.
Such proximity concept is much more usable for many data domains while it also supports
the traditional exact match.

Similarity searching has become a fundamental computational task in a variety of ap-
plication areas, including multimedia information retrieval, data mining, pattern recogni-
tion, biomedical databases, data compression and statistical data analysis. New index struc-
tures and queries were proposed as well as algorithms for similarity searching, with some of
them using distributed environment to enable processing of large data collections. However,
many aspects of similarity searching remain open to further improvements, among which
the speed is one of the most pressing. Even the best structures and algorithms proposed so
far run into problems when the data collection becomes too large.

In this work, we focus on approximation as the way of increasing speed of query eval-
uation for a specific type of queries over large datasets. Approximation techniques make
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1.1. WORK OBJECTIVES

use of the fact that, in large collections, the very best results are not much different from
quite good results while the time needed to acquire the best results is significantly longer.
Thus, we gain speed without losing much of the result precision. An approximate algo-
rithm is proposed in this thesis and implemented within the MUFIN1 system developed at
the Faculty of Informatics of Masaryk University. We confirm the validity of our concept
by thorough experiments which evaluate usefulness of our approximation and find optimal
values of its parameters. Furthermore, we present and test a method for estimating quality
of the approximate results.

1.1 Work Objectives

The aim of this work is to design and experimentally evaluate a technique for solving com-
bined queries in the MUFIN system as well as propose a measure for quality estimation of
results in the case of approximate searching. Specifically, the objectives are:

• to discuss possible ways of effective and efficient combined query implementation;

• to propose quality measures and design experiments for evaluating the implementa-
tion of combined queries;

• to test the quality of approximate search in thorough experiments and discuss the
results;

• to propose a method for real-time estimation of the quality of results returned to the
user by approximate search;

• to test and discuss the quality of the proposed estimation.

The thesis is organized as follows. Chapter 2 covers the theoretical background of similarity
searching, basic types of similarity queries, reasons for approximate searching and the use
of distributed environment. In Chapter 3, we describe the MUFIN system as a general multi-
purpose software and its specific application on images. In Chapter 4 we focus on complex
queries. The baseline algorithm as well as its possible implementations are discussed. Next,
we demonstrate the need for approximate algorithm, suggest such algorithm and present
several strategies for evaluation of approximate results. We also propose an algorithm for
results quality estimation that can be executed in parallel with the query execution. Chapter
5 embraces the results of thorough testing of both proposed algorithms. We conclude the
results in Chapter 6 and outline our future work.

1. MUlti-Feature Indexing Network

2



Chapter 2

The Similarity Search

This chapter gives an overview of similarity approach to the searching problem. First, the
motives of this approach are explained. Then the underlying mathematical concept of metric
space is defined and its fundamental properties are explained. We show how to use this
to build specific data structures and what similarity queries can be evaluated over these
structures. Finally, we explain how parallelism can be utilized to create scalable systems.

2.1 The Similarity Paradigm

As we have mentioned earlier, the traditional database systems are no longer sufficient for
storing and searching modern data with high internal-structure complexity. Algorithms that
work well for numbers and strings cannot be used for images or video straightforwardly.
One of the reasons is that no total sorting function exists for many of the new data domains.
Therefore, more general approaches have to be employed to store and retrieve data, such
as the similarity search model [6]. A general abstract model for this approach is the metric
space, which only requires that pairwise distances of objects can be measured. This distance
determines the similarity or dissimilarity of the two objects. A query posed to a similarity
search system will return objects most similar to the query object.

2.2 The Metric Space

The metric space is considered to be the most general data structure of similarity which can
still be indexed and searched efficiently. It treats data as unstructured objects together with
a function that measures distance (or similarity) between pairs of objects. This function is
used to sort objects in a dataset with respect to their distance from a given query object,
and determine the ones most similar to the query object. Though the sorting can be done
using any function, experience has shown that some functions are more suitable for metric
searching than other ones because of certain properties that can be used with advantage
in searching algorithms. Therefore, several restrictions were defined that must hold for a
function to make it eligible for a distance measure.

A metric space M = (D, d) is defined [6] as a pair of domain of objects (or the objects’
keys or indexed features)D and a total (distance) function1 d. The properties required of the

1. function d is also called a metric function or simply a metric

3



2.3. DISTANCE MEASURES

function d : D ×D 7→ R, sometimes called the metric space postulates, are typically defined
as follows:

∀x, y ∈ D, d(x, y) ≥ 0 non-negativity,

∀x, y ∈ D, d(x, y) = d(y, x) symmetry,

∀x, y ∈ D, x = y ⇔ d(x, y) = 0 identity (reflexivity),

∀x, y, z ∈ D, d(x, z) ≤ d(x, y) + d(y, z) triangle inequality.

2.3 Distance Measures

The distance functions express similarity of objects from a given domain in the metric space.
Different functions are used for various types of data and specific applications so that such
characteristics of the data that are important for the application are reflected by the distance
measure. In this section, we present some examples of distance functions and describe one
simple metric function used in our system in more detail. In practice, distance functions are
usually more complex and are specified by domain experts. However, the choice of distance
function does not influence the range of queries that can be asked with this metric.

Depending on the character of values returned, distance measures can be divided into
two groups:

• discrete – distance functions which return only a small (predefined) set of values, and

• continuous – distance functions in which the cardinality of the set of values returned
is very large or infinite.

An example of a continuous function is the Euclidean distance between vectors, while the
edit distance on strings (expressing the smallest number of changes that must be performed
to convert one string into the other) represents a discrete function. Another example of a dis-
tance function is the Jacard’s Coefficient used for sets which is defined as the ratio between
the cardinalities of intersection and union of the sets.

2.3.1 Minkowski Distances

The Minkowski distance functions [6] form a whole family of metric functions, designated
as the Lp metrics, because they differ only in the parameter p. These functions are defined
on n-dimensional vectors of real numbers as:

Lp[(x1, . . . , xn), (y1, . . . , yn)] = p
√∑n

i=1 |xi − yi|p

4



2.4. SIMILARITY QUERIES

The L1 metric is called the Manhattan distance or the City-Block distance, for in two-
dimensional space it can be explained as the shortest way between two blocks in a city with
regular rectangular net of streets. The L2 distance is known as the Euclidean distance, and
the L∞ = maxn

i=1 |xi − yi| is called the maximum distance or the chessboard distance – in
two dimensions it can be seen as the number of chessboard squares visited on the shortest
way between two squares. The Lp metrics are used to compare vectors with independent
coordinates, e.g. found in measurements of scientific experiments.

2.4 Similarity Queries

A similarity query is usually defined by a query object q (even though similarity queries
without query object also exist) and conditions that must be satisfied by resulting objects,
typically expressed as a constraint on their distance from the query object. The query result
may return all qualifying objects or just the best ones if the result size is restricted (the best
ones being the ones most similar to the query object). On the following pages, we first define
elementary types of similarity queries shortly (see [6] for more detailed description), and
then discuss possibilities of combining more similarity measures in a single query. As we
work with images later, we will use images and their features (color and shape) to illustrate
the use of each query type.

2.4.1 Range Query

A range query is one of the most common types of similarity query. It is used to acquire
objects within certain distance from a given object. Range query R(q, r) is specified by a
query object q ∈ D and some query radius r that restricts the distance. The query retrieves
all objects found with distance to q at most equal to r, formally:

R(q, r) = {o ∈ X, d(o, q) ≤ r}

Objects in the response set are usually ordered with respect to their distance from q. Let
us observe that the query object q need not be in the collection X ⊆ D that is searched, and
the only restriction on q is that it belongs to the metric domain D. In an image searching ap-
plication, a range query can formulate the requirement: Give me all images whose “redness”
differs from the “redness” of my image of a red ball by maximally10 %.

A specific type of range query is the R(q, 0) query called a point query or exact match.
This returns identical copies of the query object (with respect to the given metric function).
Point queries are mainly used in delete algorithms to locate an object that is to be removed
from the database. Let us notice that in the case of images and redness measure, all images
with the same colors will form the exact match, even though the pictures may be quite
different.

5



2.4. SIMILARITY QUERIES

2.4.2 Nearest-Neighbor Query

When searching for similar objects using a range search, we need to specify the maximal
distance of qualifying objects. However, this may be difficult if we are not familiar with the
distance function. In some cases it is easy to understand the semantics of the query radius,
e.g. r = 3 for edit distance represents less than four edit operations between compared
strings. On the other hand, Euclidean distance of two color-histogram vectors of images is
a real number whose quantification cannot be so easily interpreted. If a too small radius
is chosen, too few objects may be returned, while too large radius may lead to expensive
computations and many irrelevant objects in the result set. Moreover, the maximal distance
for range query should also be chosen with respect to the given dataset, for a query with the
same radius can return empty result set in one case and too many objects in another.

An alternative way to search for similar objects is to use nearest neighbor queries. Here
we look for a fixed number of objects, that are closest to the query object q. Such objects are
called the nearest neighbors of q. Depending on the number k of neighbors we want to find,
we define the kNN(q) query as follows:

kNN(q) = {R ⊆ X, |R| = k ∧ ∀x ∈ R, y ∈ X \R : d(q, x) ≤ d(q, y)}

1NN(q), also denoted as NN(q), returns the nearest neighbor of q from the database;
if q is present in the searched collection, NN(q) = q. When there are less that k objects in
the collection, the whole dataset is returned as the result. Again, objects in response set are
sorted with respect to their distance from q. If more objects are at the same distance from q,
the ties are solved arbitrarily. In our image application, we can pose a query: Tell me which
three images have a shape closest to my ball.

2.4.3 Complex Similarity Queries

All the previous queries have dealt with just one similarity predicate, e.g. color or shape.
However, in many applications we want to cover more than one feature of our object. When
using just colors, we cannot distinguish red circle from a red square. Therefore we need
to combine more features in our query to make it more precise. Such queries, where an
aggregation function is used to combine several metrics describing individual features into
one complex descriptor, are called complex similarity queries.

It may seem that such combined descriptor is just another metric, only more complex.
However, there is one substantial difference. Queries that consider one metric are resolved
with the use of specific index structures where objects are sorted with respect to their dis-
tance under the given feature. Complex queries, on the other hand, combine existing simple
metric functions (with respective index structures) through a user-defined aggregation func-
tion. In other words, user chooses the features that shall be included in the complex search
and their respective weights for the overall rating at the time of query creation. Therefore, no
index structures can be built in advance for overall distances to ensure efficient query pro-
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2.5. APPROXIMATE SIMILARITY SEARCH

cessing. Only the index structures for individual features and general properties of metric
functions can be used to answer a complex query.

Standard algorithm used to resolve complex queries is called the Threshold Algorithm.
As complex queries are the main topic of this thesis, this algorithm is fully described in
Chapter 4.

2.5 Approximate Similarity Search

Similarity search in metric spaces is unfortunately very expensive for large data collections
and no existing search methods can provide acceptable response times for highly interactive
applications. When quick responses are required, the only possibility is to trade preciseness
for efficiency and use approximate search, which is usually performed much faster but may
not find the best results. Fortunately, the following observations have been made that justify
the use of approximate search algorithms:

• Similarity is subjective, different objects (e.g. images) may be perceived as similar by
different people. Moreover, it is difficult to describe how we “measure” similarity in
our heads and express this process as a distance measure. Thus, objects returned by
similarity search, even though precise according to the chosen similarity measure, may
not suit the user’s needs. Therefore, it does not make much difference whether the
results are the very best ones or just some good ones, for either of these may seem
better to the user. However, it does matter if he/she has to wait several minutes for an
answer instead of several seconds.

• Similarity searching is usually an iterative process, where result from one query is
used as a query object for next query. For instance, a user may be looking for an image
of sunflower. The user knows what the image should look like but cannot transfer
his/her ideas to the computer. So he/she searches for any flower, chooses one image
most similar to his/her idea from the result, issues a new query, finds more flowers,
etc. Again, speed is much more important than preciseness in this process.

There are several approaches that address the issue of approximate similarity searching.
Some of them try to reduce the subset of data that is examined by search algorithms, other
work with transformations of the metric space. The latter are more suitable for vector spaces,
the former can be further divided into two classes: early termination techniques and relaxed
branching strategies. We shall focus on the first strategy which is especially useful for itera-
tive algorithms such as complex query processing.

2.5.1 Early Termination Strategies

Many similarity search algorithms work in iterations. At the beginning, some qualifying ob-
jects are found, then better and better objects are added to the result set replacing worse ones
until some stop condition is met that ensures that no further improvement is possible. Early

7



2.6. SIMILARITY SEARCHING IN DISTRIBUTED ENVIRONMENT

termination strategies use the fact that usually good objects are found quickly but many it-
erations are needed to meet the stop condition. Thus, later iterations increase the costs but
do not add much to the results quality. Approximation algorithms therefore terminate the
query processing earlier, as soon as they detect that the chance of getting significantly better
results is small.

2.6 Similarity Searching in Distributed Environment

The challenges brought by current information explosion are not just the variety of data
types but also the rapidly growing amounts of data which need to be processed in real-time.
Experience shows that algorithms over centralized index structures cannot search large
data with reasonable response time. Thus the usability of centralized indexes for growing
datasets, i.e. its scalability, is limited.

This problem can be solved by employing more computing centers (called nodes) con-
nected through a network. Nodes cooperate and solve parts of a given task in parallel. Com-
puting resources (CPUs, memory, etc.) can be added to the system when the amount of data
increases so that time needed for task processing remains low.

2.6.1 Scalable and Distributed Data Structures

The paradigm of Scalable and Distributed Data Structures (SDDS) [10] defines three proper-
ties the data structures must satisfy to behave efficiently in the distributed environment:

• scalability – data migrate to new nodes effectively and efficiently, new nodes are added
only when nodes already connected in the network are sufficiently loaded;

• no hotspot – there is no master node that would store centralized information about
navigation in the structure, each node knows part of this information and can navigate
to its neighbors;

• independence – primitive operations, such as the search, insertion, or node split, do
not require changes of the whole network.

In such systems, data objects are stored on specialized network nodes called servers that
offer both storage capacity and computing power. Other nodes, called clients, can modify
and search the data through insert, delete, and search operations executed by the servers.
The number of clients is unlimited and any client can request an operation at any time.

2.6.2 Peer-to-Peer Systems

In the Peer-to-Peer (P2P) environment, no specialized nodes are used. All network nodes,
called peers, are treated equally. Each peer offers some resources (i.e. acts as a server) but
can also use resources of the other peers (act as a client). Peers are connected through a
large-scale network that may be unreliable.
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2.7. INDEX STRUCTURES FOR SIMILARITY SEARCHING

P2P systems are similar to SDDSs but add new requirements to overcome problems with
network failures. The basic principles of P2P can be summarized as follows:

• peer – every node behaves as both a client and a server, i.e. can perform queries and,
at the same time, store part of the processed data;

• fault tolerance – the system can operate even if some of the nodes are not working. All
defined operations can still be performed but the results may be imprecise as part of
the dataset can be inaccessible;

• redundancy – data objects are replicated and stored on multiple nodes to increase
availability in case of network failures.

2.7 Index Structures for Similarity Searching

To evaluate similarity queries efficiently, we need a quick access to the relevant data. This is
provided by specialized index structures that organize objects from the given domain. The
organization is based on the distances between objects under the given distance measure.
Typically, the structure is designed as some kind of a tree, where objects are divided into
subtrees with respect to their distance from the object in the parent node (e.g. half of objects
with lower distances in the left subtree, the other half in the right subtree). All similarity
searching structures use properties of distance function (as defined by the metric postulates)
to navigate between substructures (e.g. the triangle property is often employed to decide
whether a substructure can contain qualifying objects).

Search structures can be divided into two main groups:

• centralized structures have been designed to run on a single computer and work well
for small data collections; Vantage Point Tree, Generalized Hyperplane Tree or M-tree
are only a few examples of centralized indexes (see [6] for more information about
these structures);

• distributed structures employ parallel computing power of a network of computers,
thus enabling to create scalable systems; GHT* [6], Skip-Graphs [2] or M-chord [3] are
possible implementations of distributed index structure (their description and com-
parison is provided in [12]).
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Chapter 3

Similarity Searching in MUFIN

In the previous chapter, we have shown that only distributed systems can effectively deal
with scalability in similarity searching. In this chapter, we will present an example of such a
system called MUFIN, which is being implemented at the Faculty of Informatics of Masaryk
University (FI MU). We describe both the underlying library and the system itself, and show
one real application of this multi-purpose system in the area of image searching. Efficient
complex query evaluation for this application will then be the main topic of the following
chapters.

3.1 The Metric Similarity Search Implementation Framework

The Metric Similarity Search Implementation Framework (MESSIF) [7] is a development
platform which facilitates implementation of similarity search systems. It was created at
FI MU as a part of research in the area of similarity searching. MESSIF provides basic op-
erations for data management and enables easy implementation of queries. It also supports
sharing and reusing the code as well as efficient testing and comparison of the results. Gen-
eral overview of functionality provided by MESSIF is given in the following list:

• encapsulation of the metric space concept – developers can use the data objects trans-
parently regardless of the specific dataset and metric function;

• management of the metric data – data objects are stored in primitive storage units
called buckets, buckets-splitting based on the metric indexing principles supports scal-
ability;

• concept of operations – a uniform interface is provided for queries and operations
that modify the data, complex similarity queries can be implemented in multi-metric
spaces;

• support for distributed data structures – load balancing system and communication
layer is provided;

• automatic performance measurement and collecting of various statistics including a
uniform interface for accessing and presenting the results.
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3.2 The MUlti-Feature Indexing Network

The MUlti-Feature Indexing Network (MUFIN) is a general tool for effective and efficient
similarity searching in large and quickly growing data collections. It is able to index and
search any metric data and supports definition of several search indexes (called overlays)
that describe different features of data objects. The system is built over P2P network so it
can manage large volumes of data and provide acceptable response times.

3.2.1 Distributed Metric-search Structures

The basic schema of P2P environment is depicted in Figure 3.1. Each peer manages part
of the indexed data collection. Different strategies can be employed to store and search the
data, either a simple list with sequential search applied for searching, or more sophisticated
methods. Every peer also holds some local navigation information and can communicate
with other peers via messages sent through the underlying network.

Figure 3.1: A typical schema of a P2P network

As the system is based on P2P architecture, a user can issue a query at any peer. Steps
which are executed to answer the query are depicted in Figure 3.2. The query is forwarded
to peers that may hold qualifying objects (solid arrows). Since the network changes in time
as objects are added or deleted, navigation can be imprecise and query has to be forwarded
several times until it reaches all relevant peers. Each peer with promising data partition
executes local search and returns all qualifying object to the initiatory peer (dotted arrows)
where the final answer is merged and presented to the user.

3.2.2 Multi-layer System

As anticipated earlier, it is often not possible to simulate human understanding of similarity
between complex objects (such as images, music, video, etc.) using a single metric. Much
better results can be achieved when several important features of data objects are described
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3.2. THE MULTI-FEATURE INDEXING NETWORK

Figure 3.2: A typical query processing in P2P network

and compared by different metrics, and overall similarity of objects is then computed from
these partial similarities using some aggregation function.

MUFIN supports this approach and enables definition of several indexes for a given data
collection. Each index is built over a metric that describes certain property of data objects.
Each object is thus represented by a set of descriptors and a unique identifier which together
form a metaobject. For instance, an image can be represented by color and shape descrip-
tors. For each descriptor, a P2P index (overlay) is built, storing the descriptor value and
the metaobject’s identifier. Moreover, additional index called zero overlay is defined where
the complete metaobjects are stored. The zero overlay enables efficient retrieval of objects
once their identifier is known while the descriptor overlays allow similarity searching with
respect to the given descriptor. All the overlays can share the same physical infrastructure.

Figure 3.3: Multi-metric overlay setting

Figure 3.3 depicts a system with three overlays which can be used for image searching.
The first overlay is built for color descriptors, the second indexes shapes, and the third rep-
resents the zero overlay. A metaobject assignment to these overlays is also illustrated in the
figure. Observe that each overlay consists of multiple nodes and their specifics are left up to
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the particular distributed index structure used in the overlay. These nodes are maintained
by physical peers (illustrated by the gray arrows). Each peer usually manages one node from
every overlay. Such a mapping is completely transparent for overlay index structures and,
in general, it is automatically done by the loadbalancing mechanism.

3.3 MUFIN Application in Image Searching

Since MUFIN is a multi-purpose system, it can be applied to many similarity search prob-
lems. Given a specific application, a MUFIN instance only needs a specification of the fol-
lowing parameters to organize the data:

• the metric space for each descriptor – the domain and the distance function;

• the index structure of each overlay – the actual implementation of a single-metric P2P
system used for individual overlays;

• the local storage index for each overlay – different local structures can be used within
nodes of different overlays.

In our research, we use a MUFIN instance for image searching, where the results can be
easily visualized and compared with human understanding of image similarity [9]. To test
MUFIN performance for large volumes of data, we have indexed a collection of 2 million
images (about 35 GB of data). Most of the images are outdoor and indoor taken photos but
there are also a few images of e-shops products (e.g. mobile phones, PDAs, CD players, etc.),
cartoon characters or handdrawings and paintings.

In this image search system, objects are compared using features (characteristics) ex-
tracted from them that give evidence about the visual content of the images. Namely, we
use features defined in the MPEG-7 standard [8]. The MPEG-7 also defines a metric function
for each of the features to measure the distance (dissimilarity) within the particular feature
domain. Each feature is represented by one layer in the MUFIN system.

3.3.1 MPEG-7: Multimedia Content Description Interface

MPEG-7 is an ISO/IEC standard for describing the multimedia content data. MPEG-7 Visual
Description Tools included in the standard consist of basic structures and descriptors that
cover the following basic visual features: color, texture, shape, motion, localization, and face
recognition. From the total number of twenty descriptors, five have been chosen to represent
each image in MUFIN: Scalable Color, Color Structure, Color Layout (all of them describing
color), Edge Histogram and Homogeneous Texture (both describing texture).

3.3.2 Distance Functions

Various metrics have been chosen to compare the extracted features. Simple L1 metric is
used for Scalable Color and Color Structure descriptors. For the other features, special func-
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tions have been designed by experts. For example, the distance between the features of Color
Layout descriptor is defined as a sum of weighted L2 metrics for individual color channels.

3.3.3 Aggregation Function

When searching in a collection with several descriptors, we need to be able to determine
the overall distance between any pair of objects. This is computed from partial descriptor
distances via an aggregation function. In the basic setting of our image searching application
we use a weighted sum of the partial distances. The weights (shown in Table 3.1) have been
determined experimentally trying to reflect the human notion of image similarity. However,
a user can choose a different aggregation function that reflects his/her preferences.

MPEG-7 Feature Distance Weight
Scalable Color L1 metric 2
Color Structure L1 metric 3
Color Layout special 2

Edge Histogram special 4
Homogeneous Texture special 0.5

Table 3.1: MPEG-7 descriptors, the respective distance measures and the weights for aggre-
gation sum

3.3.4 Network Settings

For our experiments we were using a MUFIN instance with six overlays (five for the de-
scriptors and the zero overlay). There were 100 peers employed in the network, each of
them holding up to five logical nodes of any of the six overlays. These peers are run on a
physical infrastructure with 16 CPUs (AMD Opteron 2.6MHz) and 64GB RAM in total. The
GHT* [6] structure was used as the overlay index, and M-Trees [6] were employed to store
the descriptors locally at respective peers. For the zero-overlay, Skip-Graphs [2] distributed
hash-table was used.
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Chapter 4

Combined Queries in MUFIN

In Chapter 2 we have presented several index structures that can be used for efficient eval-
uation of similarity queries over a single metric. However, the usability of such queries is
limited since the user cannot influence the similarity measure. Depending on the situation
and individual preferences, we may wish to focus on various properties of a query object in
particular queries (as depicted in Figure 4.1).

Figure 4.1: Combined query results with focus on different descriptors

For this type of searching we cannot build any index structure in advance. Instead, we
define several descriptors for objects of given domain that are then used to compute the
overall distance. For these descriptors we can prepare the search structures. In the time
of combined query evaluation the structures give information about objects’ proximity to
the given query object under the particular descriptor. To get a good similarity searching
tool, several problems have to be solved. We need to find the right descriptors, combine
them suitably to get the overall distance measure, and also find an implementation that will
provide correct and fast results.

In this work we do not address the first two issues but we focus on the last problem in
the specific environment of the MUFIN system. We will present the basic algorithm used
for top-k complex similarity queries (i.e. the queries that ask for k nearest objects to a given
query object) and discuss its possible implementations within MUFIN. In the following sec-
tions, we will give reasons for the use of an approximate algorithm, describe its implemen-
tation and propose methods for its evaluation. We will also present an algorithm designed
to estimate the quality of results acquired by approximate searching.
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4.1 The Basic Algorithm

The general top-k combined query problem can be defined as follows: Assume a dataset
of n objects, each having m grades, or scores, one for each of m attributes. The grades are
determined with respect to a query object, where high grades signify interesting objects. For
each attribute, there is a sorted list, which lists each object and its grade under that attribute,
sorted by the grades (highest grade first). Each object is assigned an overall grade, that is
obtained by combining the attribute grades using a fixed monotone aggregation function.
Our task is to find k objects with the highest overall grades.

A naive way of determining the top k objects in this model is to scan all the lists, compute
the overall scores and select the k highest scored objects. However, this would need access-
ing all objects which is very inefficient for large databases. The Threshold Algorithm (TA),
which was proposed by Ronald Fagin et al. in [1], solves the task much more efficiently (and
is the best general algorithm known for this problem). Even though our model in similarity
searching is different – the distances express dissimilarity instead of scores, which means
that the best matches have the lowest distance as opposed to the highest grades in Fagin’s
model – the algorithm can be inverted easily to suit the distance measures. In the follow-
ing sections, we will present a modification of TA for the similarity model and prove that it
gives correct answers to combined queries.

In the beginning, we need to define basic terminology: let q be the query object and
o1, o2, ... the objects to be searched. Let d(q, o1) be the overall distance between q and o1 and
di(q, o1) the distance under the feature i (feature or descriptor is an equivalent of attribute
in our model).

4.1.1 The Aggregation Function

When two complex objects are compared, we obtain their distances in each feature under
consideration. The aggregation function is used to combine these distances into one overall
distance representing the overall similarity of these two objects. For this purpose, we natu-
rally demand the aggregation function to be monotone: if for every feature the distance of
object o1 from object q is lower than or equal to the distance of object o2 from object q, then
the overall distance of o1 from q must be lower than or equal to the overall distance of o1

from q. Typical examples of aggregation function are the minimum or the average.
Formally, let us consider m features describing each object and m-ary aggregation func-

tion f . If d1(q, o1), . . . , dm(q, o1) are the distances of object o1 from object q under each of the
m features, then f(d1(q, o1), . . . , dm(q, o1)) = d(q, o1) is the (overall) distance between q and
o1. The monotonicity condition is defined as

d1(q, o1) ≤ d1(q, o2), ..., dm(q, o1) ≤ dm(q, o2) ⇒ d(q, o1) ≤ d(q, o2)

Usually, the overall distance is also a metric but it is not necessary. Let us consider a sim-
ple aggregation function f(x) = x + 1, which is monotonous but the reflexivity property
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does not hold: f(d(q, q)) = f(0) = 1. However, the overall distance expresses the similar-
ity in the same way as metric functions – the higher is the value of the distance the more
dissimilar the objects are.

When executing a query, a set of objects and their distances from the query object is re-
turned to the user. However, if an object o and distance 1.2456 is returned to the user, he may
not have much information on how good the result is if he/she is not familiar with the distri-
bution of distances over the dataset. In such case, it may be better to transform the aggrega-
tion function in such a way that all the distances fall into the interval [0, 1] (with 0 being the
best match and 1 the worst). This can be done easily when the maximal distances under indi-
vidual features are known for the dataset. Let δmax

1 , . . . , δmax
m be the respective maximal dis-

tances. Then fNORM (d1(q, o1), . . . , dm(q, o1)) = t(d1(q, o1), . . . , dm(q, o1))/f(δmax
1 , . . . , δmax

m )
is the normalized aggregation function.

The aggregation function used for image searching in MUFIN is a weighted sum of dis-
tances under the individual features (see Section 3.3.3 for more details). As all the coefficients
(weights) in the sum are non-negative, the function is monotonous and the resulting overall
distance is a metric.

4.1.2 Requirements on the Model

Let us now describe the model more formally. We assume that each dataset consists of a finite
set of objects (we will typically use n as the number of objects). For each object o and each
feature i, the distance di(q, o) can be acquired. We consider two modes of access to data –
the sorted (or sequential) access and the random access.

• Sorted access is used to get the sorted list Si of objects from the dataset and their
distances to the query object under a given feature i. The list is sorted by distances, the
lower is the distance the sooner the object appears in the list.

• Random access can retrieve the distances between the query object q and any given
object o for all the descriptors (that is, the partial distances d1(q, o), . . . , dm(q, o) if m de-
scriptors are used) and thus compute the overall distance d(q, o).

Figure 4.2 shows how both the modes can be applied in the case of image similarity
searching with two descriptors, color and shape. The sequential access is used to find in-
teresting objects (i.e. the objects near to the query object under some features), the random
access then gives complete information about such objects so that the overall distance can
be computed.

4.1.3 The Threshold Algorithm

The Threshold Algorithm is the basic algorithm used for combined query evaluation. In
a modification for similarity searching, the TA works as follows:
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Figure 4.2: Sorted and random access mode for the multi-feature search

1. Do sorted access in parallel for each of the m descriptors in order to get the sorted lists
S1, . . . , Sm. Let o1

1 be the top-most object in S1, o2
1 the second from the top with respect

to sorting in S1 etc.

2. In iteration j, get the j th object from each sorted list, i.e. objects oj
1 ∈ S1, . . . , o

j
m ∈ Sm

having the respective descriptor’s distances d1(q, o
j
1), . . . , dm(q, oj

m).

3. Do random access to the other lists and use aggregation function to compute the over-
all distances d(q, oj

1), . . . , d(q, oj
m) for objects that haven’t yet been examined. Update

the list R of the resulting k objects with the lowest overall distances (ties are broken
arbitrarily, so that only k objects and their grades need to be remembered at any time).
Let dmax be the distance of the kth object, i.e. the maximal distance of the result.

4. Define the threshold value t to be f(d1(q, o
j
1), . . . , dm(q, oj

m)), i.e. the result of aggrega-
tion function applied on the highest distances seen so far for each of the descriptors.
Start next iteration in step 2 unless the result list has k objects and dmax ≤ t, or all
objects from the dataset have been examined.

The output is then the sorted set {(o, d(q, o)) | o ∈ R}.

4.1.4 Proof of Correctness

If there are less then k objects in the dataset, the algorithm trivially gives the correct result.
For datasets D with at least k objects we will prove the following theorem:
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For any monotone aggregation function f , the Threshold Algorithm correctly
finds the k nearest objects to the query object q , i.e. the k objects o1

R, o2
R, . . . , o3

R

such that ∀1 ≤ i ≤ k,∀o ∈ D \R : d(q, o) ≥ d(q, oi
R).

It is obvious that the algorithm always stops in finite time, in the worst case when all
objects from the (finite) dataset have been seen (see the stop condition in step 4.). We only
need to show that when the algorithm stops, the result set R contains the k objects nearest
to the query object q.

Let us suppose there exists an object x which has not been searched but has the overall
distance lower than some of the best k results found before the algorithm stopped in the j th

iteration. In other words, suppose d(q, x) < dmax. However, for each feature i, the distance
of x under this feature is at least equal to di(q, o

j
i ) (the distance of the last object seen under

sorted access in list Si), otherwise it would have appeared in the sorted access earlier. The
aggregation function is monotone, therefore the overall distance of x must be at least t. But
all objects in the result set have overall distance lower than or equal to t. Thus, no object
with overall distance lower than dmax can exist, which completes the proof.

4.2 TA Implementation within MUFIN

The MUFIN system and its functionality (as described in Chapter 3) suit the requirements
of the TA very well. Nearest neighbor queries on descriptor overlays can be used as sorted
access to objects under that descriptor. The zero overlay provides random access to the com-
plete metaobject when its identifier is known, so the distances can be computed for all de-
scriptors. However, implementing the algorithm exactly as described in the previous section
would be very expensive in the distributed environment. We wouldn’t use the advantages
of parallelism and, moreover, single object retrieval is very inefficient in a distributed sys-
tem. In the P2P network, queries are typically forwarded between several peers and many
objects are accessed before the result is returned. So the network is better utilized if batch
queries are issued, where more objects are retrieved simultaneously. Therefore, batch mode
is used for both sorted and random access in our implementation.

For the sorted access, the issuing peer breaks the query metaobject into its descriptors
and executes the nearest neighbor query for every descriptor in the respective similarity-
search overlay. These are evaluated in parallel, and a sorted list of the top-most similar ob-
jects is returned by the system for each descriptor. However, not the full lists of all objects in
the dataset are requested as it is probable that only a part of each list will be used. Therefore,
a κ1-nearest neighbor query is executed for each descriptor, where κ1 is a suitable coefficient
determined by experiments (we also refer to this as batch sorted access and call κ1 the batch
size). Objects retrieved from these queries are submitted to random access to get distances
for missing descriptors, and overall distances are computed. If there are not enough objects
with their overall similarity under the threshold value, the descriptor overlays are requested
to provide additional batch of objects until this condition is met. This additional batch can
be executed either as incremental κ2NN query, if the system enables it, or a new query must
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be issued for κ1 + κ2 nearest objects (which is of course less efficient, but presently the only
possible way in the GHT* structure, which is used as the overlay index in MUFIN).

In the case of random access, we do not issue a new query for each object to find the
values of all its descriptors. On the contrary, we process the whole set of objects in one batch
query. However, there are more possible strategies of implementing random access which
differ in several aspects. One or more peers may be allowed to issue the random query and
may use different ways of finding all the descriptors for a given object. On the following
pages, we will introduce three different strategies and discuss their advantages and disad-
vantages. We will conclude this section by choosing one of the strategies and showing the
limits of its practical usability.

4.2.1 Single Peer Random Access with Zero Overlay

Let p1 be the peer from which the combined query is run. This peer splits the query metaob-
ject into descriptors and starts the sorted accesses, i.e. issues κNN queries in descriptor
overlays. All the peers that have found promising objects send them back to p1 where the
sorted lists for each descriptor are created. More precisely, for each such object, they send the
object identifier and one descriptor value, as only this part of the whole metaobject is stored
in one layer. Peer p1 goes through the lists, finds if any objects are present in all lists, and
eventually computes their overall distances. For the rest of objects in sorted lists, p1 issues
a query (i.e. the random access) to the zero layer, where the whole metaobjects are stored and
can be accessed through the identifiers. The overall distances are evaluated and returned to
p1, where the threshold value is computed. If not enough objects under threshold have been
found, the whole procedure is repeated with more objects acquired in the sorted accesses.

Figure 4.3: Single peer random access with zero overlay

The execution of a query following this strategy is demonstrated in Figure 4.3. We can
see that p1 is a central peer that does most of the work. Thus it becomes a bottleneck – all
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objects must be first sent here from the sorted access before the random access can be run.
An advantage of this implementation is that the random access is used at most once for
every object (if an object is seen in all lists after the sorted access it can be even skipped from
the random access completely).

4.2.2 Multiple Peer Random Access with Zero Overlay

Figure 4.4: Multiple peer random access with zero overlay

Another strategy is depicted in Figure 4.4. The principal difference is that peers accessed
by sorted access do not return qualifying objects immediately to p1. Instead, the peers run
the random access for these objects, i.e. issue a query to the zero layer where the whole
metaobjects are found, get their overall distances evaluated, and send the distances and the
respecive identifiers back to p1. Thus, the random access is run in parallel from a number
of peers, which increases the speed of query execution. On the other hand, an object can
be found by more than one peer (when it qualifies for more than one descriptor, which
happens quite often). In that case, unnecessary random queries are issued. Additionally,
network traffic is much higher.

4.2.3 Sorted Access with Objects Replication

While we have discussed in the previous strategies which peers shall query the zero layer
to get all the descriptors, here we examine a quite different approach. The zero layer and
random access is not needed at all since the whole metaobjects are stored in each layer
(i.e. each metaobject is stored several times, one instance for each layer). Such approach is
depicted in Figure 4.5.

If we use this architecture, the qualifying objects can be sent back with their overall dis-
tances computed directly from the sorted accesses. However, in this case much more in-
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Figure 4.5: Sorted access with objects replication

formation needs to be stored in each layer, which requires more peers to be employed and
searched. When the zero overlay is used, each metaobject is stored twice – one copy in the
zero overlay and parts of the other copy in the descriptor overlays. Without the zero overlay
we would need to have a separate copy of the metaobject for each overlay, which in case
of five descriptor overlays means that 2.5 times more data needs to be stored. In addition,
the same objects may be found in different overlays, which would result in needless data
sending.

4.2.4 Access Strategies Conclusion

From the above described possibilities, the first one was chosen as the one which probably
has the lowest cost to performance ratio. Both the other possibilities are likely to be quicker,
but far more expensive in network communication (in case of multiple peer random ac-
cess) or memory (if objects replication was used). Therefore, the TA was implemented in
the MUFIN system by RNDr. Michal Batko, Ph.D. using single peer random access and the
zero overlay. The other proposed methods were not realized as they would require non-
trivial changes in the current MUFIN implementation. However, it might be interesting to
compare the real performance of all these methods and see if our expectations about their
efficiency get confirmed. Therefore, implementation of the TA with multiple random access
and object replication is one of the objectives of future research.

Even though we have been looking for the most efficient TA implementation, it still takes
a lot of time to get under the threshold for a huge data collections. For example, a top-50
query in a dataset of 1.6 million images takes more than one minute to evaluate even for
a batch size of 1,000 objects. Therefore we need to look for ways of speeding up the query
processing.
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4.3 Approximate TA

The primary reason for considering approximate approach was the low speed of the TA
implemented as described in the previous section. Fortunately, this approach is very suitable
for this type of searching because the interpretation of similarity itself is highly individual
and even optimal results of the search may not satisfy user needs. In such case, the user
will issue additional queries to get better results. Therefore, it is more reasonable to give
good-enough results quickly even if they are not precise.

In this section, we will present an approximate algorithm for complex query execution
which is based on observations of the system behavior during processing of the standard
Threshold Algorithm.

4.3.1 Observations on TA Behavior

Before we could start working on approximations, we had to understand the standard TA
well. Therefore the first experiments were focused on describing the evolution of the result
set and the threshold value during the execution of the algorithm. In these experiments, we
stored the result sets (i.e. objects in the result set and their distances from the query object)
and threshold values computed in individual iterations of the TA.

Figure 4.6: Visualization of the standard TA

The evaluation of a top-50 query on a collection of 1.6 million objects is visualized in Fig-
ure 4.6 for iterations 1 to 100. All five descriptors are combined using the aforementioned
weighted-sum aggregation. Let us note that in each iteration only one step of the standard
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TA is computed. Gray squares represent distances of objects in the result set in those partic-
ular iterations. The upper line represents the maximal distance dmax

i in iteration i, the lower
curve shows the respective threshold value ti. Let us observe that the dmax

i curve increases
at first until the initial 50 unique objects are found. Since we have five sorted lists, 50 unique
objects can be found earlier than in the 50th iteration because up to five objects can be added
to the result set in each iteration (five objects are examined in each iteration but some of
them may appear in several lists or may have been seen in the earlier iterations). In our case
the result set was filled in the 33rd iteration. After that, the dmax

i curve can only decrease,
because the result can only be updated with closer objects. On the other hand, the threshold
can only grow. The intersection of the two curves marks the stop condition of the standard
TA. The distance between the curves after each iteration corresponds to the quality of the
actual result set. Experiments confirmed that the quality increases very quickly in the first
couple of iterations while the rate slows down later. This observation forms the basis of our
approximation.

4.3.2 The Approximate Algorithm

The above described observations led us to exploit an early termination strategy of approx-
imation where the stop condition of the Threshold Algorithm is altered so that we end the
processing prematurely after x iterations even if the threshold condition is not satisfied.
More precisely, we only execute one sorted access for a batch of x objects, i.e. we issue xNN

query on each of the overlays. Objects returned from the sorted access are processed as usual
in the TA, and the best k objects are returned as the result even if their overall distances are
not below the current threshold.

The sooner we stop the algorithm, the lower is the response time but also the worse is
the results quality (i.e. the distance of the result set objects from the query object is grow-
ing). We need to choose such a number of iterations that would give good enough results in
a reasonable time. The parameter x should naturally depend on k, as we need to examine at
least k objects to fill the result set. Moreover, the most similar object is usually found sooner
than the 10th most similar object, so it is advisable to use more sorted accesses for large k to
get results with comparable qualities. Therefore we consider x to be c.k for some coefficient
c, and aim on determining such values of c for which the approximation would work well.
However, we cannot expect to find optimal value of c that would work optimally for any
data as the quality of approximate results depends on specific properties of the respective
descriptors’ metric spaces. If the distances between objects in the dataset are generally low,
the objects found by approximation are very similar to the optimal result and not much in-
formation is lost by the approximation. On the other hand, in a system with objects far from
each other, the approximate results may be very imprecise. Usually, both objects with many
neighbors and solitaries appear in a dataset, which makes the choice of suitable coefficient
for early termination even more difficult. Also the descriptors can influence the number of
iterations needed to find good results. If there is some correlation between the descriptors,
the same objects are likely to appear on the top positions in the sorted access lists. Such
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objects get under the threshold much sooner and it is not probable to find good results in
later iterations. In the extreme case of a linear dependence between the descriptors, all the
sorted lists will be the same and the k best objects will be found in exactly k iterations (and
in this case, no approximation is needed as the precise result is found in the minimal time).
However, descriptors are usually not correlated; if they were, it would be better to use only
one of them.

As the setting of approximate searching parameters depends on the environment that
substantially, we have studied it for one specific example of similarity search system –
a MUFIN instance loaded with images (see Section 3.3 for more details). This is useful both
for this system which is intended for public use and also as a basis for more general studies
of approximate algorithms for complex queries. In this MUFIN instance, we run thorough
experiments to learn about the behavior of our approximate algorithm and to find optimal
values of the termination coefficient c.

We would also like our system to tune the approximation quality according to user pref-
erences or the actual system load. The system may accept harder approximation to keep
the response times low or enable the user to choose that a longer run with more precise
answer is preferred. This can be achieved by adjusting the stopping condition to these re-
quirements. To help the system tune the value of c more precisely, we compute actual quality
estimations during the iterations of the TA. These estimations are also used as a part of the
query response to tell the user how good the approximate result is.

4.4 Approximate TA Evaluation

Approximate algorithms are generally used to solve difficult problems in a relatively short
time, sacrificing the precision. Good approximate similarity search algorithms should have
high efficiency, while still guaranteeing high accuracy of results. In some cases, it is pos-
sible to give some bounds on the quality of results, i.e. to prove that results given by an
approximation are in the worst case x-times worse than the optimal results. However, such
guarantees cannot be found for all problems and sometimes the only method of evaluating
approximation quality is an experimental evaluation and comparison with precise results.
This is the case of our algorithm, for there is no theoretical limit to “badness” of the approx-
imate results: it is always possible to find an example of query object and dataset where the
best objects are found in the very last TA iterations, and objects found in the first iterations
have huge overall distances from the query object (this happens when the distance is low
for one descriptor but high for all the others). Again we see here that the actual dataset must
be taken into consideration for judging the usability of an algorithm.

In this section, we will present several methods that have been proposed in [1] and [6]
for evaluating quality of results given by approximate algorithms. Some of these methods
cannot be meaningfully used in our system but the rest of them will be applied to evalu-
ate our approximate TA in experiments over the MUFIN image instance. All these methods
compare approximate results with exact results, i.e. the results obtained by the original TA.
Since we are using a fixed aggregation function in our experiments, we do not have to use
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the precise TA to get the exact results (which would be costly). Instead, we define a new
MUFIN overlay where objects are indexed with respect to their precomputed overall dis-
tance. This also enables us to use other query types than kNN , e.g. range query, to get the
precise result set.

In the following, let RA be the approximate result set and RE the exact one with respect
to some given query. We will also use the indexes E and A to distinguish objects in both
result sets and their properties (such as the maximal distance or the threshold).

4.4.1 Fagin’s Quality Measure

When Fagin et al. proposed the TA in [1] they also presented a modification that turns the TA
into an approximation algorithm. This modification also uses the early termination strategy.
However, the algorithm is not terminated after a given number of iterations, but instead,
a modified stopping condition is used.

The authors of TA define a θ-approximation over their model with scores, which can be
reformulated for our similarity searching model as follows: θ-approximation to the top k

similarity query is a collection of k objects such that for each oy among these k objects and
each oz not among these k objects, d(q, oy) ≤ θ.d(q, oz). To find a θ-approximation to the top
k answers, the stopping rule of the TA is modified so that as soon as at least k objects have
been seen whose grade is at most equal to t

θ , then the search algorithm halts.
We do not use this stopping condition because θ-approximation does not fulfill our idea

of a good approximation method for similarity queries. We want such an algorithm that
gives as good results as possible in a reasonable time. θ-approximation, on the other hand,
gives results of a fixed quality without time restrictions. However, θ can be used as the
quality indicator, computed as a ratio of maximal distance in the result set dmax and the last
threshold value tlast computed by the approximate algorithm:

θ = dmax
A

tlast
A

Let us notice that no knowledge about the precise result is needed to obtain θ. Thus in fact
it does not provide reliable information about the approximation quality, only gives us the
idea of how long it would take to reach the stop condition after the approximate algorithm
last iteration. Theoretically, this value may be high even if the precise result is found by the
approximate algorithm. This happens if the algorithm is terminated after the best objects
have been found but before the stopping condition is fulfilled (an example of such case is
provided in Figure 4.7a). However, it is much more probable that both the threshold and
the maximal distance values develop all the time before the curves intersect (as depicted in
Figure 4.7b). To cope with this, we define a modification of θ measure that takes the precise
result into account, using dmax

E instead of tlast
A . We call it the loss of quality, LQ, as its values

are higher for worse results.
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Figure 4.7: Maximal distance and threshold behavior

LQ = dmax
A

dmax
E

− 1

The ratio is decreased by 1 to have the LQ of the precise result equal to 0. This measure
only compares the worst objects in the approximate and precise result sets. The following
measures work with all k resulting objects. The advantage of this measure is that it can be
easily upper-bounded in each iteration of the TA.

4.4.2 Precision and Recall

Precision and recall are two standard measures used in Information Retrieval. Precision
measures the ratio of the qualifying retrieved objects to the total of retrieved objects. Re-
call compares the retrieved qualifying objects with the total of qualifying objects. In our
case, we consider objects from the exact result set to be the qualifying ones. The precision P

and recall R can be defined as:

P = |RE | ∩ |RA|
|RA|

and R = |RE | ∩ |RA|
|RE |

These measures are intuitive and easy to compute. However, both of them give exactly
the same information in our application since the sizes of RA and RE are the same. Thus
only recall will be used in our experiments. However, note that recall does not consider
ranking in result sets or the distances of objects. The recall is the same when ten best objects
from RE are missing in RA as well as when ten last objects are missing. Similarly, the recall
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is the same whenever the distances of some objects differ by 10 or 1000. However, in both
cases we see that the first result is better. Other measures are needed to cover this.

4.4.3 Relative Error on Distances

This measure compares the distances of objects in RA to the distances of objects in RE . Let
oi
A be the ith object found by the approximate algorithm and oi

E the ith object found by the
precise algorithm. Then the relative error on distances for this object, REi, is defined as

REi = d(oi
A, Q)

d(oi
E , Q)

− 1

For the whole result set, the relative error can be computed as

RE =
k∑

i=1

REi =
k∑

i=1

d(oi
A, Q)

d(oi
E , Q)

− 1

This measure does not take into account the actual distribution of distances in the dataset.
Suppose that there is an object closer to the query object and all the other objects from the
dataset are much further, but near to each other. Then the RE will be high if the first object
is missing in the approximate result. On the other hand, if the first object is reported but
some others are missing the RE will be lower. It is therefore useful to combine this measure
with the recall. If both measures are high we know that some good object has been missed.
On the other hand, when RE is low we can be satisfied with our result even if the recall is
lower because despite the fact that we haven’t found the precise result, we have very similar
objects in the answer.

4.4.4 Error on the Position

Another possible way of the approximate similarity search accuracy assesing is the compar-
ison of objects’ positions in the ordered result lists RA and RE . It is based on the Sperman
footrule distance used for computing the difference of two sorted lists. Let S1 and S2 be two
sorted lists containing elements from the same set X , and Si(o) be the position of object oin
the list Si. The Sperman footrule distance of S1 and S2 is defined as

SFD =
|X|∑
i=1

|S1(oi)− S2(oi)|

For the approximate search results a slight modification of this measure is used. We only
compare the (ordered) approximate result to a list SE of all objects from the dataset sorted
by their distance from the query object. As the position of any object from RA can only be
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higher than or equal to its position in SE , the absolute value operator can be omitted. The
sum is normalized by the size of the approximate result set so that we get the same position
error when the first object is missing in the result with 10 and 20 objects. We compute the
error on the position, EP , as

EP =

|SA|∑
i=1

SE(oi)− SA(oi)

|SA|

Position error values are high if far objects are found instead of the near ones, which is
also reflected by the aforementioned measures. However, for results with similar precision
and relative error or distances, EP can penalize results with errors on the first positions
(considered more important) from errors on further positions.

This measure is quite difficult to use since it requires the sorted list of all elements from
the dataset (with respect to a given query object q). In large data collections it requires enor-
mous amounts of time to obtain such lists. Fortunately, it is in fact not necessary to supply
the entire lists; we only need a sorted list of all objects with distance lower or equal to dmax

A

to find the difference between precise and approximate positions of all objects in the result
set. Such list can be obtained in the MUFIN from a range query R(q, dmax

A ) over the overlay
with precomputed overall distances.

4.4.5 Improvement in Efficiency

All the previous measures have dealt with accuracy. However, we are using the approximate
searching to gain efficiency, so we need a measure for efficiency as well. The improvement in
efficiency, IE, is expressed as the costs ratio of the precise and the approximate algorithm:

IE = costE
costA

There are more strategies for measuring algorithm costs, we can consider the number of
distance computations, disk accesses or messages sent through the network. However, the
most interesting for users is the total time needed for query processing, so we will use it as
our cost measure.

Unfortunately, to run the precise algorithm in order to get the precise times for compar-
ison is very costly for a large set of experiments. To get the precise result sets, we use the
precomputed distance layer with a single-metric query, which works in a different way and
cannot be compared in costs to a complex query. Therefore, we can only watch the approx-
imation costs in our experiments, and estimate the costs of the precise searching with the
help of quality measures. From the ratio between the costs and the quality of a given query
we can guess what time would be needed to find the precise answer.
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4.5 Results Quality Estimations

In the previous section we have described various measures of quality that are used to eval-
uate average precision of a given approximation method by comparing its results to the
exact ones. For example, we can find that an approximate algorithm gives 80 % recall on
average. However, the recall can be very different for individual queries, being very high
for some but rather poor for others. Of course, information about the quality of each query
result is of more value to the users than just the average values. Knowing how precise the
results are the user can decide whether he/she is satisfied or whether he/she wants to issue
additional queries, perhaps choosing more precise (but slower) searching. Also the system
itself can exploit the knowledge about the results quality to distribute the resources more
effectively.

The problem is that a real-time information about the results quality cannot be obtained
since to measure the quality we need to know the exact result. Any real-time quality reports
can therefore only provide some upper/lower bounds (based on some knowledge of the al-
gorithm properties) or estimates (supported by observations on the usual behavior of query
processing).

In the following, we will discuss both the bounds and the estimates that can be used to
gain some information about the results quality at the time of query evaluation. The reason
why the bounds are insufficient is simple: bounds are always correct but often quite far
from the real values. Therefore we would like to find some way of predicting the quality
that would give better estimation with high probability. The proposed estimation method
will be tested in experiments.

4.5.1 Bounds on Quality

When we look on the Threshold Algorithm more closely we find that certain theoretical
limits exist for the approximate results quality. In each step the algorithm computes current
threshold value which is provided by monotonous aggregation function. As the arguments
for this function are supplied in increasing order (from sorted lists of each feature) also the
threshold value in each iteration has to be equal to or greater than the previous ones. The
same reasoning shows that all future values of the threshold must be at least equal to the
last computed one. At the same time the threshold value t implies that no object with overall
distance lower than t can be found in the future iterations. Therefore, in the last iteration of
the approximate algorithm with threshold tlast

A we know that all objects in the result set with
overall distance lower than or equal to tlast

A belong also to the precise result set.
Exploiting this knowledge we can define the lower bound on recall, Rbound, as a ratio of

objects from the approximate result set with distance at most tlast
A to the total of objects in

the result set:

Rbound = |{o ∈ RA|d(q, o) ≤ tlast
A }|

|RA|
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Similarly, the LQ measure can be upper-bounded by the original Fagin’s θ parameter.
dmax

E is always higher than or equal to tlast
A unless tlast

A is higher than dmax
A in which case the

precise result was found because the TA has stopped and dmax
A = dmax

E .

LQbound = dmax
A

min(tlast
A , dmax

A )
− 1

Both these bounds can be easily computed in each TA iteration, enabling us to watch
the progress of the results quality. Visualization of bounds is provided in Figure 4.8, colored
areas show which objects from the current result set are bound to be in the exact result
(orange background) and which are in the exact result but this is not known in current
iteration (gray background).

Figure 4.8: Quality bounds

4.5.2 Estimations

Average evaluation of results gives only limited information about the quality of a particu-
lar query result. Bounds which can be defined for some quality measures are better because
they are computed with respect to the specific query. However, the information about the ap-
proximate results accuracy is still insufficient. We believe that better estimations of quality
can be obtained by predicting the algorithm behavior in future iterations (i.e. those itera-
tions that are performed by the standard TA but have been cut off by the approximation).
More specifically, we are interested in the development of dmax and tlast values which can
be viewed as functions of iteration i. We know their values up to a certain iteration ilast
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where the approximate algorithm is terminated, and we want to guess their behavior in the
next iterations until they intersect (see Figure 4.9). We are also familiar with their general
behavior (tlast is non-decreasing, dmax non-increasing after the first couple of iterations) and
know they have to intersect. The intersection must appear after a finite number of iterations,
in the worst case after all objects from the dataset have been seen; the object with the highest
overall distance must have all descriptor values lower than or equal to the last values in the
list, and thus its overall distance can be at most equal to the threshold value computed over
the last values in the sorted lists. If the x and y coordinates of the intersection, i.e. the num-
ber of iterations needed to reach the intersection and the maximal distance in the precise
result, can be guessed, we may use them to better estimate the quality or the time needed
for obtaining an exact answer.

Figure 4.9: Maximal distance and threshold estimations

A possible way of determining tlast behavior is to compute threshold values for some
selected iterations, e.g. ilast + 100, ilast + 200 etc., until the threshold value meets the max-
imal distance of the approximate result set. The computations are not time-consuming and
resulting values enable us to follow the threshold curve development very precisely. The
problem is that we cannot easily obtain the j th object from the sorted lists for any j. We only
use lists of predefined length c.k, and for j > c.k finding the j th object requires that a new
query is executed. This could be very expensive as we do not know how many iterations
will be needed for the threshold to intersect with the maximal distance. We would either
need to do the sorted access for the whole dataset or repeatedly issue new queries.

However, we can try to estimate the quality without any additional accesses to the data.
Using the values of the maximal distance and the threshold computed in the approximate
TA iterations, we can extrapolate the two curves by standard numeric methods and then
compute their intersection.
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4.5.3 Extrapolation

Extrapolation is a process of constructing new data points outside a discrete set of known
data points. Its results can be of variable quality depending on the choice of extrapolation
method and the data used for extrapolation. Suitable extrapolation method should be cho-
sen with respect to the known data points and general assumptions about their properties
(assumed to be continuous, smooth, possibly periodic, etc.). Extrapolation methods range
from simple ones such as linear extrapolation to more complex ones that are quite time-
demanding.

For our problem we needed a simple method that can be easily used since we need quick
responses. Fortunately, we know quite a lot about the curves we want to estimate, above all
their general shape. Consultation with statistics experts (namely RNDr. Marie Budíková, Dr.
and Mgr. Jiří Zelinka, Dr. from the Department of Mathematics and Statistics of MU Faculty
of Science) confirmed that both curves can be extrapolated either as exponential or linear
ones. Exponential curves express the shape more precisely and would probably give better
results but are more difficult to compute. Therefore, linear curve was chosen as a base for
the extrapolation, as it is simpler and in later iterations both curves draw to a line.

Now we have decided to use a linear function f(i) = a.i + b to find the threshold values
for iterations i > c.k (the same applies to function g(i) = a′.i+ b′ and the maximal distance).
To identify the most suitable parameters a and b, the values of ti (or dmax

i ) computed in
iterations i ≤ c.q can be used. However, we do not employ all of them as the curves are
strongly non-linear at the beginning. Whenever the values are computed in an iteration they
are compared to the values from the previous iterations; if the difference between the curve
tangent from iteration i and several previous iterations is sufficiently small, we consider the
curve linear and from this iteration on we use the values to find the parameters for function
f(i). This is done by the least squares statistical method [4]. Having the data pairs (i, ti), we
find a and b such that the function values f(i) best fit the data. Formally, we minimize the
functions

c.k∑
i=1

(a.i + b− ti)2 and
c.k∑
i=1

(a′.i + b′ − dmax
i )2

Differentiation is used to find the minimum, and the parameters a, b, a′ and b′ are com-
puted from the resulting linear equations. The intersection of f(i) and g(i) is used as the
estimation dmax

estim of the maximal distance in the exact result set.
Exploiting the value dmax

estim we can estimate the recall, Restim, and the loss of quality,
LQestim, using the same reasoning that we gave for Rbound and LQbound respectively:

Restim = |{o ∈ RA|d(q, o) ≤ dmax
estim}|

|RA|
LQestim = dmax

A
dmax

estim
− 1
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4.5.4 Estimation Error

In the previous section, we have described a method for estimation of the development of
two curves, tlast and dmax. We use their intersection to simulate the maximal distance (and
at the same time the last threshold) in the precise result set and, exploiting this value, we
estimate the quality of the approximation. The accuracy of our estimation therefore depends
upon the accuracy of the extrapolation, which can be measured by the distance between the
curves intersection and the real maximal distance in the precise result. The distance can be
normalized by the maximal distance. Consequently, we define the estimation error, EE, as
follows:

EE = dmax
E − dmax

estim
dmax

estim

A positive (or negative) EE value signifies that the estimation dmax
estim was higher (lower)

than the real value dmax
E .
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Chapter 5

Experiments

In the area of similarity searching, the data domains are often so large and variable that only
very general algorithms can be proved to work for all of them with a guaranteed quality,
usually at the cost of a low efficiency. If we want to create a system that processes large data
efficiently we often have to fit the search methods to the specific data collection, i.e. to design
them in such a way that for most of the data objects good results are found quickly. Worse
results or longer response times are tolerated for less typical data objects in return for good
performance in most cases.

In the previous chapter, we have proposed an approximation algorithm for combined
queries in an image searching system. To obtain an efficient searching tool for this system,
we need to set the algorithm’s parameter c in such a way that it will work well for majority
of images in the system (which are various and numerous enough to represent any general
database of images). We aim to determine the suitable parameter through a series of experi-
ments on randomly chosen objects and then test the resulting algorithm on a different set of
objects. We also aim to examine the usability of the proposed estimations of results quality.

5.1 Experiment Settings

Our aim is to find such a value of c that the approximate TA using c.k sorted accesses will,
with high probability, find good results for the top-k complex queries with the query object
q. To achieve this, it is useful to consider which queries are the most probable to appear, and
to fit c to them in the first place. We can hardly say which images are more probable to be
submitted to queries; however, we can make some guesses about the number k of objects
required in the result set. It is probable that for similarity searching the user will not ask for a
single object but will prefer to have more similar ones so that he/she can choose from them.
On the other hand, a result set of 500 objects is too large for browsing through. The user will
rather ask for fewer objects, select the best of them and eventually issue a new query. An
optimal size of a result set that can be easily displayed on the screen is 5 to 100 previews.

Exploiting these observations, we have chosen the values of k for the experiments. Most
of them have been taken from the optimal scope but several less probable result set sizes
have been used as well to see how the algorithm behaves for them (see Table 5.1 for details).

Next, we needed to choose the values of c to be tested. Here, we wanted to select such
settings that are likely to give good results in an acceptable time. The lower bound on c is
provided by the fact that sorted accesses are the only way we can acquire objects, and at
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Parameter Name Parameter Values
k 1, 2, 5, 7, 10, 15, 20, 30, 50, 75, 100, 150
c 1, 2, 5, 10, 15, 20

Table 5.1: Parameter settings for experiments

least k objects are needed for the answer. We have issued the nearest neighbor query for
c.k objects to each descriptor overlay; since we have used five overlays, we could get up to
5.c.k objects. However, as some objects may appear repeatedly in the responses from several
overlays, we needed c to be at least 1 to be sure that at least k objects would be retrieved
by the sorted accesses. On the other hand, 20.k sorted accesses provide up to 100.k objects
which should be enough to give good results. Moreover, it this case the computations may
already be quite time-demanding for higher values of k. We have run the experiments for
six values of c between 1 and 20 to find the optimal value.

We have not tried different settings of aggregation function in our experiments. The
function we have used (see Section 3.3.3 for details) was chosen by experts; to find other
aggregations suitable for image searching would require further study which was not part
of this thesis. However, we intend to run experiments with different aggregation functions
in future research.

The experiments have been run on a network described in Section 3.3.4, holding 2 million
image objects. 50 objects were randomly picked from a larger dataset of 10 million images
and for each of them a top-k query was run with c.k sorted accesses for each combination of
the parameters c, k from Table 5.1. The query results as well as the values of the threshold ti
and the maximal distance dmax

i in each TA iteration were stored for quality evaluation and
estimations computing.

5.2 Evaluation of Results

For each of the 3.600 experiments, we have compared the results to the precise result sets
and evaluated all the quality measures presented in Section 4.4. The precise result sets were
obtained through a range query to the precomputed overall-distance layer (see Section 4.4
for details) for each query object. The range for each object was chosen as the maximal
distance of all objects found in any of the 72 approximate queries executed for this object.
Thus the precise result sets contain at least as many objects as the largest approximate result
sets, and for all objects found by the approximation we can find out how many objects with
lower distance from the query object exist. For individual experiments evaluation, we have
used subsets of these precise result sets with the adequate number of objects (i.e. for queries
with k = 5 we compared the results with the first 5 objects in the precise result set) with the
exception of error on positions where the whole precise sets were needed.

Since we are more interested in the general behavior of our algorithm than in the indi-
vidual cases, we evaluated the approximation quality measures for given settings of c and
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k as the average of the values computed for individual queries with the same setting. For
each of the chosen measures we constructed a graph showing the dependence between the
respective measure values and the approximation parameter c for all values of k under ex-
amination. In addition, average values have been computed from all experiments for a given
c, and depicted in a small embedded graph. In the graphs, we distinguish between the more
and less typical values of k – the boundary values are represented by dashed lines. Similarly,
in the small graphs we can find two curves, the solid line representing the average computed
without the boundary values, and the dashed line representing the overall average.

5.2.1 Loss of Quality

The LQ measure describes the ratio between the maximal distances in the approximate and
precise result sets (see Section 4.4.1 for exact definition). Evaluation of results is depicted in
Figure 5.1 (note that the scale of the main graph is logarithmic, the scale in the embedded
graph). We can observe that the worst values have been achieved for k = 1 and k = 2. This
shows that the objects with low overall distances from the query object are often not in the
first places in the sorted lists for individual descriptors. However, if the very best object has
overall distance 0, it has to be first in all the lists since the overall distance is computed as
a sum of values for individual descriptors with positive coefficients. From our set of query
objects, only 6 out of 50 were present in the searched data, therefore the best result was not
always found for k = 1.

With the growing number k of objects in the result set the chance of finding good results
among objects retrieved by the c.k sorted accesses increases. This indicates that although
the good objects are not necessarily in the first places of the sorted lists, they tend to appear
quite soon.

Figure 5.1: Loss of quality
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5.2.2 Recall

Recall R is defined as the proportion of objects from the precise result that are found by
approximate searching. We can see that about 30 % of the precise result is found even for c

= 1. Specifically, in the case of the point query (i.e. query with k = 1) with 1 sorted access
the recall is 30 %. In each sorted access up to five different objects are retrieved from the
five descriptor overlays. We know that in 12 % of our experimental queries the query object
itself was sent from each overlay. In the other 18 % of experiments, the best match was found
among the five objects, i.e. the best object was on the first position in at least one sorted list.

For the maximal value of c, most of the queries give recall of 90 % and better. Worse
results are only retrieved by queries with small response sets, where the number of objects
examined by the algorithm is far lower – as we have already observed, good objects tend to
appear soon, but not immediately in the beginning of the sorted lists. We can also see that
the recall rises quickly at the beginning but for large values of c the improvements are very
small so it would require many more sorted accesses to reach the 100 % recall, i.e. to find the
precise result.

Figure 5.2: Recall

5.2.3 Relative Error on Distances

The RE measure is similar to the LQ one but compares distances of all objects from the
approximate and precise result sets whereas LQ compares only the maximal distances from
each result set. The graph in Figure 5.3 (using the logarithmic scale again) shows that the RE

values are a little lower, which can be easily explained. Some of the distances used for the RE

computation are the same in the precise and approximate responses since the same objects
appear in both sets (see the Recall graph). This reduces the average error on distances. On

38



5.2. EVALUATION OF RESULTS

the other hand, LQ works with the worst objects which are always different in the precise
and approximate results unless the recall is 100 %. As an example, consider an approximate
response set with 10 objects and 90 % recall. The only object that does not belong to the
precise response has to be the worst object from the approximate result set. Let the object
distances be 1, 2, ..., 10 for the precise result set, and 1, 2, ..., 9, 11 for the approximate one.
Then LQ = 11/10 - 1 = 1/10 and RE = 56/55 - 1 = 1/55.

In the previous example, the disproportion between the RE and LQ values is much
higher than in our experiments where the errors are distributed more uniformly in the whole
response set. For k = 1 the RE and LQ values are naturally the same.

Figure 5.3: Relative error on distances

5.2.4 Error on the Position

The EP measure (depicted in Figure 5.4, also in logarithmic scale) expresses the average
difference between the positions of a given object in the precise and approximate results.
It is interesting to see that in terms of position, some results are really bad, especially for
c = 1 where there exist several hundreds of objects better than the ones retrieved. In the
special case of c = 1 and k = 1 we can even observe that the curve rises above the graph
logaritmic scale, the error value being 1.255. This is caused by a single query which returned
57941th object instead of the first one. Still, from the previous measures we know that the
retrieved objects are not substantially different from the precise ones in terms of similarity.
In other words, the metric space is so dense that we can afford to miss several hundreds
of objects without any great effects on the results quality. This is very advantageous for the
approximate searching.
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Figure 5.4: Error on the position

5.2.5 Search Costs

As explained in Section 4.4.5, we cannot compare the approximate search costs to the costs
of the precise searching because these cannot be easily obtained. Therefore, we only watch
the development of the cost curves for individual experiments settings. As anticipated, the
approximate algorithm costs grow with the number of objects to be examined. The more
objects are visited, the better is the quality of results but the more time is needed.

We can very roughly estimate the improvement in efficiency, i.e. the ratio between the
precise and approximate algorithm costs, from the costs and recall graphs: the average recall
(without boundary values) for c = 15 is 87 %, for c = 20 it is 91 %. If the recall curve continued
to grow with the same speed, it would reach 100 % for c = 54. The curve would probably
grow slower so 54.k is a lower bound on the number of the sorted accesses needed to get
100 % recall. From the costs graph we can estimate that with c = 54 the time needed for
the approximation would be about 13 seconds. Thus the efficiency might be about 11 times
better for c = 1, 4.3 times better for c = 10 and 2.5 times better for c = 20.

The comparison between the costs of the sorted and random accesses shows that, in
general, more time is needed for the random accesses and the costs grow more steeply than
in the case of sorted accesses. When we look on the costs more closely for specific values of
k (as depicted in Figure 5.6) we see how the proportion of time consumed by the sorted and
random accesses changes with the growing values of c. Detailed costs graphs for all values
of k can be found in Appendix A.

5.2.6 Results Quality Conclusion

All the measures confirm that our hypothesis about the dependence between the number
of the sorted accesses and results quality was correct. We can also see that in all graphs,
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Figure 5.5: The total response time is the sum of sorted accesses cost, random accesses cost
and time needed for processing of sorted access results (this is insignificant)

the quality rises more steeply for lower values of c, later the progress is not so fast. The
breakpoint moves between c = 5 and c = 10. On the other hand, costs rise linearly. Thus
it is more advantageous to use 10.k sorted accesses than 20.k because in the former case
we gain more quality for the same costs. Altogether, c = 10 seems to be the best choice of
approximation parameter. Using this, we can get query response in about 5 seconds, which
is not suitable for highly-interactive applications but acceptable for browsing, and several
times better than in the case of precise searching. Average result set will provide 80 % recall
with low relative error on distances, i.e. 80 % of the objects from the precise answer, and 20 %
very similar to the precise objects.

5.3 Estimations Evaluation

As we have discussed in the previous chapter, it is very desirable to complete the approx-
imate result with the information about its quality. Since it is not possible to evaluate the
quality precisely we can try to estimate it using the knowledge about the typical TA be-
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Figure 5.6: Approximation costs for two different settings of k

havior. To test the usability of the proposed extrapolation method we applied it on the ti
and dmax

i values acquired from our experiments, computed the intersection dmax
estim and com-

pared it with the real value dmax
E in the precise result. In addition to the estimation error we

also evaluated estimations of two quality measures, the loss of quality and the recall, and
compared the results with the exact values and bounds defined for these measures.

5.3.1 Estimation Error

The estimation error describes how much the estimation missed the real value (see Section
4.5.4 for details). In Figure 5.7, estimation errors are depicted for several values of k; the
whole set of graphs for all experiments can be found in Appendix A.

Figure 5.7: Estimations error

We can see that estimation is worse for low values of both k and c. This is natural since in
this case we only know the values of the threshold and the maximal distance from a few it-
erations so the extrapolations perform poorly. The more iterations have been run, the better
chance there is for good extrapolation and, consequently, good estimation. The good results

42



5.3. ESTIMATIONS EVALUATION

for higher values of c are also influenced by the fact that after the last TA iteration the differ-
ence between the threshold value and the maximal distance in the result set is small so the
estimation cannot be seriously wrong.

5.3.2 Loss of Quality Estimations

The loss of quality estimations, together with the LQ bounds and the real LQ values com-
puted in comparison with the precise results are depicted in Figure 5.8 for several values
of k (more graphs can be found in Appendix A). The graphs show that with the growing
number of the sorted accesses (and TA iterations) the difference between the real LQ and
the bounds decreases. As for the estimations, we can see that better results are obtained for
higher values of k and c where the intersection of the threshold and maximal distance curves
can be estimated more accurately.

Figure 5.8: Loss of quality estimations and bounds compared to the real loss of quality

5.3.3 Recall Estimations

The evaluation of recall estimations (see Figure 5.9) confirms findings from the LQ esti-
mations. Again, estimations work well if more sorted accesses have been used. However,
estimations are more useful here since the bounds are quite far from the real values even for
higher values of k. To compare the R estimations for all values of k, see Appendix A.

5.3.4 Estimations Conclusion

Even though the estimations are by far not exact, still they can give better information about
the results quality than bounds, especially for higher values of k. As a future work, we will
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Figure 5.9: Recall estimations and bounds compared to the real recall

try to tune the estimations to give even better results, which may be affected by the values
submitted to the extrapolation.

5.4 Results Verification

Based on the previously described set of experiments, we decided that the most suitable
value for the approximate TA parameter c is 10 as it gave the best results for the chosen
test queries. However, we needed to verify this hypothesis on another set of objects to find
whether it is true in general, not only in the selected set of objects (called the baseline set
in the following text). Therefore, we have randomly chosen another set of 50 objects, run all
the experiments again and evaluated the results. For this verification set, all query objects
have been chosen from the indexed collection.

Figure 5.10: Quality and costs evaluation for the verification set of experiments
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In Figure 5.10, we can see the evaluation of quality in terms of recall (the other measures
give similar information as the baseline case and can be found on the enclosed DVD). The
results are very similar to the baseline experiments, the only significant exception is the
behavior of experiments with k = 1, where we find 100 % recall (and consequently zero
errors). This is caused by the fact that all query objects belonged to the indexed collection
and therefore had to be found in the first TA iteration. We can also observe that the recall
is a bit lower than for the baseline experiments, which can be affected by the distribution
of objects in metric space. However, the general behavior of approximate TA is the same –
quality rises more steeply for lower values of c.

When we compare the costs (depicted in Figure 5.10) to the cost of the baseline experi-
ments, we find that the second set of experiments took longer to process. Both sorted and
random accesses needed more time, in case of sorted accesses the increase is more signifi-
cant. Again, this may be affected by the distribution of objects in metric space, so that more
peers need to be accessed and searched to find the c.k objects for each of the sorted lists.
Still, the costs rise linearly so we can use the same reasoning as for the baseline experiments
and confirm that 10.k is the most suitable number of sorted accesses for reasonably effective
and efficient searching.

Figure 5.11: Estimations evaluation for the verification set of experiments
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In the last set of graphs in Figure 5.11 we have evaluated the quality of estimations for
the second set of experiments. The results are similar to the baseline experiments, again we
can see that in most cases, estimations can provide better information about results quality
than we would obtain with the use of the bounds. Naturally, also in this case the estimations
are more accurate when more data is available for the extrapolations, i.e. when more sorted
accesses have been allowed and more iterations run.

5.5 Summary

In the experiments, we have found that our approximate algorithm for complex similarity
searching works well for the chosen data collection. We are able to reach 80 % recall in sev-
eral seconds and the results are very good in terms of similarity compared to the precise
results. Based on the experimental results, we propose to use c = 10 as the basic setting of
approximate searching.

We are also able to compute estimations of the results quality at the query processing
time. The estimations are not accurate but give useful information and will be subject to
further research.

All the results were verified by an independent set of experiments which produced sim-
ilar results. The entire statistics obtained from both sets of experiments as well as their visu-
alization in graphs are available on the enclosed DVD.
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Chapter 6

Conclusions

The first three chapters of the thesis provide an introduction to the topic of similarity search-
ing and describe the theoretical background. In Chapter 1, we have discussed the need for
new storing and searching techniques suitable for modern data and presented similarity
searching in metric spaces as a promising solution. Chapter 2 covers the principles of simi-
larity searching as well as the basics of distributed processing, which is necessary for large
data collections effective management. Chapter 3 describes the multi-purpose similarity
searching system MUFIN, for which we have designed an algorithm for effective processing
of combined queries.

6.1 Realization of Objectives

The contributions of this thesis are embraced in Chapters 4 and 5. In Chapter 4, we have pre-
sented the baseline algorithm for combined queries, proved its correctness for our searching
model and discussed its implementation. We have described advantages and disadvantages
of each proposed method and one of them has been chosen as our prototype implementa-
tion. As the time costs of the precise algorithm have been too high, we have proposed an
approximate algorithm for the complex queries. We have also presented measures for ap-
proximate results quality evaluation. Furthermore, we have discussed the need for real-time
information about approximate results quality and propose a method for real-time quality
estimations based on statistical properties of the algorithm behavior.

Both the proposed approximate algorithm and the method for quality estimations have
been thoroughly tested with many different settings of search parameters. Chapter 5 em-
braces the evaluation of experimental results, in particular, detailed graphs and the descrip-
tions of the quality measures. The quality estimations have been compared to the theoretical
bounds and real values computed with the knowledge of precise results. All the experiments
have been run twice for different sets of query objects to verify the outcomes.

Specifically, the objectives set for this thesis have been realized as follows:

• Several possible ways of combined query implementation have been discussed in Sec-
tion 4.2 and the most promising one has been chosen. Furthermore, in Section 4.3 we
have proposed a modification of baseline algorithm for approximate searching to ob-
tain user-friendly response times.
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• Quality measures for evaluation of approximate results have been presented in Section
4.4. In Section 5.1, we have designed a set of experiments to test our implementation
of combined queries.

• We have evaluated and discussed the results of approximate search in Section 5.2.

• A method for real-time estimation of approximate results quality has been proposed
in Section 4.5 as well as a measure of estimation accuracy.

• The estimation method has been tested and evaluated in Section 5.3.

Furthermore, both the proposed approximate algorithm and the estimation method as well
as the results from experiments have been presented in a paper at SISAP’08 Workshop on
Similarity Search and Applications [11].

6.2 Future Work Outline

In the course of work on complex queries implementation, many challenges have been rec-
ognized which could not be realized within the scope of this thesis but will be subject to
further research:

• We would like to try the other TA implementations described in Section 4.2 and eval-
uate their efficiency.

• In the area of aggregation functions, we plan to run the experiments again with dif-
ferent weights of individual descriptors for the overall distance comptutations and
compare the results to experiments described in this thesis. We would also like to try
another types of aggregation functions than sum.

• A wide space for improvements is open in the area of estimations.

• To get a feedback from users, we intend to submit our implementation to extensive
testing by a set of volunteers. This will enable us to find out more about the actual
behavior of users in the course of searching – how many objects are usually required,
how many times is the query repeated to get better results etc.

• We would also like to explore the possibilities of re-ranking the results once they are
delivered to the user (as proposed in [5]) and automatic tuning of the approximation.

48



Appendix A

Detailed Graphs

In Chapter 5, we have presented the average values of quality measures which illustrate
the dependence between the approximation coefficient c and the results quality regardless
of the number k of objects in the result set. However, it is also interesting to see how the
approximation behaves for different values of k, and to compare the effectiveness and effi-
ciency of our algorithm in answering the queries. Therefore, we present several groups of
detailed graphs in this appendix that enable comparison of the quality of the results and
its estimations and the costs between the approximate combined kNN queries for all the
values of k used in our experiments (as described in Section 5.1).

In each graph, we show the investigated measure depending upon the values of the
parameter c. The same six values of c were used for all experiments so we can observe the
effect of the additional sorted accesses on the results of queries for the particular k. Each
graph presents average values computed from the results of 50 experiments using the same
values of parameters c and k for different objects. Only the results for baseline experimental
set are depicted here; the results for verification set can be found on the enclosed DVD.
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Figure A.1: Approximation costs for different values of k
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Figure A.2: Estimation errors for different values of k
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Figure A.3: Recall estimations and bounds compared to the real recall computed with the
knowledge of the precise result
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Figure A.4: Loss of quality estimations and bounds compared to the real loss of quality
computed with the knowledge of the precise result
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Appendix B

Contents of the Enclosed DVD

The enclosed DVD contains the following items:

• the text of this thesis in XML, TEX and PDF formats, and images presented in the thesis
(directory /thesis);

• MUFIN implementation in Java (directory /mufin);

• Java classes for processing the data retrieved from experiments (directory /utils);

• results from the two sets of experiments (baseline and verification) as produced by
MUFIN, a text file with results evaluation and quality estimations for each set of ex-
periments, and graphs depicting the experimental results and various measures of
their quality (directory /results).
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