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Abstract Multimedia information is becoming an ubiquitous part of our lives, which brings
an equally ubiquitous need for efficient multimedia retrieval. One of the possible solutions
to this problem is to attach text descriptions to multimedia data objects, thus allowing users
to utilize traditional text search mechanisms. Search-based annotation techniques attempt to
determine the descriptive keywords by analyzing the descriptions of similar, already anno-
tated multimedia objects, which are detected by content-based retrieval techniques. One
of the main challenges of this approach is the extraction of semantically connected key-
words from the possibly noisy descriptions of similar objects. In this paper, we address
this challenge by proposing the ConceptRank, a new keyword ranking algorithm that
exploits semantic relationships between candidate keywords and utilizes the random walk
mechanism to compute the probability of individual candidates. The effectiveness of the
ConceptRank algorithm is evaluated in context of web image annotation. We present a com-
plex image annotation system that includes the ConceptRank component, and compare it to
other state-of-the–art annotation techniques.
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1 Introduction

Information is one of the most valuable assets of human society. Nonetheless, a piece of
information is only useful if it can be found when it is needed. Modern technologies allow
us to create and store enormous amounts of digital information, including complex formats
such as multimedia. However, we are still struggling to develop efficient and user-friendly
tools for effective management and retrieval of such data, which would allow us to fully
exploit the accumulated information.

Although a lot of effort has been invested in the last decades into the development of
similarity-based retrieval systems, it appears that keyword search remains the most natural
way for people to access information. To be able to find a multimedia object by keyword
search, the object needs to be described by sufficiently rich and precise text metadata. This is
well known e.g. to photo-stock sites, which sell images that need to be located by keywords.
As observed in [7], the average number of keywords used for description of web-stock
photos is about 30.

When the text metadata is created manually, it is a time-consuming process that requires
more effort than it may seem. To demonstrate this, we performed a small experiment, where
university students were given a set of images and asked to provide the descriptive key-
words. The participants were told that the keywords would be used for text retrieval, but we
did not issue any recommendations on the number of keywords. As a result, the students
usually provided only a few keywords per image, the average number being 5 (see Fig. 1).
To come up with more keywords would apparently require more time and effort than they
considered appropriate to invest.

In this situation, it is a logical step to attempt to create the descriptive keywords automat-
ically – either entirely or, at least, in the form of keyword hinting with subsequent manual
selection by the user. Indeed, the research in automatic multimedia classification has been
ongoing for several decades, starting from dedicated (e.g. medical) classification tasks and
expanding towards more general problems such as web image annotation. However, with
the growing amounts of data to be processed and the increasing number of target classes
from which we select (i.e. categories, labels, tags, etc.), new challenges appeared. In par-
ticular, the standard machine learning techniques seem to reach their limits with hundreds
of target classes, while the required number of classes for web search can be thousands or
even more [18, 49]. Therefore, alternative solutions need to be explored.

Original web-stock keywords

belief, building, chapel, christen, church, cloud, comforter, 
cumberland, debauching, entrance, europe, gate, heaven, historical, 
holiday, house, iceland, influenzas, journey, leave, level, mee�ng, 
nature, north, parcellings, parliament, plant, repellents, rock, stone, 
story, summer, sun, term, thingvellir, tower, vegeta�on, view, way

Keywords provided by par�cipants of our experiment

Student 1: church, small
Student 2: building, church, tree
Student 3: church, sky, historic, pray, Sunday, mass, tourist, place

Top 20 keywords offered by MUFIN Image Annota�on

building, structure, church, religion, con�nent, group, travel, island, sky, architecture, tower, person, belief, loca�ons, chapel,
chris�anity, tourism, regions, country, district

Fig. 1 Comparison of keyword annotations from different sources



Multimed Tools Appl

A lot of attention has been recently focused on exploiting content-based retrieval tech-
niques to extract information from vast amounts of user-provided data available on the web.
This approach, usually denoted as search-based annotation, consists of two main steps: first,
a set of objects similar to the annotation input is selected, using the content-based search-
ing; second, keywords associated with the similar objects are submitted to some tag ranking
function, which selects the most relevant ones for the annotation output. Although the
search-based annotation methods are not yet sufficiently precise, the search-based paradigm
has several desirable properties, in particular the scalability with respect to both data size
and target vocabulary size. The principal challenge is now the selection of relevant keywords
from the candidates provided by the content-based retrieval. Also, a number of additional
issues need to be resolved, such as the selection of a suitable knowledge base, efficient data
indexing, or the combination of various keyword relevance clues.

1.1 Our contributions

In this paper, we address the problem of automatic multimedia annotation on two levels:
first, we propose a new generic semantic-mining algorithm for search-based annotation;
second, we present a specific image annotation tool that provides descriptive keywords for
web images. Subsequently, we should talk about multimedia annotation in the first part
of the paper, and image annotation in the second part. However, we feel that this would
add unnecessary confusions. Therefore, we will focus on image annotation throughout the
paper, and we shall only emphasize the genericity of selected procedures in the text. The
main contributions of the paper are:

– ConceptRank algorithm: During the annotation process, one of the crucial tasks is to
compute a probability score for different candidate keywords that were associated with
objects similar to the query. We introduce the ConceptRank algorithm, a generic proce-
dure for computing the keyword probabilities that takes into account the content-based
similarity of multimedia objects as well as various semantic relationships that exist
between the candidate keywords. The relationships can be retrieved from an arbitrary
semantic resource, e.g. the WordNet.

– Description of a mature search-based annotation system: To facilitate the search-based
annotation, many issues need to be resolved, such as selection of the reference image
database, efficient implementation of large-scale similarity retrieval, semantic ranking
of candidate keywords, or selection of the final annotation output. In the second part of
the paper, we present a mature system for image annotation, and discuss the design and
implementation of individual components.

– Extensive evaluation of the annotation system and its components: To demonstrate the
usefulness of the ConceptRank and to analyze its behavior in various situations, we
performed extensive experiments on the ImageCLEF 2014 Scalable Concept Image
Annotation dataset. At the same time, we assessed the effectiveness and efficiency of
the whole annotation system. Our tool was compared to other participants of the Image-
CLEF competition and also to the image labelling tool offered by the Google Vision
API.

The paper is organized as follows. First, we formalize the problem of image annotation
and provide a brief comparison of two orthogonal approaches – the model-based and the
search-based paradigm. Next, we give a more detailed description of the search-based anno-
tation principles, related work, and challenges. In Section 4, we introduce the ConceptRank
algorithm and its utilization on semantic networks of related concepts. The following section
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presents a real-world annotation system featuring the ConceptRank algorithm together with
the WordNet lexical database. In Section 6, the performance of the whole annotation tool is
evaluated and analyzed. In the conclusion, we outline a possible future cooperation between
our annotation-based solution and state-of-the-art classifiers.

2 Preliminaries

Image annotation is an active field and various researchers may differ in their definitions of
the annotation task. Therefore, let us begin by clarifying the specific problem that we want
to solve. Next, we briefly survey two orthogonal approaches to the task and outline their
strengths and weaknesses.

2.1 Problem formalization

In the context of this paper, the objective of image annotation is to provide a set of descrip-
tive keywords that will characterize the visual content and semantics of some input image
in the extent required by a given application. Although there already exist works that aim
at describing images by coherent sentences, we feel that providing a rich and accurate set
of keywords is still enough of a challenge. Keyword annotations are also more suitable for
most applications.

The term keyword is used here to represent a single word or a short phrase acting as an
atomic item for describing the image content. Due to the ambiguity of natural languages, the
plain text representation may not be sufficient to determine the meaning of a given keyword
– e.g. the keyword bar can refer to a drinking place, a piece of metal, music notation, or
several other objects or activities. Therefore, the semantics of a keyword can by clarified by
linking it to some external knowledge base (a Wikipedia page, some ontology class, etc.).
If available, such links are very helpful during the annotation process.

Definition 1 A keyword is a single- or multiple-word label of image content. Its semantics
can be specified by a link to some external knowledge base.

As stated above, the annotation process needs to take into account the specific application
for which the annotation is formed. For instance, the query image in Fig. 2 can be described
simply by the flower name, or by a set of keywords that specify its color, shape, and sur-
roundings. All these descriptions are correct, but they are suitable for different situations.
Therefore, we introduce the notion of a target vocabulary V , which is a set of keywords
that are of interest for the given application. If it is not explicitly specified, we assume that
the target vocabulary contains all English words. By the means of the target vocabulary, we
can uniformly model annotation tasks with different scopes and domains, including tradi-
tional multi-label classification tasks such as the ILSVRC [39]. For web image annotation,
explicit target vocabularies are considered e.g. in [11, 48].

Definition 2 A target vocabulary is a set of keywords that are eligible for annotation in a
given application.

Now we can define the annotation task and its objective. In simple words, we are looking
for a procedure that computes the relevance of individual vocabulary items with respect to
a given query image.
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Query image

Applica�on: keyword annota�on for text search
Vocabulary: all English words
Relevant keywords: {flower, dandelion, plant, yellow, detail, …}

Applica�on: plant iden�fica�on 
Vocabulary: list of plant names
Relevant keywords: {Taraxacum_officinale}

Applica�on: personal image labeling
Vocabulary: {animal, building, flower, person}
Relevant keywords: {flower}

A

B

C

Fig. 2 Image annotation in context of different applications

Definition 3 The annotation task is defined by a binary query image q and a target vocab-
ulary V . The solution to the task is modeled by an annotation function fA : Image ×
Keyword → [0; 1], which for each keyword c ∈ V computes the probability of the
keyword being relevant for q.

Any keyword with a non-zero probability is deemed relevant for the image and may
become part of the annotation output. However, only a subset of the relevant keywords
is often presented to the user, especially in case of large vocabularies. This subset can
be selected by limiting the number of the most probable keywords, defining a minimum
probability threshold, or using some advanced mechanism that takes into account semantic
relationships between words and their hierarchies.

We should also mention that in some situations, the query image may be already accom-
panied by some text information, either user-provided or automatically retrieved. The query
image can also be accompanied by other types of metadata, such as the GPS location or
EXIF. To cover those cases, the annotation input in the above-mentioned definition could
be easily extended. However, since we do not work with additional input information in this
paper, we prefer the simple definition of fA.

2.2 Possible approaches

There are two fundamental approaches that try to transform visual image content into textual
information, which are traditionally denoted as model-based and search-based annotation.
The model-based paradigm makes use of various machine learning techniques, whereas the
search-based approach exploits recent advances in content-based image retrieval.

The model-based annotation begins with a learning phase, when a correctly labeled train-
ing dataset is used by machine learning processes to create a statistical model for each
concept from the target vocabulary. The models are then used during the actual annotation
phase to decide the relevance of individual concepts with respect to a given query image. As
surveyed e.g. in [58], numerous learning techniques have been studied in context of image
annotation. Recently, very good results have been obtained by deep convolutional neural
network classifiers [23, 44]. However, a key component for the model-based annotation
is reliable training data, which is notoriously difficult to obtain. Furthermore, the learning
phase is costly and any change of the target vocabulary requires re-training of the whole
system. Also, with the growing size of the target vocabulary, it becomes difficult to train the
classifiers both in terms of computation costs and class confusability [18, 49].

Search-based image annotation, also denoted as data-driven or model-free annotation,
is an orthogonal approach to machine learning. It attempts to utilize the voluminous but
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potentially erroneous information available in different web image collections and social
networks. In time of the query execution, a content-based image search is initiated to search
such resources for images that are visually similar to the picture being annotated, and the
textual metadata of the resulting images is used to form the annotation [25, 54]. The under-
lying assumption is that a significant portion of visually similar photos should be also
semantically related to the image that is being analyzed. The use of web data instead of ded-
icated training collections significantly lowers the barriers of building an annotation system.
The search-based annotation also needs no learning phase and scales well to large vocabu-
laries, since the vocabulary of web image databases that can be utilized to annotate images is
potentially unlimited. However, the current precision and recall of search-based annotation
methods is lower than the performance of state-of-the-art classifiers [22, 26, 60]. Therefore,
the search-based annotations are currently more suitable for tag-recommendation tools than
for a fully automated annotation service.

As we can observe in Table 1, the two above-described paradigms are in many aspects
complementary. Therefore, we believe that the future of image annotation lies in combina-
tions of the two approaches, as suggested e.g. in [3, 10, 17, 53, 59]. To make such schemes
viable, it is necessary to continue developing both paradigms, especially the less efficient
search-based techniques.

3 Search-based image annotation

In this paper, we focus on the development of search-based image annotation while keeping
in mind the possible future fusion with dedicated classifiers for selected concepts. In this

Table 1 Comparison of the model-based and search-based annotation

Model-based approach Search-based approach

Principles – use training data to create classifiers – employ similarity search over annotated

for vocabulary concepts (learning data to find objects similar to a given query

phase, offline) – mine the annotation from the descriptions

– run the classifiers to select relevant of similar objects

concepts for a given query

Advantages – mature technologies available – reducing the reliance on cleanly labeled

– fast processing data, utilization of web data

– high precision and recall – no costly learning phase

– scalability w.r.t. vocabulary size

Disadvantages – requires reliable training data – slower annotation phase

– extension of vocabulary requires costly
re-training of classifiers

– lower precision and recall

Use cases Annotation tasks with small domains,
fixed vocabulary, and reliable training data

Annotation tasks with large domains and
open/adaptable vocabulary

– identification of people – proposing keyword annotations for web

– classification of cancer cells image databases
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section, we detail the principles of the search-based approach and discuss related work in
this field.

3.1 Principles

The basic idea of the search-based paradigm is to annotate an unlabeled image by prop-
agating the labels of community photos that are visually similar to the input image. Let
AIC = {(i1, desc1), . . . , (in, descn)} be the reference collection of n images that are
already associated with some type of textual data. This collection is typically pre-processed
to enable efficient evaluation of similarity queries. The actual annotation process then con-
sists of several phases, which are illustrated in Fig. 3. Let us now describe each of these
phases in more detail and introduce some notation that will be used later:

– Content-based image retrieval (CBIR): Using a suitable visual distance measure dvis ,
the system first searches the annotated image collection for images similar to the
query image q. The search returns a set of visually similar images together with
their descriptions and their visual distances from q: Simq = {(im1 , descm1 , dm1), . . . ,

(imk
, descmk

, dmk
)|(imi

, descmi
) ∈ AIC, dmi

= dvis(q, imi
)}

– Candidate keyword mining and probability computation: In the next step, the keywords
that appeared in the annotations of images in Simq are collected. We shall refer to them
as the initial candidate keywords KwInit

q . These candidate keywords are associated
with initial probabilities, which are usually derived from some properties of Simq .
Additional text mining techniques can then be applied to expand and refine the set
of candidate keywords and to recompute the probabilities of individual candidates. At
the end of the second phase, we obtain KwFinal

q – a final list of keywords and their
probabilities.

– Mapping to the target vocabulary: If the target vocabulary V differs from the vocabu-
lary of images in AIC, the candidate keywords retrieved by the previous step may not
be eligible for the final annotation. In such case, the keywords from KwFinal

q have to
be mapped to appropriate keywords from V , and the probability of the target keywords
needs to be determined. At the end of this phase, the value of fA(q, kw) is available for
all keywords from the target vocabulary.

V = {animal, building, flower, person}

Annotated image 
collec�on (AIC)

Content-based 
image retrieval

Similar annotated images (Simq)

Yellow, 
bloom, 
pre�y

Meadow, 
outdoors, 
dandelion

Mary’s 
garden, 
summer

Candidate 
keyword

processing
Seman�c 
resources

Mapping to the 
target vocabulary

fA(q,animal) = 0

fA(q,building) = 0

fA(q,flower) = 1

fA(q,person) = 0.1

Final candidate keywords 
with probabili�es

Plant 0.3
Flower 0.3
Garden 0.15

Sun 0.05
Human 0.1
Park 0.1

q =

d = 0.2 d = 0.6d = 0.5

Fig. 3 General scheme of the search-based annotation
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– Selection of output: If the set of relevant target keywords is reasonably small, it can
be directly returned to the user/application. Otherwise, it may be necessary to select a
subset of relevant keywords as the final annotation.

3.2 Challenges and related work

To make the above-described scheme work, a number of issues has to be resolved. In the
following, we introduce the main challenges and discuss existing work in individual areas.
The related work for the computation of fA is especially relevant for Section 4 of this paper,
where we introduce a new algorithm for candidate tag probability computation. The other
challenges will be met again in Section 5, where we present a complete annotation system.

3.2.1 Data acquisition

The reference dataset (AIC) used for content-based retrieval significantly influences the
quality of annotations. One of the important factors is the size of the dataset and its scope –
the broader is the domain D to be covered, the more images are needed to provide examples
for different visual forms of the semantic concepts from D. At the same time, the qual-
ity of both the visual and text information contained in the AIC should be high to allow
meaningful visual comparisons and text analysis.

Existing solutions to reference data acquisition can be divided into three groups. In the
first group we put solutions that employ web images with the surrounding texts dumped
from web search engines [12, 54]. Such images can be obtained in large quantities, but the
quality of both image and text is unreliable and there is the additional task of mining key-
words from the web page. The second group contains collections retrieved from various web
image galleries, e.g. Flickr [1, 22, 51, 60]. This approach is popular due to the fact that the
images are already tagged. Finally, there are also collections that were created for the spe-
cific purpose of supporting image annotation and classification. Two significant examples
both focus on linking images with the WordNet lexical database: the authors of [47] auto-
matically collected 80 million images representing all non-abstract WordNet noun classes,
whereas the ongoing ImageNet project with crowdsourced quality control currently reports
over 14 million images linked to more than 20000 WordNet classes [13].

3.2.2 Effective and efficient CBIR

In the CBIR phase, we need to find images that are visually—and hopefully also
semantically—similar to the query image. This requires suitable visual descriptors and dis-
tance function, which are used to evaluate the similarity. The similarity search needs also to
be efficient, since in most cases the users expect real-time interaction with the annotation
system. Therefore, we need effective and efficient data indexing and retrieval methods that
are able to process large quantities of images.

Basically, there are two types of visual image descriptors: local descriptors identify and
characterize important points in the image, whereas global descriptors provide aggregated
information about the whole image. A general survey of various descriptors can be found in
[14], whereas [58] focuses on descriptors used in image annotation. In both areas, a distinct
success has been achieved lately by descriptors produced as a by-product of deep neural
network classifiers, in particular the DeCAF global descriptors [15].

The efficiency of similarity searching is determined by the indexing technique used
for data organization [57]. Recent advances in the area of multimedia indexing include
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methods based on vector space partitioning [35], permutation-based metric space indexing
[36, 37], or similarity-based hashing [29]. Alternatively, the bag-of-words approach utilizes
text-search techniques on descriptors converted to visual words [41].

It is also interesting to consider the type of similarity query employed for the identi-
fication of relevant images. A vast majority of annotation techniques utilize the k-nearest
neighbor query, which returns the k most similar images. As an alternative, [27] suggested
to use range queries and claimed that the optimal distance threshold can be determined
more precisely that the optimal value of k.

3.2.3 Effective and efficient identification of relevant keywords

The search-based annotation is based on the assumption that a significant portion of ini-
tial candidate keywords is relevant for the query image. However, there are two factors
that introduce noisy and irrelevant initial keywords: the uncertain quality of image descrip-
tions in AIC, and the semantic gap that may cause CBIR to return semantically irrelevant
images [42]. Therefore, a refinement stage is necessary to identify the keywords which are
strongly correlated and reject others. At the same time, the initial candidate keywords can
be expanded by related words from other sources. Finally, the probability of relevance needs
to be estimated for all candidate keywords, which are then mapped on the target vocabu-
lary. There is thus a demand for robust models that are able to combine different relevance
clues to rank candidate annotations. The models also should be efficient to allow real-time
responses of the whole annotation system.

The first task of the text processing phase is to select the initial candidate keywords.
This is trivial if the images in AIC are annotated by keywords; otherwise, meaningful n-
grams need to be extracted from the image descriptions [12, 54]. Next, the set of candidate
keywords can be enriched by related concepts from various resources. [1] proposed to con-
sider WordNet synonyms of the initial keywords, [32] and [21] utilized words frequently
co-occurring in AIC with the initial candidates, and [60] selected additional keywords from
the results of a web search that used the initial candidate keywords as the query.

A baseline strategy for the estimation of initial candidate keyword probabilities is to
consider the frequency of each keyword within Simq . Individual keyword occurrences are
often weighted by the visual distance or rank of the respective image [34, 51]. Another
frequent measure of keyword relevance is the observed co-occurrence of a given keyword
with other candidate keywords [28]. Several recent papers proposed to utilize topic mod-
eling and aggregate keywords with respect to common topics learned from web semantic
resources [12, 54]. Many solutions model the relationships between keywords (and possi-
bly also images) by weighted graphs and utilize different graph algorithms to determine the
probability of individual nodes. In particular, [55] performed cluster analysis and used only
the biggest clusters for tag transfer, whereas [30, 52, 60] employed various adaptations of
the Random Walk with Restart. Yet another approach was used by [56] who proposed to
measure the relevance of each candidate keyword by running a text-based image search and
comparing the retrieved images to the query.

3.2.4 Selection of output annotation

As discussed earlier, unlimited target vocabularies need to be considered in some use-cases,
e.g. the web image annotation. In case of general-purpose image description, there may
literally be a thousand words that are relevant to its content. However, users typically do not
want to scan hundreds of keywords. This introduces a new challenge that was unknown to
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the traditional classification problems – the task of selecting the keywords that are not only
relevant for the image but also relevant to the user.

The question of output keyword selection has not yet been much discussed in the litera-
ture. Most works either do not consider this problem at all, or return a fixed amount of the
most probable keywords [33, 54] and [20] proposed to use probability thresholds instead of
the fixed size limit for the selection of output keyword. On the semantic level, [22] suggested
to prefer more specific keywords, determined by the WordNet hierarchy.

4 ConceptRank

In this section, we introduce a new method for computing the probability scores of can-
didate keywords provided by similar images. Our algorithm takes into account semantic
relationships between the candidate keywords and attempts to simulate a human reasoning
process by a random walk over a graph model of the keywords and their relationships. Since
our algorithm was inspired by the famous PageRank algorithm [6] and deals with seman-
tic concepts, we denote it as ConceptRank. In the following, we first provide an intuitive
overview of the approach, then we describe in detail our model of keyword relationships
and the algorithm for computation of keyword probabilities.

4.1 Overview

In the text processing phase of the search-based annotation, the computer is basically given
the following task: given the set of initial keywords, try to guess what is in the image that
is similar to images described by these words. If the same task was given to a person, he
or she would start to mentally connect the keywords by semantic relationships and look
for repeating themes. For instance, when we consider the initial keywords from Fig. 3 we
immediately realize that “a dandelion is a flower”, “there are flowers in a garden” etc., and
the themes garden or plant quickly come to mind.

In the proposed solution, we attempt to simulate the above-described human reasoning
in the computer. Although the machine lacks the knowledge about real-world relation-
ships that people obtain by lifelong learning and experience, it can exploit various semantic
resources that have been developed for language processing, semantic web, or AI purposes.
There are numerous language models and ontologies that organize knowledge in semantic
hierarchies that are natural to human cognition, and it has been demonstrated that utiliza-
tion of such hierarchies can improve the quality of automatic image understanding [48].
Using the semantic knowledge sources, the computer can look for connections between the
candidate keywords and identify additional candidates in a way that is very similar to the
human thinking process. To estimate the probability of individual candidate keywords, we
can then utilize the initial probabilities determined in previous annotation phases as well
as the relationships between keywords. For the actual computation we employ the Random
walk algorithm that has been used with great success in similar tasks.

The ConceptRank keyword processing can follow directly after the CBIR phase, or
there can be any number of keyword processing steps in between. In any case, from the
previous annotation step the ConceptRank receives a set of candidate keywords and their
associated scores that represent the current estimates of individual keywords’ probabil-
ity: Kw

CR−Input
q = {(kw1, score1), . . . , (kwn, scoren)}. These will be analyzed using

a semantic resource S; for simplicity, we only consider one semantic resource in our
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discussion although the model can be easily adjusted for more knowledge sources. The
actual analysis then consists of two phases. First, the input keywords retrieved from
Kw

CR−Input
q are mapped to semantic concepts from S, and a semantic network of interre-

lated concepts is constructed. Afterwards, an adapted Random walk algorithm is employed
to determine the probabilities of individual concepts in the network. Both phases are
described in detail in the following sections.

4.1.1 Innovations of the ConceptRank technique

Although various adaptations of similarity graphs and the Random walk algorithm have
been used in former works for the modeling of keyword relationships and probability com-
putations [30, 52, 60], the ConceptRank technique is innovative in several aspects. Most
importantly, we apply the random walk algorithm on top of a graph model of semantic rela-
tionships between the candidate keywords, which to the best of our knowledge has not been
studied before. Semantic hierarchies were considered for the modeling of keyword rela-
tionships in other contexts [40] as well as in several previous works on search-based image
annotation [22, 28], but only to enrich the set of candidate keywords or to compute some
static scores of individual candidates. However, since the semantic relationships between
candidate keywords may be rather complex, we believe that the computation of probabilities
needs to be incremental and allow mutual influencing between keywords. Let us consider a
simple example of two candidate words flower and tulip: we cannot determine the probabil-
ity of flower unless we know the probability of tulip and vice versa, since these concepts are
interrelated and any update of probability of one concept should reflect on the probability of
the other. Therefore, in the ConceptRank technique we include the relationships directly into
the semantic model of candidate keywords, and our random-walk-based algorithm allows
mutual influencing of related concepts during the keyword probability computation.

We also propose a novel way of integrating the relevance clues from previous anno-
tation phases into the Random walk computation. The main motivation of this step is to
maximize the synergy between the content-based (visual) and semantic information dur-
ing the annotation processing. If we did not include the initial keyword relevance scores
into the ConceptRank computation, the previous annotation phases would only filter out the
less probable candidates, but the final keyword ranking would be purely semantic. In our
approach, however, all information about candidate keywords that was accumulated dur-
ing various annotation phases is exploited and merged during the final keyword probability
computation. The presented solution is generic and can work with any number and type of
word-to-word relationships.

4.2 Semantic network

The ConceptRank semantic network is a data structure that is used for recording all avail-
able information about candidate keywords and their relationships. Specifically, we utilize
a directed multigraph where weights can be associated with both nodes and edges. Nodes
represent candidate semantic concepts, edges are formed by the semantic relationships.
The weight of a node represents the current estimate of the semantic concept probability,
whereas the weight of edge U → V expresses the conditional probability of concept V

being relevant given that U is relevant (P(V |U)). In Fig. 4, a small example of a semantic
network is provided, depicting several semantic concepts encountered during the annotation
of the dandelion image. Concepts dandelion and flower are connected by edge hasInstance
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person
0

flower
0

nature
0

Mary
0.1

meadow
0.2

garden
0.1

isA
relatedTo

relatedTo

partOfpartOf

isApartOf partOf

partOf

bloom

flower

dandelion

nature

meadow

garden

1
1

1

0.010.1 hasInstancehasPart

partOf

partOf

partOf

hasPart0.5

1
partOf

hasPart 0.05

hasPart
0.3

1
isAbloom dandelion

0.3 0.2

Fig. 4 Example of a semantic network: in the left, several nodes are shown together with node weights and
selected edges; initial nodes are highlighted by the green (double) border; in the right, a detail of a selected
node is provided including edge weights

with weight 0.01, since a dandelion is only one of many possible flower types;1 however,
each dandelion is a flower, therefore the reverse isA edge carries weight 1.

4.2.1 Initial concept nodes

In the beginning of the text processing phase, it is necessary to map keywords from
Kw

CR−Input
q to semantic objects from S, thus creating the initial concept nodes that will be

used as seeds for the semantic network. Each initial node is associated with a non-negative
weight that represents the probability of the respective keyword determined by previous
annotation phases. If multiple semantic concepts are associated with a single keyword,
which often happens due to language ambiguity, the original keyword probability needs to
be distributed among all concept nodes that are created for this keyword.

4.2.2 Construction of the network

Using the initial concepts as starting points, we want to construct a network of seman-
tically connected concepts by exploiting the information from S. However, there may be
many types of links in S, and some of them may not be relevant for the annotation. There-
fore, let Rels be a set of relationship types from S that have been selected for the network
construction.

Each of the relationships from Rels can be exploited for two purposes: 1) discovering
links between existing candidate concepts, and 2) identification of new candidates. How-
ever, if all relationships were used for both purposes, the semantic network might soon
contain all concepts from S, which is usually not desirable. Therefore, we divide the rela-
tionships into two groups: expansion relationships are used for both relationship discovery
and additional candidate selection, whereas enrichment relationships only add new links
between existing network nodes. A typical example of an expansion relationships is con-
cept generalization; if there is a concept node flower we want to add nature to the network
because it is likely that other candidate concepts will link to it. However, there is no point
in adding concept nodes for all flower subspecies, therefore specialization should be used
in the enrichment mode.

1The value 0.01 associated with the hasInstance edge has no real justification here, its only purpose is to
show that some connections are much less reliable than others. The exact edge weighting mechanism will be
discussed later.
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The construction of the semantic network is formalized in Algorithm 1. In the beginning,
we create a network node for each initial concept and put all these nodes into a queue to be
processed. Then we successively remove and process nodes from the queue: for each node
n and each relationship type r ∈ Rels, we check outgoing r-links from n and according to
the type of r , add relationships and eventually new nodes to the network. Any new nodes
are also enqueued for further processing. For each new node and relationship, it is necessary
to determine their weight. In case of new nodes, the weight is always 0, since we have no
clues for the node relevance during the network building phase. In case of relationships, we
estimate the conditional probability with respect to the relationship type. At the moment,
we support two weighting schemes – 1) a constant weight (e.g. the isA relationship always
receives weight 1), and 2) a constant divided by the number of related nodes (used e.g. for
hasInstance relationships; intuitively, P(dandelion|f lower) should be proportional to the
number of flower species).

4.3 ConceptRank algorithm

When the semantic network is created, we obtain a rich set of candidate semantic concepts
linked by relationships. For some of the concepts we have probability estimates from pre-
vious annotation phases, other concepts have zero starting probability. Now, we would like
to update the probabilities of all nodes, taking into account the initial probabilities and the
semantic links which transmit the scores between nodes. Since the network nodes mutually
influence each other’s probability, we need to find a steady state of this system.

For this purpose, we have chosen the random walk with restarts (RWR), an algorithm
that was successfully used in many similar scenarios including the famous PageRank [6,
24]. As discussed in [46], the relevance score defined by RWR has many good properties:
compared with pair-wise metrics, it can capture the global structure of the graph; compared
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with traditional graph distances (such as shortest path, maximum flow, etc.), it can capture
multi-facet relationships between two nodes.

4.3.1 Random walk with restarts

There are several algorithms that apply the random walk idea in various application areas,
which differ in some details. Here we focus on the PageRank version, which inspired our
research. PageRank evaluates the importance of nodes in a “web” graph, where nodes repre-
sent individual web pages and edges are defined by hyperlinks. The basic idea is to compute
the probability that a user, who is browsing the web, reaches any given page. The virtual
user starts in an arbitrary node and moves through the graph; whenever there are k possible
ways, he chooses one of them with probability 1/k. The random walk score of each node is
defined as the steady-state probability that the user ends up in the particular node.

Let M be the transition matrix of a web graph G defined as follows: M is an n × n

matrix, where n is the number of nodes in G. The element mij has value 1/k if node Uj

has k outgoing edges and one of them is to node Ui ; otherwise, mij = 0. Then the desired
steady-state vector r of node scores should satisfy the following equation:

r = M.r (1)

The iteration of (1) can be guaranteed to converge if the matrix M is column-stochastic
and primitive, which corresponds to a strongly connected graph G where all nodes have
some outgoing edges and the sum of outgoing edge weights for each node is 1. The desired
vector r is then the principal eigenvector of M and it can be computed by repeatedly mul-
tiplying a random initial vector by M until the steady state is reached. However, many web
graphs do not satisfy the necessary conditions; for instance, in Fig. 5a the node C is a so-
called “dead-end” – it is referenced by multiple pages and should receive high score but,
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due to no outgoing edges, the score “leaks” out of the model. To overcome such problems,
the PageRank authors further allow the surfing user to decide in each step whether to follow
the links, or to randomly restart in any node. This can be understood as introducing addi-
tional edges into the graph G. With the possibility of restart, the simulation of a real user
behavior is more realistic and the desired properties of the graph are achieved (Fig. 5b). The
variable Prestart determines the relative importance of the original and restart edges.

Let u be a vector of length n with all values equal to 1/n. This represents the random
restart edges, which are the same for all nodes. Then the new transition matrix M ′ is defined
as follows: if there are no outgoing edges from node j , M ′

ij = ui ; otherwise, M ′
ij = (1 −

Prestart ).Mij + Prestart .ui . The following equation then can be guaranteed to converge for
any graph:

r = M ′.r (2)

The original PageRank algorithm works only with the graph structure and does not
assume any edge weights in G. However, it can be directly applied also to weighted graphs
where the sum of weights of all outgoing edges for each non-leaf node is 1.

4.3.2 Biased random walk

In the basic PageRank, it is assumed that no prior knowledge about the importance of indi-
vidual pages is available, and thus all nodes enter the computation as equal. However, there
are also advanced versions of the algorithm that allow to prioritize some of the nodes. This
can be done by biasing the restart vector u. For instance, in the TrustRank algorithm the
probability of restarting is no longer the same for all nodes – some trustworthy pages are
more likely to be targeted by the restart [19]. In general, a biased restart vector u can contain
any probability distribution such that ui ≥ 0 and

∑
i ui = 1.

4.3.3 ConceptRank

In the ConceptRank algorithm, we utilize the biased random walk with restarts to compute
the probability of nodes in the semantic network. Instead of the random user browsing the
web, we model a random association that explores the candidate concept space. We assume
that the probability of the association jumping from node U to node V is proportional to the
weight of the edge U → V . Let us remember that the weight of U → V was defined as
P(V |U), i.e. the conditional probability that concept V is relevant given that U is relevant.
When the random association visits node U , it is natural that nodes with high P(V |U)

should be preferred in the next step of the simulated thinking process.
Apart from edge weights, the semantic network also contains node weights that carry

important information from previous annotation phases and should be considered during the
random walk computation of node probabilities. To allow this, we bias the restart vector so
that it reflects the initial node weights, as illustrated in Fig. 5c. The restarts are more likely
to target nodes with high initial weights, which subsequently increases the score of these
nodes in the random walk computation.

The main steps of the ConceptRank procedure are summarized in Algorithm 2. First, the
initial node weights are normalized so that their sum is 1, and used to determine the biased
restart vector. Next, the transition matrix is constructed from the semantic network. The
influence of individual relationship types can be adjusted by weight parameters. Finally, the
transition matrix is combined with the biased restart vector so that the resulting matrix is
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column-stochastic. Noticeably, after the last step the final matrix has the same properties as
the PageRank matrix constructed from the web graph, so the random walk computation of
the node probabilities can be performed in exactly the same way.

The probability of restart is determined by the parameter Prestart , which moderates the
influence of the initial node weights. The eigenvector of the resulting matrix then contains
the new relevance scores for all concept nodes in the semantic network. In the end, the
ConceptRank returns a set of pairs (s, P (s)), where s ∈ S is a semantic concept and P(s)

is the probability score for s.

4.4 Efficiency issues

Image annotation is often desired in interactive applications, therefore we need the key-
word processing to be effective as well as efficient. If applied as described above, both
the semantic network construction and ConceptRank computation can be computationally
expensive. In case of network construction, the complexity grows with the number of initial
nodes and the number of relationships to be explored. The ConceptRank computation costs
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are determined by the eigenvector decomposition, which is cubic to the size of the semantic
network.

Therefore, for real-time applications we propose two approximations of the Concep-
tRank technique. First, we introduce an upper limit on the number of initial nodes of the
semantic network. If more initial nodes are available, only the given number of the most
probable ones enter the network building phase. Second, we approximate the eigenvec-
tor decomposition by iterative matrix-vector multiplication that is repeated until the vector
is close to unchanged at one iteration. Both our experience and the PageRank studies
(e.g. [24]) show that 50–70 iterations are sufficient to achieve a very good approximation
of the exact eigenvector probability distribution.

5 Application: web image annotation with WordNet ConceptRank

The ConceptRank algorithm is implemented as a part of the MUFIN Annotation Frame-
work [3], which is a modular system designed to support different types of annotation tasks.
In this section, we present a complex annotation tool built in this framework, which per-
forms online web image annotation using state-of-the-art content-based retrieval and the
ConceptRank algorithm.

5.1 MUFIN Annotation Framework

As we observed in the introduction, multimedia information is becoming ubiquitous and
automated annotation tools are desired in many situations. Even though the annotation task
details may differ for individual use-cases, the basic structure of the software solutions is
usually very similar. Following this observation, we have designed and implemented the
MUFIN Annotation Framework [2, 3], which supports a wide range of annotation tasks
by defining a modular and flexible architecture where individual components can be easily
combined and reused. Several search-based algorithms and candidate keywords process-
ing components are currently available within the MUFIN Annotation Framework, as well
as a pipelining mechanism that passes a central annotation record object between the
components.

5.1.1 ConceptRank component

The ConceptRank component of the MUFIN Annotation Framework encapsulates the
semantic analysis described in Section 4. It accepts an annotation record containing a set of
candidate keywords and returns an updated record with a new candidate set that contains
semantic concepts. The component provides a generic support for creating the semantic
network, and the actual algorithm for node probability computation. To utilize the Concep-
tRank component with any particular semantic resource S, it is only necessary to provide the
subroutines specific to S, in particular the transformation of keywords to semantic objects
and the retrieval of semantic relationships.

5.2 MUFIN web image annotation tool

As discussed earlier, the search-based annotation is mainly suitable for tasks with large
vocabularies. Our prototype application is therefore a keyword hinting tool for web images,
which suggests keyword annotations that can be exploited by text search to access the image.
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Table 2 Overview of the technologies and resources used in MUFIN Image Annotation

Annotation tool component Existing solutions Our solution

Reference image collection Flickr, ImageNet, random web images Profiset

Visual descriptors Local descriptors (SIFT, SURF, ...),
global descriptors (DeCAF, MPEG7, ...)

DeCAF

Data indexing method Vector-space partitioning, metric space par-
titioning, hashing, bag-of-words approach

PPP-codes (metric space)

Type of similarity query kNN-query, range query kNN-query

Semantic resources Text co-occurrence statistics, WordNet WordNet, VCO

Keyword relevance
assessment

Simple (frequency/distance-based), seman-
tic (co-occurrences, topic modeling, graph
analysis)

ConceptRank (semantic graph)

Final answer selection Fixed-size, threshold-based Fixed-size

The middle column recapitulates the most significant representants of existing solutions; for more details
and references, please refer to the related work survey in Section 3.2. Original components proposed for the
MUFIN Image Annotation are highlighted by bold face

Such tool can be used e.g. by contributors of image-stock sites, but also for personal photo
tagging. The keywords should serve for general text search, so there is essentially no limi-
tation of the target vocabulary. However, we also want to evaluate the effectiveness of our
annotation tool, which is quite difficult with unlimited vocabularies. Therefore, we include
the option of mapping the annotation to a restricted vocabulary.

The basic structure of the MUFIN Image Annotation software reflects the general archi-
tecture of any search-based annotation system, as depicted in Fig. 3. Let us now focus on
the specific technologies and data sources that are exploited in individual annotation phases.
Table 2 provides a brief summary of available techniques and our choices, the following
paragraphs discuss our decisions in more detail.

5.2.1 Data acquisition & content-based image retrieval

Before we can start searching for similar images, it is necessary to choose a suitable dataset
of annotated images. The MUFIN Image Annotation tool currently utilizes the Profiset, a
collection of 20 million photos with rich keyword annotations that were downloaded from
the Profimedia image-stock site2 and are available for research purposes [7]. The image-
stock data represent a very good trade-off between data quality and quantity; although it is
collected in an unsupervised way, the authors were financially motivated to provide high-
quality pictures and annotations. The Profiset images cover a wide range of topics, including
people, nature, buildings, or objects, which makes the collection a suitable resource for
general-purpose image annotation. We have also experimented with other annotated image
collections, namely the ImageNet and Flickr, but in both cases the quality of annotations
was noticeably lower. The ImageNet database provides a single label per image, which is
too scarce for search-based annotation, whereas the Flickr descriptions are too erroneous.

To evaluate the visual similarity of images, we employ the cutting-edge DeCAF descrip-
tors that were extracted from the whole Profiset collection [38]. To compare the extracted
vectors, we utilize the Euclidean distance as recommended by [15]. The dataset is indexed

2http://www.profimedia.com

http://www.profimedia.com
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by the PPP-Codes technique [37], which allows efficient evaluation of kNN queries that are
used to retrieve the set of visually similar images Simq .

5.2.2 Candidate keyword processing

From the content-based retrieval, we obtain a set of described images and their respec-
tive distances from the query: Simq = {(im1 , descm1 , dm1), . . . , (imk

, descmk
, dmk

)|
(imi

, descmi
) ∈ AIC, dmi

= dvis(q, imi
)}. The set of initial candidate keywords KwInit

q

is formed strightforwardly by merging all keywords found in Simq . To determine the
initial probabilities of keywords, two alternative methods were implemented for experimen-
tal comparison. In the first, we utilize plain keyword frequencies; the second takes into
consideration also the visual distances, prioritizing keywords belonging to more similar
images.

The initial keywords are forwarded to the ConceptRank component of the MUFIN Anno-
tation Framework. For the purpose of general image annotation, we have decided to utilize
the WordNet lexical database as the source of semantic information.

5.2.3 WordNet

WordNet is a comprehensive semantic tool interlinking a dictionary, thesaurus, and a lan-
guage grammar book [16]. It organizes individual words into synonym sets called synsets;
each synset represents one underlying lexicalized concept. On top of synsets, several types
of conceptual relationships are endoded, such as hypernymy, meronymy, or antonymy. In
the current version, WordNet contains more than 150,000 English nouns, verbs, adjectives,
and adverbs.

WordNet is a valuable resource for the annotations for several reasons. First, it is a manu-
ally created, rich and precise database of general English words. Second, it contains several
relationships that are useful for image content analysis. And third, WordNet is linked to
numerous similar structures for other languages as well as ontologies such as YAGO [43],
which can be easily integrated in the future as additional resources for the annotations.

5.2.4 ConceptRank with WordNet

For the ConceptRank analysis, it is first necessary to transform the initial candidate key-
words into candidate synsets. Due to natural language ambiguity, there are often more
possible meanings of a specific word, and consequently more possible synsets. During the
transformation to synsets, we do not attempt to decide which of the meanings is the correct
one; this will be done later during the ConceptRank score computation. Instead, we allow
that each keyword may be represented by several candidate synsets. The original keyword’s
score is distributed among the related synsets with respect to the synset frequencies, which
are also available in WordNet.

The initial synsets become the base nodes of a semantic network. To build the net-
work, we can exploit various WordNet relationships. Since the image annotations are mostly
composed of nouns, we currently limit our attention to noun-related relationships. Among
these, the most interesting ones are hypernymy (generalization) and hyponymy (specializa-
tion), which form the IS-A hierarchy of all nouns. Furthermore, we also employ meronymy
(part-to-whole) and holonymy (whole-to-part). Hyponymy and holonymy are utilized in
the enrichment mode, e.g. only add edges between existing network nodes, whereas hyper-
nymy and meronymy may add new nodes into the network as well as edges. The relative
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importance of individual relationships is determined by parameters, which will be analyzed
in Section 6.

5.2.5 Visual concept ontology

Although the WordNet hypernymy/hyponymy hierarchy provides us with valuable informa-
tion, some of its properties are not optimal for the ConceptRank. In particular, all branches
ultimately go up to a single root node entity. When exploiting the hypernymy relationship,
this would make all network nodes semantically interconnected, which is not desirable.
Therefore, we need to limit the hypernymy exploration. Since the level of detail in indi-
vidual branches of the WordNet hierarchy significantly differs, it is not possible to simply
select a cut-off level.

To address this issue, we have created the Visual Concept Ontology (VCO), which pro-
vides a high-level categorization of WordNet noun synsets [5]. Apart from defining a set
of semantically consistent top-level categories, it also provides some new conntections
between synsets that are missing in the WordNet. The VCO is used together with WordNet
in the semantic network building phase.

5.2.6 Mapping to target vocabulary

The ConceptRank component returns a set of candidate synsets with associated probabil-
ity values. In the next step, we need to transform the synsets back to keywords, which
are expected as the annotation output. As discussed earlier, the annotation task may be
defined with or without an explicit target vocabulary, and the MUFIN Image Annotation tool
supports both modes. If the target vocabulary is defined, the candidate synsets have to
be matched to it. Otherwise, we need to select representative keywords for the candidate
synsets from the entire English vocabulary.

When the target vocabulary is defined, the synset-to-keyword transformation can be done
straightforwardly, using the WordNet mapping. Whenever a candidate synset is associated
with a vocabulary keyword, the score of the keyword is increased by the score of the synset.

If the target vocabulary is not defined, the selection of output keywords becomes more
difficult. First, it is problematic to decide how many keywords should be chosen for a given
synset, and which ones. Also, the semantic network construction introduces many candi-
date synsets that are important for the computation of probabilities, but not for the output –
for instance, there are 6 intermediate synsets in the WordNet hypernymy hierarchy between
dog and animal, including concepts such as placental mammal which are not interesting
for the user but cannot be easily detected. These issues represent a challenge for future
development of the MUFIN Image Annotation tool; at the moment, we avoid them by a sim-
ple approximation – we create an implicit target vocabulary that is composed of the initial
candidate keywords KwInit

q . Obviously, with the implicit vocabulary the ConceptRank pro-
cedure cannot introduce new keywords to the final result; however, it is still highly useful
for identifying the most relevant keywords among the initial candidates.

5.2.7 Selection of output

In the last step, we need to decide which of the final keywords should be displayed to the
user. This is again influenced by the target application. In case of tag hinting, it is better to
focus on recall and offer more keywords; although some of them will probably be irrelevant,
the user can easily discard them. On the other hand, for direct annotation or evaluation
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Fig. 6 Real image annotation performed by the MUFIN Image Annotation extension for Firefox

tasks we need to consider precision as well as recall. In this case, a smaller answer set is
preferable.

Similar to most existing search-based systems, we select a fixed number of keywords
with the highest probability of relevance as the annotation output. This simple approach
reflects the semantics of the keyword probabilities, which express relative importance of the
given keyword with respect to the query image rather than some absolute probability of the
keyword relevance.

5.3 MUFIN image annotation demo

The functionality offered by the MUFIN Image Annotation tool is publicly available in the
form of a web demo and a Firefox extension, which can be used to annotate arbitrary web
images.3 The complete annotation process with real-world data is recapitulated in Fig. 6,
which shows intermediate results of individual phases as well as the specific parameter
settings used in the example. We have also created a prototype application that utilizes
content-based retrieval and the MUFIN Image Annotation to create visual and textual
summaries of image collections [4].

3http://disa.fi.muni.cz/prototype-applications/image-annotation/

http://disa.fi.muni.cz/prototype-applications/image-annotation/
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6 Experimental evaluation

To assess the effectiveness and efficiency of both the ConceptRank algorithm and the
MUFIN Image Annotation system as a whole, we designed and evaluated two series of
experiments. The objective of the first series was to analyze the influence of individual
parameters on the annotation system performance. In the second series, the best-performing
setting of our system was compared to other state-of-the-art image annotation techniques.
In the following sections, we describe our methodology and analyze experimental results
for both series.

6.1 Qualitative analysis

For the evaluation of the MUFIN Image Annotation tool performance with different param-
eter settings, we utilized the development data provided within the ImageCLEF 2014
Scalable Concept Image Annotation challenge [50]. This challenge was designed to com-
pare annotation techniques that do not require precisely labeled training data, and are able
to work with variable target vocabularies.

6.1.1 Data and metrics

The Scalable Concept Image Annotation (SCIA) task is defined by a binary input image and
a target vocabulary that contains a list of eligible concepts (defined by WordNet synsets).
A sample query is depicted in Fig. 7. During the development of their solutions, the par-
ticipants of the SCIA challenge could use a development set of 1940 queries, for which a
ground truth is available. This set was utilized in our experiments. There are 107 different
target concepts in the development set, with the size of individual vocabularies ranging from
40 to 107 concepts.

Since the SCIA challenge focused in particular on the concept-wise scalability of anno-
tation techniques, participants were not given any hand-labeled training data. However,
a small training dataset was provided by the organizers, consisting of 500K web images
located by a text search using the target concepts. Each image is accompanied by keywords
extracted from the respective web page. This dataset (denoted as the SCIA dataset) was also
used in some of our experiments.

To assess the quality of annotations, we adopted the full scope of SCIA quality mea-
sures [50]: mean precision (MP), mean recall (MR), mean F-measure (MF), and mean
average precision (MAP). All these measures can be computed from two different perspec-
tives: concept-based (denoted as MP-c, etc.) and sample-based (MP-s). A concept-based

aerial airplane baby beach bicycle bird boat bridge building car cartoon 
castle cat chair child church cityscape closeup cloud cloudless coast 
countryside day�me desert diagram dog drink drum elder embroidery fire 
firework fish flower fog food footwear furniture garden grass guitar harbor 
hat helicopter highway horse indoor instrument lake lightning logo 
monument moon motorcycle mountain nigh�me overcast pain�ng park 
person plant portrait protest rain rainbow reflec�on river road sand 
sculpture sea shadow sign silhoue�e smoke snow soil space spectacles 
sport sun sunrise/sunset table teenager toy traffic train tricycle truck 
underwater unpaved wagon water

Fig. 7 ImageCLEF query image and target vocabulary; ground truth concepts are highlighted
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precision (or any other measure) is computed for each target concept, whereas a sample-
based precision is computed for each test image. In both cases, the arithmetic mean is used
as a global measure of performance. The annotation tool efficiency is measured by average
query processing time.

6.1.2 Discussion of results

As discussed in Sections 4 and 5, most MUFIN Image Annotation tool components are
parametrized by variables. In Table 3, we provide an overview of the most important param-
eters, which were studied in the experiments. The table also shows which values were
examined in the experiments, and the best settings that were identified. In the following
text, we focus on the most important findings and trends.

6.1.3 Content-based retrieval of similar images

In the similarity search phase, we analyzed the influence of two factors: the size and qual-
ity of the annotated image collection (AIC), and the number k of the most similar images
retrieved by CBIR. To assess the influence of AIC properties, we experimented with vari-
ous subsets of the Profiset and the SCIA dataset (see Fig. 8). As expected, the annotation
quality grows with the increasing size and quality of the AIC. The unsupervised SCIA col-
lection provides much noisier information than the supervised Profiset and by itself is not
suitable for image annotation. However, the SCIA dataset does slightly increase the annota-
tion quality when the two datasets are combined, because it covers all target concepts of the
SCIA queries. Overall, it can be assumed that the quality of search-based annotation will
further grow as larger, high-quality AIC become available.

The optimal number of nearest neighbors can only be determined for a specific dataset,
visual descriptors, and distance measure, as it is influenced by the density of the similarity
space and the quality of the visual similarity measures. In our case, when both the descriptor
quality and dataset quality are high, the optimal number of visual neighbors is between
50 and 100. As we can observe in both Figs. 8 and 9, when we increase the number of

Table 3 Overview of annotation parameters and tested values

Annotation phase Parameter Tested values Best-performing

CBIR AIC type SCIA dataset, Profiset Profiset

AIC size 500K – 20M 20M

k (# of similar images) 20 – 200 100

Semantic network
construction

Initial keyword scores None / frequency-based /
distance-based

Distance-based

# of synsets/keyword 1 – unlimited 3 or 5

# of initial synsets 50 – unlimited 300

Types of relationships Various combinations of hyper-
nym, hyponym, holonym, and
meronym

All relationships

ConceptRank computation Relationship weights Various Same weight for
all relationships

Restart probability 0 – 0.4 0.2

Selection of final keywords # of output keywords 1 – 30 5
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Fig. 8 Influence of the reference dataset properties and the number of nearest neighbors

visual neighbors the annotation quality first grows, then it stabilizes, and finally it begins to
decrease again as less relevant images begin to appear in the CBIR result.

For the sake of readability, Figs. 8 and 9 (as well as most of the following tables and
graphs) depict only selected quality measures. However, the observed trends were consis-
tent for all metrics. The quality of results was significantly better from the sample-based
perspective than from the concept-based one, which could be expected since the MUFIN
Image Annotation tool was designed for hinting relevant keywords rather than checking
the relevance of all vocabulary concepts. Moreover, some of the SCIA concepts are quite
difficult to recognize (e.g. unpaved or elder).

6.1.4 Candidate keyword processing by ConceptRank

For the ConceptRank semantic analysis, the most important factors are 1) the number of
initial synsets in the semantic network, 2) the types of relationships that form the net-
work edges, and 3) the inclusion of visual-based relevance clues into the random walk
computation.

As discussed in Section 4.4, we limit the number of initial synsets in order to cut down
the annotation processing costs. From Fig. 9 we can conclude that it is not necessary to
employ more than 300 initial synsets to obtain the maximum annotation quality – clearly
the initial synsets with very low probability of relevance do not contribute any useful infor-
mation. When the annotation speed is a priority, it is sufficient to use 100 synsets, which
significantly reduces the costs but still provides good results.
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Table 4 Influence of relationships employed within ConceptRank (queries with large vocabularies)

Hypernym Hyponym Holonym Meronym MP-s MR-s MF-s MAP-s # of nodes / edges

– – – – 42.68 52.79 44.71 53.72 300 / 0

enrich – – – 44.53 54.09 46.28 56.46 300 / 37

EXPAND – – – 46.74 56.84 48.64 60.50 668 / 603

EXPAND enrich – – 46.83 56.89 48.72 60.51 668 / 1139

EXPAND enrich enrich enrich 48.00 58.15 49.91 61.32 668 / 1206

The best result for each quality measure is highlighted by bold face

As for the types of semantic relationships, our experiments show that the most significant
improvement is brought by the hypernymy hierarchy (see Table 4). The other relationships
only improve the annotation quality marginally, but their processing does not add any signif-
icant time overhead. The influence of semantic relationships is most pronounced for queries
with large vocabularies, where the overlap between initial candidate keywords and the tar-
get vocabulary is high. To achieve the best results, the hypernymy relationship should be
used in the expansion mode, so that new nodes are added to the semantic network during the
exploration of hypernyms. All other relationships work better in the enrichment mode, e.g.
only adding edges between existing network nodes. The best results were observed when
the relative importance of all relationships was the same. For the bottom-up relationships
(hypernymy and holonymy), each edge was assigned a constant weight; for the top-down
relationships, this constant was distributed among all outgoing edges of a given node.

To evaluate the importance of the input visual scores of the candidate keywords, we also
conducted several experiments that did not take the visual information into consideration
during the ConceptRank computation. Let us remember that the visual scores of initial key-
words are transformed to non-zero initial probabilities of individual network nodes, which
determine the biased restart vector for the random walk. The visual scores thus provide two
types of information: which nodes are the initial ones that may be targeted by the restart,
and what is the probability that the random walk will restart in a given node. If we decide
to ignore the initial probabilities, we may still use the information about which nodes were
the initial ones, or we can opt to ignore this as well. Accordingly, we evaluated two varia-
tions of the ConceptRank algorithm without the visual scores. In the UniformBiasedRestart
variant, we keep the information about the initial nodes; only these nodes can be targets of
the restart, which is thus again biased, but the restart probability is the same for each ini-
tial node. On the contrary, the UniformRestart variant does not distinguish between initial
and other nodes, so that the whole network is processed by a standard random walk where
all nodes are equally likely to be a target of the random restart. Table 5 shows the results

Table 5 Importance of visual clues within the ConceptRank

Candidate keyword processing method MP-s MR-s MF-s MAP-s

Most frequent keywords without ConceptRank 42.68 52.79 44.71 53.72

ConceptRank-UniformRestart, all relationships 40.67 49.80 42.52 54.68

ConceptRank-UniformBiasedRestart, all relationships 45.87 56.19 47.73 58.02

ConceptRank with visual clues, all relationships 48.00 58.15 49.91 61.32

The best result for each quality measure is highlighted by bold face
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for both these variations compared to the original ConceptRank. As we can see, even if
the initial visual scores are removed, the semantic links improve the quality of annotation
result significantly. However, adding the information about initial nodes and restart prob-
abilities gradually improves the results. The best results are achieved when the semantic
relationships are combined with the full visual-based information expressed by initial node
probabilities, which confirms our expectations about the synergy between the visual and
semantic relevance.

From Table 3, we can further observe that better results were achieved when the ini-
tial candidate keyword scores were based on the respective images’ visual distances rather
than plain frequencies. For each keyword, it is helpful to consider several possible synsets.
The optimal restart probability for the ConceptRank random walk seems to be 0.2, but the
differences in result quality were minimal for all restart values larger than 0.05. Only the
very low restart coefficients suppressed the influence of initial synset probabilities from the
CBIR phase, which resulted in significantly worse annotations.

6.1.5 Selection of output

The final step of the annotation is the selection of the output keywords. As discussed in
Section 5, we currently select a fixed number of the most probable keywords from the target
vocabulary. This number needs to be selected with respect to the target application: if we
aim at stand-alone annotation, we need to balance the precision and recall. On the other
hand, for the keyword hinting scenario we are more interested in recall, i.e. the number of
relevant keywords that the application offer.

In all the previous evaluations, the annotation result was formed by at most 5 most prob-
able keywords (less if there were not enough candidates with non-zero probability). The
constant 5 was chosen as a reasonable trade-off between the result precision and recall; in
Fig. 10, we depict the sample-based precision and recall for different sizes of the result set.
Naturally, these numbers are only valid for the ImageCLEF task, since the optimal result
size is influenced by the average size of the ground truth. Actually, using the fixed answer
size is not the most suitable strategy for the ImageCLEF data, since the size of ground truth
is quite variable here (1–11 keywords). However, even with this simple approach to the final
result selection we achieved very good results in the ImageCLEF competition, as will be
demonstrated in the following section.

6.1.6 Efficiency

Since our research aims at real-time keyword hinting, it is also highly important whether
the annotation processing is efficient. In Table 6, we present the computation times of
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Table 6 Processing costs of individual annotation phases

Phase Time [ms] Time complexity

100 init. s. 300 init. s.

DeCAF descriptor extraction 45 45 – constant

CBIR in 20M images 390 390 – sublinear to dataset size

(using PPP-Codes index) – influence of k is negligible

Processing of keywords for the most
similar images

20 20 – linear to the number of keywords
per image

Semantic network construction (different
combinations of relationships)

21–25 24–27 – quadratic to the number of initial
synsets

– linear to the number and type of
relationships

ConceptRank computation (approx-
imate/precise)

47 / 770 205 / 6128 – cubic to the number of network
nodes and edges (precise)

– linear to the number to the number
of network nodes and edges
(approximate)

individual annotation phases. With the most efficient settings, each image takes about 0.6
second to process. As we can see, most of the time is spent on the similarity searching,
while the semantic analysis is very fast when we employ the described approximations.
Most important of these is the approximation of the ConceptRank computation (see Sec-
tion 4.4 for details); limiting the number of matrix computations has a negligible impact on
result quality while the costs reduction is essential.

We can observe that for the presented settings, we have achieved the desired real-time
response of the annotation system. Moreover, the overall time complexity is most influ-
enced by the CBIR phase, which scales sublinearly [37]. The other parts of the processing
are either very cheap (processing of keywords, semantic network construction) or can be
efficiently approximated without significant impact on annotation quality (ConceptRank
computation). Therefore, the MUFIN Image Annotation tool can be expected to scale well
and allow interactive operation even for significantly larger reference datasets. It is also
worth noticing that the size of the output vocabulary does not influence the complexity of
any processing phase. The MUFIN Image Annotation tool therefore scales perfectly with
respect to the target vocabulary size.

6.2 Comparison with other approaches

The comparison to state-of-the-art annotation techniques was performed on two platforms.
First, we participated in the ImageCLEF 2014 Scalable Concept Image Annotation chal-
lenge, which was described in the previous section. This allowed us to compare our tool to
others in a well-defined contest that is well-known in the image annotation field. Second,
we created our own testbed for the evaluation of annotation queries with unlimited vocabu-
laries. On this testbed, we evaluated the usefulness of our tool in the context of general web
image annotation, and compared its results to the Google Vision API.
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6.2.1 ImageCLEF 2014 scalable concept image annotation challenge

6.2.2 Data and metrics

As described earlier, the Scalable Concept Image Annotation (SCIA) task is defined by
a query image and a set of eligible concepts, and the objective is to identify all relevant
concepts. The actual SCIA competition consisted of annotating 7291 images with different
concept lists. Altogether, there were 207 concepts, with the size of individual concept lists
ranging from 40 to 207 concepts. Let us remember here that the development set contained
only 107 concepts; the other 100 were not available beforehand in order to test the concept-
wise scalability of individual competing techniques. The set of quality measures was already
introduced in Section 6.1.1.

6.2.3 Discussion of results

Our participation in the ImageCLEF 2014 SCIA competition is described in detail in [8]. We
entered the competition under the name DISA, referring to the name of our lab. Basically, we
utilized the MUFIN Image Annotation tool as described in Section 5. The only significant
difference was in the CBIR phase, where we employed different visual descriptors to search
for similar images. In particular, we utilized a combination of five MPEG7 descriptors as
described in [31]. With the MPEG7 descriptors, our submission placed as 5th among 11
participants of the contest. However, shortly after the competition deadline we finished a
new implementation of the CBIR with the state-of-the-art DeCAF descriptors. The SCIA
competition organizers kindly evaluated also these new results, although out of contest. As
shown in Table 7, the change of visual descriptors significantly improved the annotation
quality of our tool and moved the DISA up to the 2nd position. A detailed description about
the differences between the MPEG7 and DeCAF implementation can be found in [9].

Table 7 The SCIA competition results table from [50] with a new line for DISA DeCAF results

System MAP-samples MF-samples MF-concepts

all ani. food 207 all ani. food 207 all ani. food 207 unseen

KDEVIR 9 36.8 33.1 67.1 28.9 37.7 29.9 64.9 32.0 54.7 67.1 65.1 31.6 66.1

DISA DeCAF 48.7 51.0 67.1 32.3 39.9 44.4 48.5 26.7 41.1 45.3 42.1 22.4 44.9

MIL 3 36.9 30.9 68.6 23.3 27.5 20.6 53.1 18.0 34.7 34.7 50.4 16.9 36.7

MindLab 1 37.0 43.1 63.0 22.1 25.8 17.0 45.2 18.3 30.7 35.1 35.3 16.7 34.7

MLIA 9 27.8 18.8 53.6 16.7 24.8 12.1 46.0 16.4 33.2 32.7 37.3 16.9 34.8

DISA 4 34.3 46.6 39.6 19.0 29.7 40.6 31.2 16.9 19.1 23.0 22.3 7.3 19.0

RUC 7 27.5 25.2 44.2 15.1 29.3 28.0 28.2 20.7 25.3 20.1 23.1 10.0 18.7

IPL 9 23.4 30.0 48.5 18.9 18.4 20.2 29.8 17.5 15.8 15.8 33.3 12.5 22.0

IMC 1 25.1 35.7 35.6 12.9 16.3 14.3 21.0 10.9 12.5 10.2 15.1 6.1 11.2

INAOE 5 9.6 6.9 15.0 8.5 5.3 0.4 0.5 6.4 10.3 1.0 0.8 17.9 19.0

NII 1 14.7 23.2 22.0 4.6 13.0 18.9 18.7 4.9 2.3 3.0 2.1 0.9 1.8

FINKI 1 6.9 N/A N/A N/A 7.2 8.1 12.3 4.1 4.7 6.3 9.0 2.9 4.7

Only the best result for each group is given. The systems are ranked by overall performance as defined in [50]
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In comparison with the other competing groups, our solution ranked high in both sample-
based mean F-measure and sample-based MAP. In particular, the sample-based MAP
achieved by our DeCAF submission was the highest of all. The results for concept-based
F-measure were less competitive, which did not come as a surprise. In general, the search-
based approach works well for frequent terms, whereas concepts for which there are few
examples are difficult to recognize. Table 7 also shows the annotation quality for selected
subsets of the target queries and concepts. We can see that our solution did not return worse
results for concepts that were not seen in the development set, which supports our claim at
concept-based scalability of our approach.

The key factors of the MUFIN Image Annotation success in the SCIA competition were
the DeCAF-based visual similarity, and the ConceptRank semantic analysis. The usefulness
of the DeCAF descriptors is evident from the comparison of with MPEG7-based annotation
in Table 7. To clarify the importance of the ConceptRank analysis, it is important to mention
that several of the SCIA challenge participants also used some adaptation of neural network
classifiers to annotate the images (more details can be found in [50]). The DISA DeCAF
submission achieved better results than these groups, which confirms the importance of the
semantic analysis step developed by our group. When we analyzed the usefulness of indi-
vidual components of our solution, we found that the ConceptRank component improved
the overall effectiveness by 5–10%, depending on the quality metric [8].

6.2.4 Profiset evaluation

The ImageCLEF competition focused on annotation tasks with changing but limited vocab-
ularies, which may appear in various classification tasks. However, the primary target
application for our annotation tool is open-vocabulary tag hinting, which requires test
queries with unlimited vocabularies. Since we could not find any existing benchmark suit-
able for the tag-hinting scenario, we designed a new evaluation dataset using selected
images from the Profiset collection.

6.2.5 Data and metrics

The Profiset evaluation dataset contains 160 images from the Promedia image-stock collec-
tions. 80 photos were selected from Promedia search logs of popular queries, another 80
were chosen randomly from images sold in the last two years. These images were removed
from the Profiset collection, so there is no overlap between the test queries and the anno-
tated image collection used as knowledge base in the CBIR phase of the MUFIN Image
Annotation processing.

To be able to evaluate annotation tasks with unlimited vocabularies, we should further
provide a ground truth of all English keywords relevant for a given image. However, this
is hardly feasible, since there may be literally a thousand words describing each picture.
Therefore, we did not attempt to collect the complete ground truth for our queries. Instead,
we only assessed the relevance of keywords that were proposed by any of the annotation
methods under evaluation, thus creating a partial ground truth sufficient for our comparison.

The relevance assessment was done in the following way. For each query, we collected all
keywords suggested by all the methods under comparison. The keywords were merged and
displayed to human assessors, who classified them as highly-relevant, relevant (the keyword
represents some less important or less precise information), or irrelevant. The assessments
were distributed among five dedicated persons, and each query was evaluated by at least
two persons. The verbal assessments were then transformed to relevance scores of 1, 0.5
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and 0, respectively. The final relevance of each keyword was computed as an average of the
relevance scores. We decided to define two partial ground truths, using different threshold
values for the relevant keywords: in GT-HR, there are only keywords with average relevance
score equal to or greater than 0.75, whereas for GT-R the threshold score is 0.5.

Using GT-HR and GT-R, we can fairly evaluate the precision of individual methods, but
the partial ground truth is not sufficient for measuring the recall. However, we have one
more ground truth that can be used for this purpose – the original keyword descriptions of
images from the Profiset collection, as provided by the image authors. This data, which we
shall denote as ProfisetGT, is independent of the methods under comparison, so it is fair to
evaluate both the precision and recall of individual approaches with respect to ProfisetGT.

6.2.6 State-of-the-art competition: google image annotation

As a representative of state-of-the-art open-vocabulary image annotation, we chose the
Label Detection service provided by the Google Vision API. The Google Vision API4

is a commercial image recognition system, which attempts to understand the content by
employing powerful machine learning models. It allows to classify images into thousands
of categories, detect individual objects and faces within images, and find and read printed
words contained within images. The service was started at the end of 2015 and it is offered
as cloud REST API, thus allowing Google to continuously improve the quality of the
recognition as the research in this area advances.

Even though the specific methods are not disclosed, the system probably uses some vari-
ation of the Inception deep neural network model [45]. The Label Detection service claims
to be able to recognize broad sets of categories within an image, ranging from modes of
transportation to animals.

6.2.7 Discussion of results

Using the Profiset test queries, we have evaluated the quality of the MUFIN Image Annota-
tion tool with the best-performing settings (see Section 6.1), and the Google Label Detection
service. In both cases, we asked for at most 50 most probable descriptive keywords. Since
there is currently no minimum relevance threshold for the MUFIN Image Annotation, it
always returned the 50 keywords. Google Label Detection, however, returns only keywords
with a minimum relevance probability of 50%. Consequently, the number of keywords
returned by Google was significantly lower; there were no more than 20 keywords found
for a single image, and the average annotation size was 5.7 keywords. For 11 queries, no
keywords were returned at all by the Google Label Detection.

The precision and recall of both approaches is shown in Fig. 11. We can see how the result
quality changes for different sizes of the annotation output. On the first positions of the
annotation result, MUFIN Image Annotation is about 8% better in terms of precision. When
the result size grows, Google Label Detection does not provide any new keywords, therefore
its precision becomes constant. MUFIN Image Annotation continues to offer less probable
keywords, which decreases the average precision of the result. At the same time, however,
the total number of relevant keywords that were found grows, which is demonstrated by the
recall curve.

4https://cloud.google.com/vision/

https://cloud.google.com/vision/
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Fig. 11 Precision and recall of MUFIN and Google annotations

In Fig. 12, we can see three test queries and the respective annotation results, which were
selected to highlight the strengths and weaknesses of both techniques. For some images,
Google provides perfect keywords (the last query in Fig. 12), but for others it completely
fails (the first image in Fig. 12). For comparison, MUFIN Image Annotation failed to return
anything relevant among the top 5 keywords only for 3 images. The second query in Fig. 12
is an example of a situation where both techniques work well; we can observe here the
differences in the type and scope of keywords returned by the two approaches. We have
also computed the average overlap between the two annotations; on average, 1.9 keywords
appear in both results, out of which 1.75 keywords is relevant.

Overall, the MUFIN Image Annotation returned better results than Google Label Detec-
tion in our experiments. If we limit the number of MUFIN Image Annotation results to 10,
both the precision and recall are higher than in case of Google Label Detection. MUFIN

Google keywords
penguin, flightless_bird, vertebrate, bird

MUFIN keywords
penguin, animal, group, bird, seabird, aptenodytes, wildlife, chicks, snow, con�nent, baby, emperor, children, 
hill, offspring, young, island, outdoors, sea, ice, water, nobody, birds, day�me, cold, weather, nature, color, 
flightless, wild, laughingstock, colony, adult, day, glacier, fauna, outdoor, body, polar, travel, photography, 
marine, antarc�c, horizontal, region, natural, peninsula, cute, outside, regions

Google keywords
bumper, automo�ve_design, automo�ve_exterior, vehicle, car, wheel, land_vehicle, sports_car, 
mercedes_benz, supercar, automobile_make, mercedes_benz_slr_mclaren, model_car

MUFIN keywords
car, show, vehicle, travel, transport, sports, motor, automobile, speed, person, luxury, coupe, new, museum, 
road, indoors, concept, color, view, manufacturers, front, three, automo�ve, horizontal, expensive, nobody, 
conver�ble, business, photography, roadster, industry, european, study, transporta�on, fast, photo, silver, 
modern, salon, make, street, white, showpiece, cars, black, republic, city, studio, district, state 

Google keywords
product

MUFIN keywords
person, adult, animals, ac�vity, scien�st, woman, knowledge, people, health, research, work, wellbeing, 
science, indoors, one, laboratory, head, mid, years, man, clothing, female, medical, doctor, coat, care, 
prosperity, hospital, men, worker, male, think, equipment, personnel, technician, researcher, working, young, 
professionals, color, occupa�ons, technology, bioscience, organiza�on, two, photography, healthcare, holding, 
african

Fig. 12 Several examples of annnotation results returned by Google and MUFIN. The Profiset GT is
highlighted by bold face, manual GT-R by underlining
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Image Annotation is also able to continuously provide additional candidates, until the user
is satisfied. On the other hand, the user then has to discard an increasing number of irrele-
vant candidates. From this perspective, the smaller size of Google Label Detection results
can be considered an advantage. However, the Google probability threshold is likely too
strict, since it sometimes does not allow rather obvious concepts into the result (e.g. person
in the first query in Fig. 12).

7 Conclusions and future work

In this paper, we have studied the topic of search-based image annotation, which is a
complex problem that consists of several challenging subtasks, including the acquisition
of a suitable knowledge base, efficient and effective CBIR, and the semantics mining in
candidate keywords. We have demonstrated that by combining state-of-the-art techniques
available for individual subtasks, we can create a search-based annotation tool that succeeds
in comparison with other academic prototypes based on different principles, as well as with
a state-of-the-art commercial solution.

The main theoretical contribution of the paper is the ConceptRank algorithm, which
allows us to semantically connect candidate keywords and identify the most probable con-
tent of the query object. The algorithm is applicable to any data domain, can be efficiently
implemented, and scales well with respect to both the knowledge base size and the target
vocabulary size. Its effectiveness was demonstrated within the MUFIN Image Annota-
tion tool, where we were able to increase the mean average precision of annotations by
approximately 10%.

In the future, the presented work can be continued in several directions. As we outlined
in Section 2, the search-based approach to multimedia annotation is in many aspects com-
plementary to traditional classifiers. To exploit the strengths of both approaches, we would
like to explore possible combinations of the ConceptRank model and the classifier outputs.
Another input for the annotation can be provided by users in the form of relevance feedback,
which could also be integrated into the ConceptRank model. It would also be interesting
to implement the ConceptRank analysis with more semantic resources, e.g. ontologies or
alternative language models such as word2vec.

Acknowledgements This paper is based on research supported by the Czech Science Foundation project
No. P103/12/G084.
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Paredes R, Cazorla M, Garcia-Varea I, Morell V (2014) ImageCLEF2014: Overview and analysis of the
results. In: CLEF proceedings, lecture notes in computer science. Springer, Berlin Heidelberg

12. Dai L, Wang X, Zhang L, Yu N (2012) Efficient tag mining via mixture modeling for real-time search-
based image annotation. In: Proceedings of the 2012 IEEE international conference on multimedia and
expo (ICME 2012), pp 134–139

13. Deng J, Dong W, Socher R, Li LJ, Li K, Li FF (2009) ImageNet: A large-scale hierarchical image
database. In: IEEE computer society conference on computer vision and pattern recognition (CVPR
2009), pp 248–255

14. Deselaers T, Keysers D, Ney H (2008) Features for image retrieval: an experimental comparison. Inf
Retr 11:77–107

15. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) DeCAF: a deep con-
volutional activation feature for generic visual recognition. In: Proceedings of the 31th international
conference on machine learning (ICML 2014), pp 647–655

16. Fellbaum C (1998) WordNet: An electronic lexical database. The MIT Press
17. Fu J, Wang J, Rui Y, Wang X, Mei T, Lu H (2015) Image tag refinement with view-dependent concept

representations. IEEE Trans Circ Syst Video Technol 25(8):1409–1422
18. Gupta MR, Bengio S, Weston J (2014) Training highly multiclass classifiers. J Mach Learn Res

15(1):1461–1492
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