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With the increasing availability of human motion data captured in the form of 2D or 3D

skeleton sequences, more complex motion recordings need to be processed. In this paper, we

focus on similarity-based indexing and e±cient retrieval of motion episodes ��� medium-sized

skeleton sequences that consist of multiple semantic actions and correspond to some logical
motion unit (e.g. a ¯gure skating performance). As a ¯rst step toward e±cient retrieval, we

apply the motion-word technique to transform spatio-temporal skeleton sequences into compact

text-like documents. Based on these documents, we introduce a two-phase retrieval scheme that
¯rst ¯nds a set of candidate query results and then re-ranks these candidates with more ex-

pensive application-speci¯c methods. We further index the motion-word documents using

inverted ¯les, which allows us to retrieve the candidate documents in an e±cient and scalable

manner. We also propose additional query-reduction techniques that accelerate both the re-
trieval phases by removing semantically irrelevant parts of the motion query. Experimental

evaluation is used to analyze the e®ects of the individual proposed techniques on the retrieval

e±ciency and e®ectiveness.
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1. Introduction

Human motion can be described by a sequence of skeleton poses, where each pose

keeps 2D or 3D coordinates of important body joints in a speci¯c time moment. Such

spatio-temporal data have enormous application potential in many ¯elds, e.g. in

sports to automatically assess a ¯gure-skating performance or detect fouls during a

football game without emotions of human referees; in healthcare to remotely eval-

uate the progress in rehabilitation exercising or to discover movement disorders as

indicators for choosing suitable treatments; in security to detect potential threats

like a running group of people; or in computer animation to ¯nd previously

captured animations relevant for building a new movie scene. The motion data

have traditionally been captured by specialized hardware technologies, but recent
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pose-estimation software tools allow us to obtain 2D or even 3D joint positions also

from ordinary video data [1, 2]. As a result, we expect an explosion of 2D/3D human

skeleton data in the near future, which introduces new challenges to motion data

processing.

To make the acquired skeleton data accessible and reusable, we need software

tools that can e±ciently process various types of user requests. Let us consider a

speci¯c example of skeleton data from a ¯gure skating competition: the competition

consists of the performances of individual skaters, which are composed of many

skating elements (jumps, spins, etc.). Users may be interested in recognizing the type

of element performed in some manually selected motion segment, ¯nding all occur-

rences of a given element in the recording, or ¯nding all performances with similar

choreographies. In the ¯rst two cases, the query focuses on short atomic motion

segments commonly denoted as actions, which are the most studied motion type ���
action classi¯cation, detection, and retrieval are the objective of many recent re-

search works [3–7]. However, the third example query needs to compare whole

skating performances, which are signi¯cantly longer and more structured than

typical actions. This type of motions, which we denote as motion episodes, is natural

and occurs in many application domains, but has not received much attention yet.

1.1. Motion episodes

A motion episode, originally introduced in [8], is a complex human activity that

consists of multiple actions. Typical examples include a skating performance,

dancing performance, workout routine, or a ¯ghting sequence. To search in motion

episodes, we can formulate queries that consider mutual similarity of the whole

episodes or the occurrences of individual actions and their combinations. Using the

¯gure skating example, a user may search for performances with similar choreogra-

phies, performances containing the same skating elements, performances containing

at least three very di±cult elements, etc.

If the semantic partitioning of episodes is available, i.e. we know which actions are

present in the episode and where, all episode search tasks can be solved easily using

standard text search on action labels. However, in most cases, we have no infor-

mation about semantic partitioning of the episode, which is provided as a plain

sequence of skeleton poses. Then we have to estimate the semantic similarity of

episodes using low-level motion features.

1.2. Our contributions

In this paper, we focus on two fundamental episode-processing tasks: (i) episode

matching ��� measuring the mutual similarity of two unsegmented motion episodes

and (ii) episode indexing ��� organizing episode data so that they can be e±ciently

searched using the query-by-example paradigm. The episode matching idea was

originally introduced in our work [8] and comprises the identi¯cation of signi¯cant

motion patterns that are shared between semantically related episodes.
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We distinguish two distinct subtypes of episode matching: order-free matching,

which measures the similarity of episodes by the amount of shared patterns, and

order-sensitive matching, which takes into account also the ordering of the shared

patterns. The di®erence between order-free (OF) and order-sensitive (OS) episode

matching is depicted in Fig. 1.

We further extend the episode-matching idea by proposing an indexing scheme

that enables e±cient retrieval of query-relevant episodes. The proposed solution is

application-independent and does not require any training data. The main paper

highlights can be summarized as follows:

. We analyze the applicability of standard methods developed for short actions and

discuss their limitations for processing episode data.

. We introduce an episode matching technique that transforms episode data into a

text-like representation of motion words and compares them using information

retrieval methods.

. We present a two-phase retrieval model that achieves a high result quality and

supports both order-free and order-sensitive episode matching.

. We speed-up both phases of the retrieval model by (i) indexing the motion-word

representations using inverted ¯les and applying mature text-processing techni-

ques on the constructed ¯les and (ii) simplifying the episode representations using

query-reduction techniques.

2. Problem Analysis

On our way to ¯nding a solution for the episode matching, we ¯rst look for inspi-

ration in several related ¯elds of motion data processing. We identify two possible

approaches, namely the pose-based and segment-based processing, that will be dis-

cussed in detail in the following sections. We also outline the methodology of ex-

perimental evaluation and describe the data we use.

2.1. Related work

As mentioned earlier, if the semantic segmentation of actions is known, the episode

matching and searching task can be simply solved by text retrieval on the level of

………

3D skeleton sequence

E1

E4

E3

E2

high OF-similarity
high OS-similarity

high OF-similarity
low OS-similarity

low OF-similarity
low OS-similarity

Fig. 1. Order-sensitive (OS) and order-free (OF) matching among episodes E1; . . . ;E4. Shared actions are
illustrated by patterns of the same color.
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action labels. However, a general-purpose semantic segmentation without prior

knowledge of training data is hardly achievable. Although there are some solutions

[9, 10], they typically discover only the most frequent motion patterns.

Episode matching can also be seen as similar to matching of short actions, for

which many deep-learning solutions exist [11]. The action characteristics are often

learned using convolutional [12, 13], graph-convolutional [14, 15] or Long Short-

Term Memory (LSTM) [16, 17] networks, which can be equipped with di®erent

attention-based mechanisms [11]. The widely used LSTM networks are convenient

for modeling the temporal dimension of skeleton data but fail in learning depen-

dencies in the spatial domain. On the other hand, the CNNs are successful in learning

local spatial characteristics but can hardly learn any latent correlation related to all

the joints and further require the ¯xed-size input, which leads to deformation of at

least the temporal dimension of skeleton sequences. Modeling actions in the form of a

graph in combination with RNNs or CNNs seems to be e®ective for learning spatio-

temporal dependencies; however, a suitable transformation of skeleton data into

some content-preserving graph-like representation is still challenging. Any of the

trained neural-network models can be used for extraction of high-dimensional deep

features (e.g. 4,096D features in [18]), which can be then compared using the Man-

hattan or Euclidean distance functions to quantify the similarity between two mo-

tion actions. The same approach is in principle applicable to motion episodes;

however, the episode data are supposed to be much longer and internally structured

as compared to short actions, especially in the case of OF-matching. Therefore, it is

questionable whether existing deep-learning solutions can be used for extracting

e®ective episode features.

Another research direction that we can bene¯t from deals with general repre-

sentations of skeleton data. Recent papers [19, 20] propose to partition an unseg-

mented motion into a series of many short segments that are quantized into low-level

features in an unsupervised way. This seems to be a promising approach for iden-

tifying motion patterns that are shared between two episodes. However, we need to

¯nd e±cient ways of indexing and comparing the segment-feature sequences, since

both the Dynamic Time Warping used in [20] and Earth-Mover's distance in [19] are

too expensive and do not support indexing.

2.2. Selected approaches

Unsegmented motion episodes can be principally processed in two modes: we can

either work with individual poses or partition each episode into segments that be-

come the basic processing units. We examine both these approaches.

Learning deep features based on the pose-based motion representation achieves

very good results in recognition of short actions, so it is interesting to ¯nd out how a

neural network can deal with longer and much more structured episodes. For episode

data, we adopt the standard deep-learning principle based on training a neural

network on the classi¯cation task [11]. Let us emphasize that this approach is limited

192 P. Budikova et al.



to situations where labeled episode data are available in advance. Potentially, it

would also be possible to apply an unsupervised deep-feature learning, such as the

triplet-loss approach used in [21]. However, this would require the existence of some

e®ective matching function for determining the training triplets of similar and dis-

similar episodes. As such episode-matching functions are not available yet, we

evaluate the supervised-learning approach only.

Nevertheless, we believe that segment-based processing is better suited for com-

plex motions. In particular, the segmented data o®er more possibilities for e±cient

data management, and both order-free and order-sensitive matching can be

straightforwardly implemented on top of segment-level matching. Consequently, we

adopt the segment-based representation [20] to transform episodes into text-like

documents, introduce algorithms for e±cient episode matching and develop the

indexing scheme for scalable episode retrieval.

2.3. Methodology of experimental evaluation

To evaluate both e®ectiveness and e±ciency aspects of episode retrieval, we consider

the k-nearest neighbor (kNN) search scenario and measure the result precision and

query processing time. In the rest of this section, we introduce the datasets we use

and detail the evaluation metrics.

2.3.1. Data

The test data are taken from the well-known HDM05 dataset [22], which was pri-

marily created for action classi¯cation but also contains data useful for episode

processing. In particular, the HDM05 dataset provides 241 medium-length skeleton

sequences that can be treated as episodes. A single episode takes roughly 40 s on

average and is associated with exactly one of 17 di®erent scenarios that determine

what should be performed (see Table 1 for illustration). The scenarios de¯ne both the

set of actions to be performed and their ordering. Each scenario is performed in about

14–16 episodes, with the maximum of 19 episodes and the extreme of only 1 episode

for one scenario. For interest, the individual scenarios are composed of 130 di®erent

kinds of actions. Each episode is captured as a sequence of 3D skeleton poses with 31

tracked joints and the 120 frame-per-second (FPS) rate. As recommended e.g. in [23],

we pre-process the dataset by downsampling the episodes to the 12 FPS rate and

applying the position, orientation, and skeleton-size normalization.

2.3.2. Datasets

The episode-scenario relationship provides a straightforward way to de¯ne a ground

truth (GT) for retrieval of similar episodes: for a given query episode, the GT con-

tains all the remaining episodes from the same scenario. However, it is necessary to

realize that the HDM05 episodes are constructed in such a way that all episodes from

a given scenario always contain the same actions in the same order. If we assume that
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episode E1 in Fig. 1 is the query, the HDM05 dataset only contains episodes of type

E2 and E4 but never E3. Consequently, there is no di®erence between the results of

order-sensitive (OS) and order-free (OF) matching on this data, which makes it

impossible to evaluate the order-sensitivity of di®erent episode matching techniques.

Therefore, we use the HDM05 data to create the following two test datasets:

. Original dataset — it contains the HDM05 episodes and scenarios, and the GT for

each query contains the episodes that belong to the same scenario as the query.

This allows us to directly compare both OS and OF methods in terms of their

ability to identify motion patterns shared between episodes.

. Mixed dataset — it is created by adjusting the original data as follows: half of the

episodes from each scenario are cut in half and the order of the two halves is

switched. We remember for each episode the original scenario identi¯er and

whether it is switched. Clearly, the OS and OF matching should return di®erent

results, so we need two types of GT: (i) order-free GT for a given query contains all

episodes belonging to the same scenario as the query, whereas (ii) order-sensitive

GT contains only half of the respective scenario episodes: either the switched ones

if the query is switched or the non-switched ones.

2.3.3. Measuring e®ectiveness and e±ciency

The original and mixed datasets are used to measure the precision of episode

matching in the context of kNN queries. For each query episode, we evaluate kNN

queries with di®erent values of k, including a special value k � which corresponds to

the number of GT episodes for this query. Each query is evaluated by computing the

distance between the query episode and all the other episodes, excluding the exact

match. The query precision is computed as the ratio between the number of correctly

Table 1. Example of a single HDM05 scenario. Each episode performing

this scenario contains these 14 actions in the same order.

Order Performed actions

1 Walk 5 steps
2 Turn around (right)

3 Walk 5 steps (ducked)

4 Walk 5 steps (backward)

5 Walk 5 steps (sideways ��� right, feet cross front/back)
6 3 double steps (sideways ��� left, no feet cross)

7 3 double steps (sideways ��� right, feet cross only front)

8 Walk 5 steps (happily)
9 Turn around (left)

10 Walk 5 steps (sadly)

11 Turn around (right)

12 Walk 5 steps (creep)
13 Turn around

14 Walk 5 steps (shu®le)
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identi¯ed episodes and the result size k. We ignore one scenario that contains only

one episode, so 240 queries are evaluated in total. The overall search precision for a

given k is determined as the average precision over the 240 queries.

Retrieval e±ciency is quanti¯ed by the actual time needed to evaluate all the 240

queries. All the experimental runs are executed on the same hardware to be directly

comparable.

3. Pose-Based Episode Matching

In the pose-based approach, we treat episodes as simple sequences of poses and match

them as a whole. As a baseline, we implement a naive solution that ¯nds a pose-level

alignment of two episodes using the Dynamic Time Warping (DTW). Then, inspired

by the success of pose-based methods in action recognition, we train a neural network

to extract deep features from the episodes and measure the episode similarity by the

Euclidean distance between the deep features.

3.1. Pose-level alignment using DTW

A motion episode E ¼ ðP1; . . . ;PlÞ is de¯ned as a sequence of skeleton poses Pi

(1 � i � l), where each pose Pi 2 R j�3 represents the 3D skeleton con¯guration es-

timated in time moment i and consists of xyz-coordinates of j tracked joints. The

similarity of episodes E and E 0 can be naively determined by ¯nding a pose-level

alignment of their 3D skeleton sequences using DTW [24]. The DTW approach

requires a measure of distance between individual sequence items, i.e. the 3D skeleton

poses P 2 E and P 0 2 E 0 in our case. We de¯ne such distance distPðP;P 0Þ as the sum
of the Euclidean distances between the corresponding 3D joint coordinates:

distPðP;P 0Þ ¼
X31

j¼1

jjP j � P 0j jj;

where P j is the 3D coordinate of the jth joint in pose P.

Since DTW respects the temporal order of poses, it is clearly suitable only for

order-sensitive episode matching. It is also highly ine±cient, as it has quadratic

complexity and is hardly indexable because it does not satisfy the triangle inequality.

On the other hand, DTW utilizes all information contained in the skeleton sequences

and gives us a precision baseline for further experiments.

3.2. Deep LSTM features

The DTW approach ¯nds the best pose-level matching but cannot identify any

semantic relations between similar episodes. On the other hand, deep neural net-

works, such as convolutional, recurrent, or graph convolutional architectures, along

with di®erent attention-based mechanisms, are known to be successful in identifying

semantic relations between short actions [25]. Among many possibilities, we choose
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the bidirectional Long-Short Term Memory (Bi-LSTM) network because it focuses

on long-term dependencies between motion patterns, which are characteristic for the

motion episodes.

We train the Bi-LSTM network for classi¯cation of episodes into the prede¯ned

set of scenarios. It must be emphasized that this approach is limited to situations

when labeled training data ��� i.e. episodes with scenario labels ��� are available.

During the training phase, the sequence of episode poses is gradually embedded into

individual LSTM cells. When the model is trained, deep episode features from the

last hidden network layer are extracted and compared by the Euclidean distance to

determine their similarity. To achieve a reasonable trade-o® between the feature

descriptiveness and training time, we have ¯xed the hidden layer to 1024 dimensions

(i.e. 512 dimensions in each of the two network directions), resulting in a 1024D deep

feature vector for each episode.

3.3. Experimental evaluation

The pose-level matching is evaluated in retrieval tasks over the original dataset, since

we are mainly interested in the ability of individual methods to identify shared

motion patterns. For the naive solution, we compute the DTW distance between

each query episode and each other episode on the level of the 3D skeleton poses. In

the case of the LSTM features, we compute the Euclidean distances of the 1024D

features extracted from each episode. Since the Bi-LSTM network requires training

and test data for learning the model, we split the 240 dataset episodes into two folds

and apply the twofold cross-validation procedure. This results in two independent

experiments whose kNN precision results are ¯nally averaged.

The precision results for both the naive and LSTM solutions are depicted in

Fig. 2. We can observe that the LSTM results are worse for lower values of k, whereas

for k � the LSTM solution is slightly better (76.96% versus 74.84%). From the e±-

ciency point of view, there is a major di®erence between these two techniques ��� the
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Fig. 2. Pose-based episode searching on the original dataset.
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average query processing time is 22.5 s for the naive solution and only 4.2ms for the

LSTM approach.

3.3.1. Discussion

Both the naive and LSTM solutions return quite precise results, but the real appli-

cability of both methods is limited. The naive solution is very sensitive to spatio-

temporal variances in the skeleton data and is not usable for order-free matching as it

respects the temporal order of poses. Moreover, the retrieval time is not acceptable

even for small datasets. The LSTM network can learn the episode semantics to a

certain level, but the achieved results are not so superior to the naive solution as in

the action recognition task [26]. Additionally, the convergence of the LSTM training

is much slower on episode data than on simple actions [26]. Both these issues are

probably caused by the limited amount of training data and the complexity of

episodes. It is also important to remember that the evaluation uses the original

dataset, which should be rather easy to learn for the Bi-LSTM network, as the

ordering of semantic actions is ¯xed for each scenario. The mixed dataset would be

even more challenging and would need signi¯cantly more training data to achieve

reasonable results.

4. Segment-Based Episode Matching

The segment-based motion processing is an orthogonal approach to the pose-based

matching. Each episode is partitioned into a sequence of short segments, which are

compared by a segment-level similarity measure. The episode similarity is then

evaluated on top of the segment-level matching.

To process segments e±ciently, we quantize the segment space into so-called

motion words (MWs), which have been proposed as compact similarity-preserving

representations of skeleton data [20]. The quantization signi¯cantly reduces the

amount of data to be processed as well as the complexity of similarity evaluations.

The MW-based processing should also be able to suppress noisy details in the 3D

skeleton data and better identify the motion patterns. Moreover, the MW tech-

nique produces text-like representations of motion data, which can be combined

with mature text-retrieval methods to implement e±cient episode search

approaches.

In this section, we ¯rst introduce the motion word technique. Then we discuss two

approaches to MW-based episode matching ��� sequence alignment and bag-of-

words processing ��� and compare their ability to identify shared motion patterns on

the simple original dataset. Finally, we merge these two approaches into a two-phase

retrieval that combines the strengths of both techniques and supports both order-

sensitive and order-free matching, which is veri¯ed by experiments on the more

challenging mixed dataset.
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4.1. Transforming episodes into motion-word documents

We synthetically partition each episode into a sequence of short and overlapping

segments and then quantize the segment space into MWs using the technique orig-

inally proposed in [20]. The quantization itself can be implemented in several ways,

as discussed below. Each MW then provides a concise summary of the skeleton data

in a given segment. The whole process is done completely in an unsupervised way,

which makes it widely applicable.

Two MWs are compared by a Boolean-valued MW matching function that

determines whether these MWs are considered equal: matchMW : MW�MW !
f0; 1g. The objective of the MW approach is to provide a similarity-preserving

transformation from segments to MWs, so that similar segment pairs are with a high

probability mapped to matching MWs and dissimilar segment pairs to non-matching

MWs. In Fig. 3, we illustrate two types of MWs that are considered in this work: hard

MWs and multi-overlay MWs.

4.1.1. Hard MWs

The most straightforward method, denoted as hard quantization, computes a single

clustering of the segment space, associates each cluster with a one-dimensional

identi¯er, and represents a given segment by the identi¯er of the respective cluster.

The cluster identi¯er is denoted as the hard MW. The matching function on hard

MWs returns 1 only if the two MWs are identical. Using the hard MWs, it is possible

to transform a 3D skeleton sequence into a sequence of one-dimensional identi¯ers

that can be readily processed by standard text-retrieval techniques. However, the

hard quantization su®ers quite signi¯cantly from a so-called border problem: seg-

ments that are close in the segment space may be assigned to di®erent clusters and

thus considered non-matching in the MW space (e.g. segments s1 and s2 in the left

part of Fig. 3).

Ha
rd

 q
ua

n�
za

�o
n 

3D skeleton sequence

Hard-MW document
A        C      C          

Segments s1

s2

s3

D

s2

s1

s3

A

B

C

s1 � A        s2 � C        s3 � C
matching: s1 ≈ s2, s1 ≈ s3, s2 ≈ s3

Mul�-overlay MW document
(A, G)    (C, G) (C, H)   

M
ul

�-
ov

er
la

y 
qu

an
�z

a�
on

 

Overlay 1 Overlay 2

D

A

B

C

H

E
F

G
s2

s1

s3

s2

s1

s3

s1 � (A, G) s2 � (C, G) s3 � (C, H)
1-out-of-2 matching: s1 ≈ s2, s1 ≈ s3, s2 ≈ s3

Fig. 3. Transformation of 3D skeleton data into documents of hard or multi-overlay motion words.
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4.1.2. Multi-overlay MWs

A promising technique of suppressing the border problem is called multi-overlay

quantization. The segments are clustered repeatedly, using di®erent techniques or

parameter settings, thus creating n 2 N independent clustering overlays. A single

overlay may incorrectly separate a pair of similar segments, but it is less probable

that the same pair is separated by the other independent overlays. The multi-overlay

MW is de¯ned as an n-tuple of cluster identi¯ers that are assigned to a given segment

in individual overlays. The matching function on multi-overlay MWs is parametrized

by a variable m and returns 1 if the two multi-overlay MWs agree on at least m

positions of the respective n-tuples (m; n 2 N;m � n) ��� see the right part of Fig. 3

where the segments s1 and s2 are already considered as matching. In general, the

multi-overlay MWs achieve a better search quality than hard MWs. However, the

multi-overlay MW matching function requires non-trivial adaptations of the text-

retrieval methods, which results in less e±cient processing.

4.1.3. Representing episodes by MW documents

As depicted in Fig. 3, we apply the MW concept to transform each 3D skeleton episode

into a document of either hard or multi-overlay MWs. In particular, each episode is cut

into 80-frame segments that are shifted by 16 frames. On average, there are 290 such

segments per episode. The segment size is much smaller than the size of average

semantic action (80 frames versus 260 frames) occurring in episode data, so each

action should be covered by a speci¯c subsequence of MWs. To de¯ne hard MWs, we

use a single clustering of the segment space using the k-means algorithm with k ¼ 350,

so there are 350 di®erent hard MWs. The multi-overlay MWs are created by ¯ve

independent runs of the k-means algorithm with k ¼ 350, resulting in the total

number of almost 30,000 distinct multi-overlay MWs. For comparing two multi-

overlay MWs, we set m ¼ 1 and n ¼ 5, i.e. two multi-overlay MWs are considered

matching whenever they are quantized to the same cluster in at least one overlay.

4.2. Sequence alignment on motion-word documents

To compare two episode documents, we can again utilize the DTW sequence

alignment. The item-to-item distance function within the DTW is implemented by

the speci¯c MW matching function returning two discrete values: 0 or 1. Clearly, the

DTW alignment on MWs is again suitable only for order-sensitive matching. We

experiment with both hard and multi-overlay MWs and compare their e®ectiveness

and e±ciency to the pose-based episode alignment.

4.2.1. Experimental evaluation

We again evaluate each kNN query on the original dataset using a sequential

scan of all the episode documents. The average retrieval precision with hard and
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multi-overlay MW representations is depicted in Fig. 4. We can observe that the

DTW sequence alignment with hard MWs is clearly worse than the baseline solution

with 3D skeleton data. However, with multi-overlay MWs, we are able to achieve a

slightly better result than the baseline. This conforms with the ¯ndings of [20]: the

precision of hard MWs is limited by the border problem, while the multi-overlay MWs

are able to suppress it. At the same time, the less-detailed multi-overlay MWs seem to

be better suited for episode matching than the original 3D skeletons that force the

DTW measure to penalize even slight variations of the same motion pattern.

In terms of processing costs, both MW approaches are about 35� more e±cient

than the naive solution. In particular, 0.63 s per query on average is needed for k �NN

search with hard MWs, and 0.67 s with multi-overlay MWs.

4.2.2. Discussion

Motion words provide a compact episode representation, which signi¯cantly reduces

the data dimensionality and simpli¯es the distance computations. The utilization of

MWs for DTW episode matching allows us to reduce the query processing costs by an

order of magnitude. In terms of result quality, the sequence alignment of hard MWs

gives worse results than the baseline approach on skeleton data due to the quanti-

zation error. On the other hand, multi-overlay MWs can suppress the border prob-

lem and are able to detect similar motion patterns better than the original 3D

skeleton sequences. However, the properties of the DTW distance function still

prevent e±cient indexing.

4.3. Bag-of-words processing on hard-MW documents

To achieve fast and scalable MW-based retrieval, we need to employ some

indexable distance measure. As mentioned earlier, hard-MW documents have similar

properties as standard text, for which e±cient indexing models are known.

Consequently, we adopt the time-proven bag-of-MWs approach, where the original
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Fig. 4. Episode searching using DTW sequence alignment with 3D skeleton data, hard MWs and multi-
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MW sequence is reduced to a set of words, disregarding their ordering. This set is

encoded as a sparse vector, where the vector dimension equals the number of

available words and the non-zero vector elements correspond to words contained in

the respective sequence. In addition, the signi¯cance of individual words can be

adjusted by assigning weights to the corresponding non-zero vector elements. The

dissimilarity of two set vectors is computed by the standard Cosine distance. The

bag-of-MWs model does not respect the order of MWs within each episode, so it

performs order-free matching. However, the order sensitivity of candidate results can

be checked in a post-processing phase.

Noticeably, there is a signi¯cant di®erence between the indexability of hard and

multi-overlay MWs. For the hard MWs, the Cosine distance can be evaluated very

e±ciently and mature indexing techniques such as inverted ¯les can be directly

applied to scale to large datasets. However, the comparisons of multi-overlay MWs

are more costly and the text indexing cannot be directly applied. Therefore, we only

consider hard MWs in this section.

The key factor in applying the bag-of-words model on MW sequences is appropriate

weighting of individual MWs. In text retrieval, two statistics are used to estimate the

importance of a given term: term frequency (TF) and inverse document frequency

(IDF). The term frequency of term t within document D equals the number of times t

occurs in D, thus giving more importance to terms that occur repeatedly in a given

document. The inverse document frequency of t is computed as a logarithmically

scaled inverse fraction of documents containing this term, and its purpose is to sup-

press the in°uence of globally frequent words and boost the rare ones.

While we want to capitalize on best-practices of text processing, we need to keep

in mind that the MW sequences are di®erent from standard text in several aspects.

The episode MW sequences are shorter than a typical text document and the dis-

tribution of words is likely to be di®erent. Moreover, the vocabulary of hard MWs is

much smaller than natural language vocabulary. And ¯nally, the motion words su®er

from the border problem, which may cause problems with the frequency counting.

Therefore, we experiment with several variations of the TF-IDF weighting scheme:

. No weighting — the weight coe±cient of each MW in any episode is 1;

. TF weighting — the weight of MW w within episode E is de¯ned by the frequency

of w within E;

. IDF weighting — the weight of MW w is the same across all episodes and is equal

to the inverse document frequency of w;

. TF-IDF weighting — the weight of MW w within episode E is computed as

TF � IDF in order to balance the global and local importance of w.

4.3.1. Experimental evaluation

The precision of Cosine-based retrieval with di®erent weighting schemes is again

evaluated on the original dataset. In Fig. 5, we can observe that the best results are
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achieved with the IDF weighting and slightly outperform the baseline solution that

compares raw skeleton data by DTW. The second best option is the equal weighting

of all MWs. Whenever the TF is involved, the results are worse. This is probably

caused by a combination of two factors. First, the occurrence of very common words

that should be treated as stopwords is likely bigger in motion episodes than in text

documents. MWs representing non-signi¯cant motion parts such as simple standing

can be repeated many times in a row, which does not happen with text words.

Second, due to the border problem, it is more di±cult to identify the common motion

words and appropriately decrease their IDF to balance the high TF.

The average processing time of the bag-of-words query is about 65ms, which is an

order of magnitude faster than hard MWs with DTW. Compared to the baseline

solution, we can achieve the same precision about 350 times faster.

4.3.2. Discussion

When we represent motion episodes by bags of hard MWs, we obtain indexable data

that can be e±ciently searched using the Cosine distance. Even with a sequential

scan implementation, this representation reduces query processing costs by two

orders of magnitude as compared to the naive solution. Moreover, the IDF-weighted

retrieval is able to provide slightly more precise result than the baseline. This tells us

that the bag-of-words retrieval is less in°uenced by the border problem than the

DTW alignment, and the IDF weighting can successfully identify the most impor-

tant patterns shared between matching episodes.

4.4. Two-phase episode retrieval

By applying the bag-of-words model on hard MWs, we can build an e±cient and

scalable search system with a reasonable precision. We also know that better quality

can be achieved using the multi-overlay MWs, but their processing is more costly.
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Fig. 5. Episode searching using the Cosine distance on hard MWs (hMW) with di®erent weighting

schemes on the original dataset.
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This leads us to design a two-phase retrieval model that combines the strengths of

both MW types and can also be used for both order-sensitive and order-free retrieval.

In particular, we ¯rst e±ciently identify a set of candidate documents C , using the

Cosine distance on IDF-weighted sets of hard MWs. Then, we re¯ne the candidate

set by comparing each candidate document to the query document using more ex-

pensive computations with multi-overlay MWs and return the k best-ranked episode

documents as the query result. To allow both order-sensitive and order-free

matching, we de¯ne two re¯nement methods:

(1) The DTW re¯nement treats the candidate documents as sequences of multi-

overlay MWs and compares them by the DTW sequence alignment, which is

suitable for order-sensitive matching.

(2) The Cosine re¯nement treats the candidates as sets of multi-overlay MWs with

IDF weighting and compares them by the Cosine distance, which re°ects the

needs of order-free matching.

While the DTW distance can be straightforwardly applied to multi-overlay MWs, for

the Cosine measure we need to introduce some modi¯cations. The standard Cosine

score of a document D with respect to a query Q is computed as the (weighted and

normalized) number of words that appear in both D and Q. However, the multi-

overlay MW representation works with the concept of matching, where two non-

identical MWs can be considered mutually relevant. Clearly, the MW-matching

needs to be incorporated into the Cosine similarity evaluation. In an ideal case, the

Cosine similarity of multi-overlay Q and D should take into account the number of

words from Q that have some match in D, and the number of words from D having a

match in Q (a single query MW can be matched by multiple di®erent MWs in D, and

vice-versa, a single MW in D may match multiple di®erent MWs in Q). However, the

evaluation of matches is computationally expensive, so we only consider the number

of matched query MWs in the multi-overlay-MW Cosine similarity. To allow IDF-

weighted Cosine scores, we also need to determine the IDF of each multi-overlay MW

w. This is computed as a logarithmically scaled inverse fraction of episodes con-

taining any MW that matches w.

An important parameter of the two-phase search architecture is the size of the

candidate set C , which determines how many episodes are subject to the more precise

matching. Increasing the size of C gives a better chance of locating relevant episodes

at the price of a linear increase of the re¯nement costs. We set the size of C as dk � f e,
where k is the required number of nearest neighbors to be returned as the query

result, and f 2 Rþ is a ¯ltering factor.

4.4.1. Experimental evaluation

We evaluate the performance of the two-phase retrieval model on the order-free and

order-sensitive scenarios, using the challenging mixed dataset. We assess the
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usefulness of the DTW and Cosine re¯nements and analyze the in°uence of the

¯ltering factor f on the trade-o® between the result quality and retrieval costs.

Figure 6 shows the results of selected approaches on the order-free scenario. As

expected, solutions that employ the DTW alignment in any phase are not suitable for

the order-free searching: the quality of a single-phase DTW search on hard MWs is

very low, and the two-phase retrieval with DTW re¯nement provides worse results

that the simple Cosine-based search on hard MWs. However, the two-phase retrieval

with the Cosine re¯nement over multi-overlay MWs achieves better search quality

than the simple hard-MW Cosine search: the average result precision of the k �NN

search improves from 77:54% to 87:53% for f ¼ 3.

In Fig. 7, we depict the results of the same set of techniques on the order-sensitive

scenario. We again observe the expected behavior ��� the DTW re¯nements that

take into account sequence ordering signi¯cantly outperform the bag-of-words Co-

sine re¯nements. Still, there are some interesting facts to be seen. The precision of

bag-of-words solutions drops to half in comparison to order-free matching
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Fig. 6. Order-free searching on the mixed dataset using di®erent combinations of hard and multi-overlay

MWs and di®erent sizes of candidate sets.
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experiments, because half of the episodes that are identi¯ed by matching patterns do

not have them in the required order. Using the costly and non-scalable DTW

alignment of the whole dataset provides the best result for k ¼ 1, but with the

growing result size the precision quickly falls down. This is caused by the border

problem of hard MWs and better result quality could be achieved with DTW

alignment of multi-overlay MW sequences, but the costs would be unacceptable.

However, when we utilize the Cosine-based search on hard MWs for candidate ¯l-

tering and then apply the DTW re¯nement on multi-overlay MW sequences, we

obtain an e±cient solution that achieves a good k � precision ��� in particular, the

precision of 75.74% is achieved with the DTW re¯nement and f ¼ 3. The bag-of-

words candidate ¯ltering thus works well even for the order-sensitive matching.

We also evaluate the in°uence of di®erent candidate set sizes, which are deter-

mined by the ¯ltering factor f . With the Cosine re¯nement, the setting f ¼ 2:0

improves the k � precision of order-free retrieval from 77.54% to 86.45% at the cost of

increasing the average query evaluation time from 65ms to 115ms. The shift from

f ¼ 2:0 to f ¼ 3:0 contributes to a slightly better precision (from 86.45% to 87.53%)

but increases the average re¯nement time from 50ms to 79ms, since the re¯nement

costs grow linearly with the candidate set size. Further increasing the ¯ltering factor

has negligible e®ects on the result quality. A similar behavior can be observed for the

DTW re¯nement and order-sensitive retrieval: there is a large improvement of search

quality between no re¯nement and re¯nement with f ¼ 2, for f ¼ 3 the precision

further grows (from 71.32% to 75.74%), but for f > 3 the search quality does not

change signi¯cantly. The DTW re¯nement is slightly less e±cient than the Cosine

re¯nement, because the DTW computes the alignment of the complete MW

sequences whereas Cosine only deals with the distinct MWs. For the same settings of

order-free searching and f ¼ 2, the Cosine re¯nement requires 50ms on average and

DTW re¯nement 88ms.

4.4.2. Discussion

In the two-phase episode matching, a majority of dataset episodes are ¯ltered out by

the e±cient and scalable Cosine distance on sets of hard MWs. Only the most

promising candidates are submitted to the re¯nement phase that requires more ex-

pensive similarity evaluations. The re¯nement step signi¯cantly improves the result

quality with an acceptable increase of processing costs. The precision-cost trade-o® is

determined by the candidate set size and can be adjusted depending on the pre-

ferences of a target application.

Noticeably, the two-phase order-sensitive matching with DTW re¯nement on

multi-overlay MWs achieves better precision than the single-phase DTW alignment

of multi-overlay MW sequences reported in Sec. 4.2. This supports our theory that

the bag-of-words candidate ¯ltering is well-suited for identi¯cation of matching

patterns and ¯lters out many irrelevant episodes that are confusing the DTW

alignment. To complete our analysis, we have also evaluated a search of the whole
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dataset using multi-overlay MWs with the Cosine distance, which has been discarded

earlier for high computation costs. The result precision is very similar to the two-

phase retrieval with Cosine re¯nement, which again con¯rms that the hard MW-

based ¯ltering phase works very well.

As a ¯nal remark, let us mention that the two-phase retrieval works for order-

sensitive matching as long as the dataset is su±ciently diverse. In an extreme case,

we could have a dataset of episodes that all contain the same patterns and di®er only

in the ordering, then the bag-of-words ¯ltering would be useless. However, we do not

expect such episodes to appear in real applications.

5. E±cient and Scalable Retrieval of Motion Episodes

The two-phase episode retrieval is able to provide relevant results and reduce the

sequential-scan times by several orders of magnitude. However, its main advantage

lies in the possibility of applying e±cient and scalable indexing techniques for the

candidate retrieval. In this section, we ¯rst describe how the hard-MW documents

are indexed using the standard inverted ¯les index. Then, we discuss the scalability

of the candidate retrieval. This is to some extent solved by the text retrieval tech-

niques, but the arti¯cial MW vocabulary o®ers a new possibility of optimizing the

vocabulary size for a given dataset. Finally, we demonstrate that the e±ciency of

both candidate retrieval and candidate set re¯nement can be further increased by

reducing the query size.

5.1. Indexing motion episodes

The hard MW documents can be straightforwardly indexed by the standard inverted

¯le structure [27]. In particular, for each MW from a given vocabulary, we create a

posting list (PL) of all documents that contain this MW. Since our experiments show

that considering text-frequencies is not helpful for episode retrieval, we only keep the

document identi¯ers in the posting lists, which produces very compact PLs. To be

able to use the IDF weighting, we further compute and store the IDF for each MW.

Finally, we also store the magnitude of each document D in the bag-of-MWs re-

presentation, which is computed as the sum of IDF weights of all MWs in D. For our

test database of 241 episodes, the posting lists together with the IDF and document

magnitude tables ¯t into 60 kB of memory, while the original skeleton data occupy

about 1GB.

To answer a Cosine-based similarity query, the query episode is ¯rst transformed

into a bag-of-words representation: Q ¼ fq1; . . . ; qng, where qi are individual MWs

from a given vocabulary. Then, we take the PLs for q1; . . . ; qn and gradually merge

them, computing the score of each encountered document Di as Cosine scoreðDiÞ ¼
IDFðqj1Þ þ IDFðqj2Þ þ � � � þ IDFðqjn Þ, where qj1 ; . . . ; qjn are such elements of Q that

have Di in their posting list. Finally, the Cosine score is normalized by the sum of

magnitudes of both Q and Di .
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5.1.1. Experimental evaluation

To evaluate the e®ect of episode indexing and other techniques discussed in this

section, we again use the original dataset. Let us remember that in this dataset, all

episodes within one GT category have the same ordering of actions, so both order-

free and order-sensitive methods are meaningfully applicable. We are now not much

interested in the actual search precision of individual methods, which has been dis-

cussed in detail in previous sections; instead, Table 2 analyzes the development of

query processing costs for di®erent candidate retrieval methods.

We can observe that the introduction of indexed searching does not change the

precision of retrieval results, because the Cosine score of each document is computed

in the same way as with sequential scan. However, the retrieval e±ciency is signi¯-

cantly improved, because the indexed search can skip documents that have zero

overlap with the query. As reported in Table 2, the average candidate search time is

reduced from 65ms to 1.21ms. We can also note that most of the query processing

time is now spent on query re¯nement, which is evaluated over the multi-overlay

MWs that require more costly processing. We discuss this issue in more detail in

Sec. 5.3 and propose query reduction strategies that allow us to reduce the re¯ne-

ment phase costs.

5.2. Scalability of candidate retrieval

The retrieval of candidate episodes over the hard-MW inverted-¯le index is very fast,

but our test dataset is small and does not allow us to demonstrate the scalability of

our solution. To better understand the e±ciency of the proposed retrieval scheme

and its ability to scale to large episode collections, we now examine the candidate

retrieval costs in more detail, identify potential scalability bottlenecks and discuss

how these can be mitigated.

The costs of evaluating a query over the inverted ¯le index are determined by two

factors: (i) the number of posting lists to be accessed and merged and (ii) the length

of individual PLs. The number of posting lists that need to be processed is equal to

Table 2. Comparison of selected episode processing methods for k �NN search over the original

dataset. Cosine-based methods are used with IDF weights; the two-phase retrieval is used with

¯ltering factor f ¼ 2.

Candidate search Re¯nement Costs (ms)

Data Method Data Method Precision (%) Phase I Phase II Overall

Skeletons DTW ��� ��� 74.84 22,500 ��� 22,500
hMWs DTW ��� ��� 58.61 630 ��� 630

moMWs DTW ��� ��� 77.36 670 ��� 670

hMWs Cosine ��� ��� 77.54 65 ��� 65

hMWs Cosine moMWs DTW 81.06 65 88 153
hMWs Cosine moMWs Cosine 86.45 65 50 115

hMWs Cosine-index moMWs DTW 81.06 1.21 88 89

hMWs Cosine-index moMWs Cosine 86.45 1.21 50 51
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the number of distinct query words and is independent of the database size, so it does

not pose a scalability issue. On the other hand, the length of individual posting lists is

directly proportional to the database size and the vocabulary size. When the vo-

cabulary size is ¯xed, the posting lists inevitably grow with the database size and

their processing becomes more and more expensive, eventually exceeding the ac-

ceptable response time. This problem is well known in standard information re-

trieval, which solves it by applying approximate searching. More speci¯cally, each

posting list is kept sorted using some universal measure of documents' importance,

and only a portion of the highest-ranking items from each list is accessed during

retrieval [27]. A similar approach could also be applied to our posting lists, but the

motion word technique o®ers an alternative way of dealing with long posting lists.

Let us remember that the size of MW vocabulary is chosen by the system designer

and should re°ect the size and density of the dataset. Therefore, for static datasets,

the vocabulary size can always be chosen so that the sizes of posting lists are man-

ageable. For dynamically growing datasets, we could expand the vocabulary and re-

build the index whenever the posting lists exceed some size threshold or combine this

strategy with the above-mentioned approximate retrieval.

5.3. E±ciency of candidate selection and re¯nement

As mentioned in the previous section, the episode searching times also depend on the

size of the query. In indexed searching, the query size determines the number of PLs

to be accessed, and in the re¯nement phase, it determines the costs of each candi-

date's similarity evaluation. The query size can have a signi¯cant in°uence on the

overall search e±ciency in case the query is large, which indeed happens in the case of

episode processing. In contrast to classic information retrieval where users issue a few

keywords that express their information need, in motion retrieval users describe their

interest by an example object, i.e. the query episode. After the transformation into

the MW representation, we obtain a long sequence of query MWs ��� for instance, a

40-s episode produces a sequence of 290MWs. However, not all of the MWs are

equally important for determining episode similarity, so a suitable query reduction

can decrease the query processing costs without notable e®ect on search quality.

Let us ¯rst consider the Cosine similarity measure, which is used for both can-

didate retrieval and candidate re¯nement. The Cosine similarity works over the bag-

of-words representation, which only contains distinct query MWs, but its size is still

considerable ��� in our dataset, we have on average 54 distinct hard MWs per episode

and 206 distinct multi-overlay MWs (the multi-overlay vocabulary is signi¯cantly

larger than the hard MW vocabulary). Such a large query is very likely to contain

words with low IDF values that have little impact on the Cosine scores but increase

the processing costs because they have matches in many documents. We denote such

words as motion stopwords and optimize the Cosine-based similarity searching by

removing some of the low-IDF stopwords from the query. We considered two possible

ways of reducing the query size: (i) removing all MWs with IDF below a certain
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threshold or (ii) removing a ¯xed ratio of low-IDF MWs from each episode. The ¯rst

option mirrors the stopword handling in text retrieval, but it assumes the existence of

global motion stopwords, which may not be correct for motion retrieval. Indeed,

there may be a motion episode composed of very frequent motions such as standing

and sitting, which could be entirely eliminated if all low-IDF MWs were removed.

Therefore, we choose the second approach, which looks for the most distinctive MWs

in the context of a given episode.

The query size is also highly important for the DTW-based similarity evaluation,

because the DTW processing costs are quadratic with respect to the episode length.

In this case, we cannot apply the elimination of low-IDF MWs, because the DTW

performs time-aware sequence alignment and does not consider MW weights.

However, we can reduce the query in a di®erent way. Let us remember that the MWs

are created using overlapping segmentation of the original skeleton sequence. The

overlaps are used to minimize the e®ect of segmentation time-shift and are important

especially for the hard MWs which su®er from frequent mismatches of semantically

related segments. However, for the multi-overlay quantization, the densely over-

lapping segments are not so vital, because the multi-overlay MW-matching function

can identify related segments even if they are quantized to di®erent partitions.

Consequently, we reduce the query size for DTW by regular downsampling of the

MW sequences.

5.3.1. Experimental evaluation

The e®ects of query reduction are again evaluated by experiments over the original

dataset. We perform three separate set of experiments to analyze the in°uence of the

query reduction on the Cosine-based candidate selection, Cosine re¯nement and the

DTW re¯nement.

In Table 3, we can observe the e®ects of removing a ¯xed ratio of low-IDF hard

MWs from each query in the candidate search phase. Eliminating up to 60% of the

least important MWs does not signi¯cantly in°uence the retrieval precision, while

the query processing costs gradually decrease. Removing up to 40% of least

Table 3. Precision and costs of two-phase episode retrieval with reduced hard-MW queries in the can-

didate retrieval phase. Only a given percentage of query MWs with the highest IDF is used for querying.
Experimental settings: k �NN retrieval over the original dataset, f ¼ 2.

Precision

Query size

ratio (%)

Query

size

Phase I

costs (ms)

hMWþCosine

and moMWþDTW (%)

hMWþCosine

and moMWþCosine (%)

100 54 1.21 81.06 86.45

80 43 0.98 81.26 86.57

60 32 0.89 81.31 86.54
50 27 0.86 81.53 86.45

40 22 0.83 80.91 85.33

20 11 0.77 77.97 82.30
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important MWs actually slightly increases the precision, which indicates that these

MWs were not relevant for the identi¯cation of related episodes. It is also important

to remark that the reduction is only applied to the query episodes, whereas the

episodes in the database remain intact. This allows us to choose the query reduction

parameters in time of querying, according to user preferences.

Table 4 summarizes the e®ects of bag-of-words reduction for the Cosine re¯ne-

ment over the multi-overlay MWs. There are two possibilities how to apply the

reduction in the re¯nement phase ��� we can either remove the low-IDF MWs only

from the query or from both the query and the candidate episodes that are compared

to it. In contrast to the candidate retrieval where the query-time reduction of all

searched episodes would not be feasible, the small set of candidates can be easily

reduced as well. We can see that removing up to 60% of the low-IDF words from both

the data and query does not harm the search precision and saves nearly 75% of the

candidate re¯nement time. Reducing both the query and the candidate episodes

produces better results than just the query-side reduction, which can be again at-

tributed to the elimination of semantically irrelevant MWs. The processing time

optimization is more substantial here than in the candidate retrieval phase, because

the evaluation of similarity over the multi-overlay MWs is more costly.

The in°uence of downsampling query reduction for the DTW re¯nement is an-

alyzed in Table 5. The DTW distance measure computes a time-aware alignment of

the two multi-overlay MW sequences, so it is necessary to reduce both the query and

Table 4. Precision and costs of two-phase episode retrieval with reduced queries in the Cosine re¯ne-

ment phase. Only a given percentage of episode MWs with the highest IDF is used for the re¯nement. No

query reduction is used for the candidate retrieval. Experimental settings: k �NN retrieval over the
original dataset, f ¼ 2.

Query reduction Query and data reduction
Query size

ratio (%) Query size Phase II costs (ms) Precision (%) Phase II costs (ms) Precision (%)

100 206 50.89 86.45 50.89 86.45

80 165 40.57 86.42 38.23 86.44

60 124 30.02 86.39 23.65 86.74

50 103 25.42 86.29 17.51 86.84
40 82 19.93 86.07 13.45 86.91

20 41 9.98 83.91 5.16 85.00

Table 5. Precision and costs of two-phase episode retrieval with reduced queries in
the DTW re¯nement phase. No query reduction is used for the candidate retrieval.

Experimental settings: k �NN retrieval over the original dataset, f ¼ 2.

Query and data downsampling Query length Phase II costs (ms) Precision (%)

1� 290 88.05 81.06

2� 145 22.47 79.93
3� 97 10.20 79.17

4� 73 5.65 77.19

5� 58 4.73 76.08
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the candidate episodes. We can observe that the search quality decreases here even

for the lowest downsampling rate, but the worsening of precision is small while the

time savings are substantial.

In all the studied cases, we could see that the reduction of query size to about 50%

improves the e±ciency of query processing without notably decreasing the retrieval

quality. We have also tested the scenario with 50% reduced queries in both retrieval

phases and obtained very good results ��� for the Cosine re¯nement the result pre-

cision is 86.82% (0.37% better than the retrieval with full queries) and for the DTW

re¯nement 80.02% (1.04% worse than the retrieval with full queries). From the

e±ciency point of view, the query reduction is de¯nitely useful for the re¯nement

phase where a lot of the expensive similarity computations over multi-overlay MWs

can be eliminated. The candidate selection over indexed hard MWs is already very

fast, but for larger data collections the optimizations of candidate selection may also

become important.

6. Conclusions

Episode retrieval is a new motion processing task that deals with similarity-based

matching of skeleton recordings that capture complex human activities. In some

cases, the episodes can be processed by state-of-the-art neural network models, but

this approach requires costly training and is only suitable for some types of episode

matching scenarios. Therefore, we propose to solve this task using a transformation

of the input 3D skeleton data into compact motion-word sequences that can be

processed by mature text-retrieval techniques. In particular, we ¯rst identify can-

didate sequences using the e±cient and scalable Cosine distance on IDF-weighted

sets of simple motion words. The candidates are then re-ranked using more complex

motion words and a distance measure suitable for either order-free or order-sensitive

matching. By using the compact data representation, inverted-¯le indexing, and

query reduction techniques, we achieve the average processing time of about 20ms

per query, which is su±cient for real-time searching. Compared to the naive skeleton

sequence alignment, our approach reduces the query processing time by three orders

of magnitude. At the same time, we also increase the result precision because our

bag-of-words candidate selection is better suited for identi¯cation of matching pat-

terns than the sequence alignment. The whole approach does not require any training

data and can be used in a wide range of applications. In the future, we plan to apply

the proposed approach on large-scale collections of episodes from di®erent sports

domains, which will be obtained from video-data using state-of-the-art pose-esti-

mation tools [1, 2].
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