Ranking: Metric Query Postprocessing

Petra Budikova budikova@ics.muni.cz Masaryk University, Brno, Czech Republic Michal Batko

batko@fi.muni.cz Masaryk University, Brno, Czech Republic

OVI AS ARTIS IN.

zezula@fi.muni.cz

Pavel Zezula

Masaryk University, Brno, Czech Republic

Large-Scale Multimedia Searching

Text-based approach

- Strategy: search in annotations of multimedia objects using existing tools for text search
 - applied by the major commercial image search systems (Google, Bing)
- Weak points:
 - does not work on data without text annotations

Content-based aproach

- Strategy: use the specific properties of the data objects to define a pairwise distance function that evaluates dissimilarity of any two objects
 - query-by-example paradigm
 - based on a metric space model
- Weak points:

Two-phase Similarity Searching

- Extension of the content-based approach
- Standard similarity query is evaluated in Phase I
- Search results are further processed in Phase II
 - result quality improvement
 - low costs as only the result set (a small subset) of the whole database) is processed

- results are often not similar in content
- Enhancements: employ content-based ranking on \bullet the result of text-based search
 - provides better results
 - search quality still depends on quality of text annotations
 - existing techniques do not support personalized ranking
- semantic gap between human understanding of similarity and the definition of distance
- Solutions:
 - machine learning of the semantics applicable only for smaller domains with clear semantic categories
 - result postprocessing

Phase I: Initial Search

 $F_{initial}(q) = kNN(q,k) = \{R \subseteq \mathcal{D}, |R| = k \land$ $\forall x \in R, y \in \mathcal{D} \setminus R : d(q, x) \le d(q, y) \}$

Phase II: Ranking

 $F_{rank}(o) = RANK_{type}(o, context) = \{i \in \mathbb{N},$ *i* is the rank of *o* in the given context}

User-defined Ranking

- After Phase I, the initial result is displayed and user can provide additional information
 - preferred objects, keywords, other data properties
 - user-defined similarity measure

Relevance feedback ranking

- User chooses relevant images from the initial result
- System uses them as mutliple query objects in the ranking phase

Keyword ranking

• Keywords associated with the query object are used for ranking (Figure 3a)

Ranking Strategies

Word cloud ranking

- The most frequent words from the initial result can be used for ranking (Figure 3b)
- The intersection of the most frequent words and the query object keywords may be chosen for ranking (Figure 3c)

Combined visual and text ranking

- The initial ranking from Phase I is taken into consideration
- The final distance is computed as a weighted sum of the visual and text distance (Figure 3d)

Ranking method	User-percieved result quality
Initial result	36.2 %
Feedback ranking	59.2 %
User-defined keyword ranking	50.6 %
Keyword ranking	55.4 %
Word cloud ranking	42.0 %
Cloud&keywords ranking	51.9%
Combined visual&text ranking	56.8 %
Adaptive ranking	58.2 %

Table 1 Evaluation of ranking methods.

Conclusion

Ranking provides overall improvement of user satisfaction

Figure 1 Feedback ranking.

User-defined keyword ranking

- User chooses relevant keywords
- System prompts the most frequent keywords from the initial result

Figure 2 Keyword ranking.

Automatic Ranking

- Uses only information available from the query definition and the statistical properties of the initial result
 - keywords, location, object popularity, etc.
 - may exploit a different measure of content-

Phase I

Figure 3 Automatic ranking methods.

Adaptive ranking

• Apply heuristics to select the most suitable ranking method from the above mentioned, using statistical data obtained from the evaluation of random queries and the initial result characteristics

Evaluation

- Real-world image collection from the Pixmac photo-bank
 - 8 million images
 - rich and precise annotations
- User-satisfaction experiments
 - -20 users
 - 100 random query images

- 15-24 % improvement with user-defined ranking
- 8-22% improvement with automatic ranking
- Small computation costs increase
 - Phase I: 500 ms; Phase II: 30 ms
- Two-phase search model provides a general, scal-able and flexible solution to content-based retrieval

Future work

- Evaluate the proposed ranking methods on a dif-ferent dataset with worse annotations
 - use WordNet to improve the quality of text data

References

- Y. Jing and S. Baluja. VisualRank: Applying PageRank to large-scale image search. *IEEE Trans*actions on Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp. 1877–1890, 2008.
- X. S. Zhou and T. S. Huang. Relevance feedback in image retrieval: A comprehensive review. Mul*timedia Systems*, vol. 8, no. 6, pp. 536–544, 2003.
- L. Wang, L. Yang, and X. Tian. Query aware visual similarity propagation for image search reranking. In MM '09: Proceedings of the seventeen ACM international conference on Multimedia. New York, NY, USA: ACM, 2009, pp. 725–728.
- P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric Space Approach. Advances in Database Systems, Springer-Verlag, 2006, vol. 32.

