
Combining Metric Features in Large Collections

Michal Batko
Masaryk University

Faculty of Informatics
Brno, Czech Republic

batko@fi.muni.cz

Petra Kohoutkova
Masaryk University

Faculty of Informatics
Brno, Czech Republic

pkoh@ics.muni.cz

Pavel Zezula
Masaryk University

Faculty of Informatics
Brno, Czech Republic

zezula@fi.muni.cz

Abstract

Current information systems are required to process
complex digital objects, which are typically characterized
by multiple descriptors. Since the values of many descrip-
tors belong to non-sortable domains, they are effectively
comparable only by a sort of similarity. Moreover, the
scalability is very important in the current digital-explosion
age. Therefore, we propose a distributed extension of the
well-known threshold algorithm for peer-to-peer paradigm.
The technique allows to answer similarity queries that com-
bine multiple similarity measures and due to its peer-to-
peer nature it is highly scalable. We also explore possibili-
ties of approximate evaluation strategies, where some rele-
vant results can be lost in favor of increasing the efficiency
by order of magnitude. To reveal the strengths and weak-
nesses of our approach we have experimented with a 1.6
million image database from Flicker comparing the content
of the images by five similarity measures from the MPEG-7
standard. To the best of our knowledge, the experience with
such a huge real-life dataset is quite unique.

1 Introduction

It is becoming common that practically any information
is available in a digital form. Unfortunately, the exponential
growth of the amount of digital data makes the searching for
relevant pieces of information more and more difficult and
the scalability of search engines is crucial.

The problem is further complicated by the complexity
of digital data types – such as images, audio, time series,
biomedical data, etc. – for which the traditional attribute-
like search cannot be used. Instead, some characteristic de-
scriptor is extracted from a complex object, e.g. a color
histogram is computed for an image, and this simplified in-
formation is then used for searching. Depending on the ob-
jects’ domain, several descriptors can be extracted to cover
different aspects of the objects – for example colors, shapes

and textures of an image. The descriptors are typically high-
dimensional vectors or complex data structures for which
nothing beyond pairwise distances can be measured, thus a
distance-based index structure is required in order to pro-
cess the data. The metric space model is a suitable abstrac-
tion that allows efficient indexing while still being applica-
ble to wide variety of data types.

The Multi-Feature Indexing Network (MUFIN) provides
an effective and efficient tool for searching in digital data
collections which grow at exponential speed. The MUFIN
is capable of executing similarity queries for any metric data
and it allows definition of multiple search indexes (over-
lays) for different descriptors. In order to cope with large
volumes of data and guarantee required performance con-
straints, a peer-to-peer (P2P) architecture and parallel pro-
cessing is exploited in MUFIN.

To be able to execute also combined search where a
query is composed of more than one descriptor and its re-
sult is formed by objects that best match the query in sev-
eral aspects, we propose a distributed variant of the thresh-
old algorithm (TA) for MUFIN. It allows a user to specify
an arbitrary aggregation function for combining the indi-
vidual descriptor distances into an overall distance so that
the best matching results are closest to the query. The func-
tion can be different for each query thus different results can
be obtained even if the query descriptors remain the same.
To reveal strengths and weaknesses of running the TA in
distributed environment, we conducted an extensive perfor-
mance evaluation with a six-overlay MUFIN indexing 1.6
million descriptors in each overlay. The descriptors were
extracted from images, thus the results can be easily visual-
ized.

The paper is organized as follows. We describe the ar-
chitecture of MUFIN in Section 2. Then, the distributed
threshold algorithm is presented in Section 4. Section 5 re-
ports on the different experiments we have conducted with
the network and our experience is concluded in Section 6.



1.1 Related Work

The problem of executing complex queries, sometimes
referred to as top-k queries, was studied by several re-
searchers. The main attention was drawn to multimedia
data [7, 17] and the domain of text documents [2, 14, 20].
The most successful approaches are based on the family
of threshold algorithms [9, 11, 17]. Generally, these tech-
niques are designed to run in a centralized database sys-
tems, but there are also extensions for distributed archi-
tectures such as peer-to-peer networks. Several techniques
concentrate on structured data (e.g. XML documents, re-
lational tables, etc.) and provide extensions for high-level
query languages (such as SQL) [1, 13]. Unfortunately, such
queries may produce huge numbers of sub-results in a large-
scale peer-to-peer system and the process of merging the
sub-results to get the final ranked result can be very expen-
sive. Also, the impact of transferring the results using the
network layer is becoming a major issue for greater num-
ber of peers. These implications are more extensively stud-
ied in [19], where a system for efficient combining ranked
lists of XML documents is presented. Authors of [15] have
proposed a framework called KLEE for processing top-k
queries in distributed text-data repositories. The evalua-
tion of ranked lists for a specific attribute (text term) is dis-
tributed to a network of peers and a probabilistic approxi-
mations are used on the true top-k result.

An approach from a different point of view is the
M3-tree structure [6]. It is a centralized index, where
all features of a complex object are stored using a lower-
bounding metric function in the M-tree [21]. Then, similar-
ity query evaluation strategies are modified, so that they can
use the lower-bounding property to get results for arbitrary
complex queries.

However, all the aforementioned systems are based on
attribute (term-based) values and cannot be used in generic
metric space. The only exception is the M3-tree, but its
evaluation algorithms are quite expensive and the scalability
quite limited. The MUFIN allows combination of any met-
ric index structure with emphasis on the large-scale peer-to-
peer systems and our distributed threshold algorithm aims at
fast combined-query retrieval with tunable approximation.

2 Architecture

In this section, we outline the architecture of MUFIN.
First, we explain paradigms used for data comparison and
organization. Next, we briefly characterize the most impor-
tant building blocks of the proposed architecture, i.e. the
metric searching overlays. Finally, we show how the indi-
vidual parts can synergically cooperate to achieve required
objectives.

2.1 Fundamentals

MUFIN can deal with data compared on the basis of sim-
ilarity, considering the exact matching as a special case. It
accepts the metric vision of similarity [21] which measures
closeness of objects as distance. In particular, the mathe-
matical metric space is a pair (D, d), where D refers to the
domain of objects and d is the distance function which is
able to compute the distance between any pair of objects
from D. It is assumed that the smaller the distance, the
closer or more similar the objects are. For any three distinct
objects x, y, z ∈ D, the distance must satisfy the follow-
ing properties of reflexivity, d(x, x) = 0, strict positiveness,
d(x, y) > 0, symmetry, d(x, y) = d(y, x), and triangle in-
equality, d(x, y) ≤ d(x, z)+d(z, y). Such definition allows
us to specify a number of similarity queries, including the
similarity range and nearest neighbor queries.

It is quite obvious that the client/server technology cur-
rently widely used simply reaches its capacity and effi-
ciency limits especially in the field of multimedia data. This
problem can be overcome by employing several comput-
ers (formerly servers) connected via a network to cooper-
ate while evaluating queries. However, data structures used
for the server-based (centralized) solutions usually cannot
be used directly in the networked environment – there are
several issues (e.g. communication, navigation, reliability,
etc.) that must be addressed.

A suitable implementation paradigm for such structures
seems to be the P2P data network. The peers (comput-
ers participating in the network) offer the same function-
ality and the system follows the shared distributed logic
that facilitates an effective intra-system navigation. In gen-
eral, every peer of such system must provide its storage and
computational resources, must be able to contact any other
peer directly (provided its network identification is known),
and must maintain an internal structure that ensures correct
routing among the peers. For maximal scalability, there
are three fundamental requirements: data expands to new
peers gracefully; there is no master site to be accessed when
searching for objects; and the data maintenance primitives
never require immediate propagation of updates to multiple
peers.

2.2 Distributed Metric-search Structures

In general, similarity searching is computationally de-
manding because the quadratic or even cubic time complex-
ities of distance functions are not exceptional. Though there
are many techniques proposed in literature [8, 12, 4], only
the distributed versions can successfully deal with the scal-
ability problem. For a metric space, there are several tech-
niques [4, 10, 18, 5] able to deliver answers to similarity
queries in P2P environment. Basically, they all follow the



schema depicted by Figure 1. Every peer holds a partition

Figure 1. A typical schema of a P2P network

of the indexed data collection in its storage area. This data
can be stored either as a simple list and a sequential scan
applied during searching, or a sophisticated indexing tech-
nique can be employed. Besides, navigation knowledge is
to be stored at every peer and it takes control of the mech-
anism to forward the query between peers. Peers commu-
nicate via messages which are delivered by the underlying
computer network.

A user can issue a similarity query at an arbitrary peer
and the steps depicted in Figure 2 are performed to answer
the query. First, the peer consults its navigation knowledge
to get a list of peers responsible for data partitions that can
contain qualifying objects and forward the query to them.
Since the P2P network can change in time, the navigation
can be imprecise, so the query can be forwarded several
times until it reaches the respective peers (solid arrows).
At every peer with a promising partition (e.g., the query
intersects the partition), a local search procedure is exe-
cuted giving all the objects satisfying the query constraint
(peers with star mark). Finally, all the contacted peers re-
turn their partial results to the originating peer (dotted ar-
rows), where the final answer is merged and passed back
to the user. If we can miss some qualifying objects (i.e.

Figure 2. A typical query processing in P2P

sacrifice the precision), we can gain one or two orders of
magnitude [22] faster evaluation – the approximate similar-
ity search is used. The idea behind is quite simple. When
forwarding the query to other peers, we do not send the
query to all qualifying peers, but rather only to few most
promising ones. Also, the local index structure can apply
any form of local approximation strategy to further improve
the speed. Of course, the result returned to the user can be
incomplete.

2.3 Multi-layer System

As anticipated earlier, some applications require to solve
aggregate similarity queries over several metric spaces.
By combining multiple single-metric indexes, queries with
combinations of more metrics can be answered. Owing to
the requirement of retrieving objects relevant from several
aspects’ points of view, some kind of aggregation of partial
results is necessary.

Assume that a complex data object is simplified by ex-
traction techniques into a set of descriptors. Such a set
together with an identifier of the original object form a
metaobject. To compare similarity within respective de-
scriptors, a metric function is specified. For instance, we
would like to index images from which we can extract color
and shape descriptions. A metaobject for a given image is
composed of the two descriptors – one for the color and the
other for the shape – plus the link to the original image.

Naturally, to express the similarity of two metaobjects,
we must combine the similarities of their respective de-
scriptors. For this task, a user-supplied aggregation func-
tion is used. The aggregation function is required to be
monotonous. The result is not necessarily a metric (con-
sider a simple aggregation function f(x) = x + 1, which
is monotonous but the reflexivity property does not hold:
f(d(o, o)) = f(0) = 1), but it expresses the similarity in
the same way as metric functions – the higher the value of
distance the more dissimilar the objects are. Following our
example with colors and shapes, we supply a weighted sum
as the aggregation function, i.e., the weighted sum of the
color and shape descriptor distances. This means that we
perceive two objects similar if they are similar in both color
and shape and weights are used to emphasize either color
over shape or the other way round.

To evaluate similarity queries efficiently, we build a P2P
index for each of the descriptors. So, every single descrip-
tor of a particular metaobject is stored by the respective in-
dex along with an identifier of the metaobject. Moreover,
a special zero overlay is defined where complete metaob-
jects are stored. The zero overlay allows efficient retrieval
of metaobjects using their identifiers as a key – a classical
P2P distributed hash table can be used, because we only
need the “get-by-id” operation in this overlay. In principle,
these overlays are allowed to share the same infrastructure
of physical peers.

Figure 3 depicts a system with three overlays. The first
is built for color descriptors, the second indexes shapes,
and the third represents the zero overlay. A metaobject as-
signment to these overlays is also illustrated in the figure.
Observe that each overlay consists of multiple nodes and
their specifics are left up to a particular distributed index
structure used in the overlay. These nodes are maintained
by physical peers (illustrated by the dotted arrows). Each



Figure 3. Multi-metric overlay setting

peer usually manages one node from every overlay. Such a
mapping is completely transparent for overlay index struc-
tures and in general, it is automatically done by the load-
balancing mechanism.

2.4 The MUFIN System

Since MUFIN is a general purpose software product, it
can be applied to similarity search problems of a variety of
applications. In order to organize a specific data collection
(e.g., images, music, scientific experiments), a MUFFIN in-
stance needs the following parameters to be specified for
each of the data collection descriptors: (1) the metric space
– the domain of the particular descriptor and its distance
function; (2) index structure – the actual implementation of
a single-metric P2P system used for the overlay; (3) local
storage index – a wide variety of local metric index struc-
tures can be used to speed-up the processing within nodes
of the overlay. In addition to, a distributed hash table for the
zero overlay must be built.

3 Standard Threshold Algorithm

The threshold algorithm [9] (TA) was proposed for ob-
taining top-k results of several ranked lists. Even though
it was originally proposed for the scores (rank), it can be
inverted to suit the distance measures.

Let Top(k, q, f) be the top-k query for the query ob-
ject q and aggregate function f that we want to solve on a
database with m descriptors s1, · · · , sm. Note that each de-
scriptor forms a metric space with its own metric function
d1, · · · , dm. Then, the sorted access of descriptor si is a list
Si of all objects and their distances to the query object us-
ing only the descriptor si. The list is sorted by distances, the
lower the distance is the sooner the object appears in the list.
On the other hand, random access can retrieve the distance
between the query and a given object o for all the descrip-
tors and thus compute the overall distance of this object as

d(q, o) = f(d1(q, o), · · · , dm(q, o)). Then, the algorithm
works as follows:

1. Do sorted access in each of the m descriptors to get the
sorted lists.

2. In every iteration get the next object from each sorted
list o1 ∈ S1, · · · , om ∈ Sm having the respec-
tive descriptor’s distances δ1 = d1(q, o1), · · · , δm =
dm(q, om).

3. Use the random access to the other lists to compute
the overall distances of objects o1, · · · , om. Update the
list of the resulting k objects with the lowest overall
distances. Let dmax be the distance of the kth object,
i.e. the maximal distance of the result.

4. Compute the threshold value t = f(δ1, . . . , δm). Do
next iteration unless the result list has k objects and
dmax ≤ t.

The correctness of the stop condition in the fourth step
is proved in the original paper [9] and the modification for
metric distances is straightforward. Basically, the threshold
t in each iteration of the algorithm can only increase while
the maximal distance dmax only decreases after the result
list is filled with k objects.

4 Distributed Threshold Algorithm for
MUFIN

Running a standard TA in a distributed environment
would be very expensive, because a single object retrieval
is very inefficient. The batch approach is more suitable and
it works as follows (see Figure 4 for schematic overview).
The issuing peer breaks the query metaobject into its de-
scriptors and executes a nearest neighbor query for every
descriptor in the respective similarity-search overlay. They
are evaluated in parallel and a sorted list of the top-most
similar objects is returned for each descriptor. The objects
are then used to query the zero overlay to get distances for
missing descriptors. Next, an aggregation function is used
to compute the objects’ overall similarity. If there are not
enough objects with their overall similarity under a cer-
tain threshold value, the descriptor overlays are requested
to provide additional batch of objects until this condition is
met.

However, to get under the threshold can take a lot of time
for a huge data collections. For example, a top-50 query in
a dataset of 1.6 million images takes more than one minute
to evaluate even for a batch size of 1,000 objects. Moreover,
the interpretation of similarity itself is highly individual so
even the optimal results of the search may not satisfy user
needs. Therefore, it is more reasonable to give good-enough



Figure 4. Evaluation of a complex query

results quickly even if they are not precise. Thus, we alter
the stop condition and we end the processing prematurely
after ε iterations even if the threshold condition is not satis-
fied. The value ε allows us to tune the ratio of the response
time and the quality of the result.

Since the parameter ε is specific for each query, the sys-
tem can automatically adjust the value according to user
preferences or the actual system load. To help the system
tune the ε more precisely, we can compute actual quality
estimations during the iterations of the TA. Since the actual
threshold value t and the maximal result-list distance dmax

are updated in every iteration of TA, we can see them as
functions t(i) and dmax(i) of the TA iteration i. If we know
the final maximal distance dmax(final) of the precise re-
sult, we can express the quality of the result after i itera-
tions as a ratio dmax(i)/dmax(final). The best quality is
equal to 1 (precise result) while the higher values represent
worse quality. However, the final distance is unknown dur-
ing the evaluation and we can only use the threshold t(i) as
its lower bound (due to the TA stop condition). The qual-
ity is therefore upper-bounded by dmax(i)/t(i). Using the
first ε values of t(i) and dmax(i), we can improve the es-
timation of the quality by extrapolating the behavior of the
t(i) and dmax(i) functions. Then, their intersection can be
computed, and the function value at the intersection is an
estimation of the dmax(final) and can be used to compute
the estimated quality at iteration ε.

5 Experiments

For the experiments, we have used an instance of
MUFIN system loaded with 1.6 million images gathered
from the Flickr1 system. Generally, the images are out-
door and indoor taken photos, but there are also few images
of e-shops products (e.g. mobile phones, PDAs, CD play-
ers, etc.), cartoon characters or hand drawings and paint-
ings. Images are described by five descriptors defined in the
MPEG-7 standard [16] that give evidence about the visual
content of the images. The MPEG-7 standard defines also

1http://www.flickr.com/

the metric distance measures for each descriptor. The fol-
lowing table summarizes the used descriptors and the metric
functions.

MPEG-7 Feature Distance Weight
Scalable Color L1 metric 2
Color Structure L1 metric 3
Color Layout special 2
Edge Histogram special 4
Homogeneous Texture special 0.5

In order to be able to compare results of our distributed
threshold algorithm, we have fixed the aggregation func-
tion to be the weighted sum of all the five descriptors – the
respective weights form the last column of the table.

There were 77 peers in our MUFIN instance, each hold-
ing up to five logical nodes of any of the six overlays. These
peers were run on a physical infrastructure with 16 CPUs
(AMD Opteron 2.6MHz) and 64GB RAM in total. For the
nodes indexing metric overlays we have used the GHT* [5]
structure. Each node has used a local M-Tree [21] to ac-
tually store the descriptors. For the zero-overlay, we have
used the Skip-Graphs [3] distributed hash-table.

5.1 Standard Threshold Algorithm

Before we could start working on approximations, we
had to understand the standard TA well. Therefore the first
experiments were focused on describing the evolution of the
result set and the threshold value during the execution of
the algorithm. In these experiments, we logged the result
sets (i.e. objects in the result set and their distances from
query object) and threshold values computed in individual
iterations of TA.

Figure 5. Visualization of the standard TA

The evaluation of a top-50 query is visualized in the
graph in Figure 5 for iterations 1 to 100. All five descriptors
are combined using the aforementioned weighted-sum ag-
gregation. Note, that in each iteration only one step of the
standard TA is computed. Gray squares represent distances
of objects in the result set in that iterations. The upper curve



represents the maximal distance dmax(i) in iteration i, the
lower curve shows the respective threshold value t(i). Ob-
serve, that the dmax(i) curve first increases until the initial
50 unique objects are found. Since we have five sorted lists,
it can happen earlier than in the 50th iteration – iteration #33
in our case. After that, the curve can only decrease, because
the result can only be updated with closer objects. On the
other hand, the threshold can only grow. The intersection of
the two curves marks the stop condition of the standard TA.
The distance between the curves after each iteration corre-
sponds to the quality of current result set. Experiments con-
firmed that the quality increases very quickly in the first few
iterations while the rate slows down later. This observation
forms the basis of our approximation.

5.2 Distributed Threshold Algorithm for
MUFIN

In this section, we report on our experience with running
the distributed TA. We have executed top-50 queries com-
bining all five descriptors using the weighted sum aggrega-
tion function. To compensate for local irregularities every
experiment was repeated for 50 different randomly chosen
query objects and the average results are reported. We have
also evaluated each query using a sequential scan in order to
establish a baseline – precise answer to a top-k query. This
is then used for computing recalls and distance errors of the
approximate search.

In the first experiment, we have measured the perfor-
mance of our complex query evaluation with respect to the
number of sorted accesses used in one batch. The approx-
imation parameter ε is set to the size of the batch, thus al-
ways only one batch is executed. Two measures were ob-
served: the response times (Figure 6) and the number of
distance computations (Figure 7). To establish a baseline,
the following table summarizes both the measures for the
sequential scan, parallel sequential scan run on 16 machines
and a GHT* index using the weighted sum aggregation as a
single metric function. Note that the evaluation of one ob-
ject needs in fact five distance computations – one for each
MPEG-7 descriptor.

Approach Time Distances
Sequential scan 2 mins 8,000,000
Parallel seq. scan 7 secs 500,000
Single-metric GHT* 1.9 secs 244,770

Response time describes the average overall time of query
processing when ε sorted accesses are used. The time in-
cludes not only the sorted accesses run in parallel, but also
the time needed for random accesses and computations. We
can clearly see that the time is linearly proportional to the
batch size. This is an expected behavior, since the number
of objects that must be processed increases linearly with the

Figure 6. Response times using MUFIN

Figure 7. Distance computations in MUFIN

batch size. However, even the biggest batch size was eval-
uated faster than both the sequential scans. On the other
hand, a distributed index structure with fixed metric was
faster except for very small batch sizes, but it lacks the flex-
ibility of changing the aggregation function.

We have also measured the number of distance computa-
tions necessary for all the sorted and random accesses. This
measure is proportional to the CPU load, since the distance
computations are by far the most expensive operation. We
can see that small batch sizes require rather high number
of distance computations and as the batch size increases,
the costs are not increasing that fast. It is usually expen-
sive to find the first few most similar objects, because many
partitions must be visited even thought they do not contain
relevant objects. Increasing the number of searched objects
usually does not require visiting many additional partitions,
which is a well-known fact. However, the time saved on dis-
tance computations when the batch size increases is spent
on maintaining the bigger lists of objects (e.g. sorting) and
by the communication between the peers.

In the second group of experiments, we have focused
on the quality of the approximation. Recall (see Figure 8)
shows the percentage of objects of precise result that are
present in the result given by the approximation. The true



recall can only be computed once we know the exact re-
sult. If this value is unknown, which is the case while the
approximation is evaluating, we can only estimate the re-
call. The estimation based on the last computed threshold
value is called Upper bound in the graph. Using the ex-
trapolated value (using linear extrapolation of the threshold
and maximal distance curves), we can further refine a better
value denoted as Recall estimation (see Section 4 for de-
tails). The recall of 20% for small values of ε is very low
and such approximation would not be useful; however, re-
call of 70% and better, which is achieved for ε greater than
250, is quite sufficient, especially when the differences be-
tween distances of objects in exact and approximate result
are small.

Figure 8. Recall using MUFIN

Figure 9. Distance error using MUFIN

This is better shown in Figure 9 as the Average distance
error. This measure is computed as an average difference
of distances (from query object) of objects in exact and ap-
proximate result. The average distance error lower than
0.05, which is achieved for ε > 100, shows that the ap-
proximate and precise results are very similar. Thus, the
images found by the approximation do not differ much, at
least not according to the similarity expressed by the used
descriptors. Quality loss graph in Figure 10 represents the

Figure 10. Loss of quality using MUFIN

measure described in Section 4. Similarly to the recall, the
true quality loss can only be computed when the exact result
is known (final threshold value is the distance of the worst
object in the precise result). The graph also shows the esti-
mated values that were guessed by the extrapolation and the
upper bound that is known at the εth iteration. Quality loss
of the precise result is equal to 1, so values near to 1 show a
very good approximation result.

As we can see, all the other measures show that quality
increases faster for lower values of ε. This can be used for
optimization of query processing: On average, we can get
as good as 80% recall in about 4 seconds for top 50 queries
which is fairly acceptable for an user. To get better recall
the system would need considerably more time. Since the
notion of similarity is subjective in its own, this may not pay
off.

6 Conclusion

We have described a distributed multi-overlay metric-
based indexing network MUFIN. It can run any number
of metric-indexing overlays in a peer-to-peer context that
can be queried independently. On the peers, a local index-
ing structure such as M-Tree can be employed to further
enhance the searching capabilities. By utilizing the zero-
overlay, which is backed by a common distributed hash ta-
ble, it supports both the sorted and random access necessary
to fully utilize the threshold algorithm.

We have implemented our distributed variant of TA that
also supports tunable approximation. When the system re-
turns approximate result it should also give the user some
information about its quality. Then the user can decide
whether to run the query again with some other parameters
or if the results are satisfactory. However, the quality can-
not be computed without comparing the result to an exact
result which is not available. Thus, we are predicting the
threshold and maximal-distance values using extrapolation
to give better estimation.



We have conducted experiments using a MUFIN in-
stance loaded with 1.6 million images. Their visual content
was obtained by MPEG-7 extraction techniques as five de-
scriptors: three for colors, one for edges and one for tex-
ture, all of which are compared using a metric function
also defined in MPEG-7. Thus, we have confirmed that the
MUFIN instance can be employed to search the complex
visual information.

However, our experiments also revealed that the estima-
tion is still not very good as it is quite far from the true
values. Thus, we would like to research this issue further.
We would also like to explore the possibilities of re-ranking
the results once they are delivered to the user using user’s
feedback and automatic tuning of the approximation.

7 Acknowledgments

This work has been supported by EU IST FP6
project 045128 (SAPIR), the national research project
1ET100300419, and the Czech Grant Agency project
201/07/P240. Especially, we are grateful to our SAPIR part-
ners from ISTI-CNR, Pisa, who extracted the features for
the images used in experiments.

References

[1] S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu, and
T. Milo. Dynamic xml documents with distribution and
replication. In Proc. of the ACM SIGMOD’03, pages 527–
538, 2003.

[2] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space rank-
ing with effective early termination. In Proc. of the 24th
ACM SIGIR’01, pages 35–42, 2001.

[3] J. Aspnes and G. Shah. Skip graphs. In Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 384–
393, 2003.

[4] M. Batko, C. Gennaro, and P. Zezula. Similarity GRID for
searching in metric spaces. In DELOS Workshop: Digital
Library Architectures, Lecture Notes in Computer Science,
volume 3664/2005, pages 25–44, 2005.

[5] M. Batko, D. Novak, F. Falchi, and P. Zezula. On scalability
of the similarity search in the world of peers. In Proceedings
of INFOSCALE 2006, Hong Kong, May 30 – June 1, 2006,
pages 1–12, New York, NY, USA, 2006. ACM Press.

[6] B. Bustos and T. Skopal. Dynamic similarity search in multi-
metric spaces. In MIR ’06: Proceedings of the 8th ACM in-
ternational workshop on Multimedia information retrieval,
pages 137–146. ACM Press, 2006.

[7] S. Chaudhuri, L. Gravano, and M. Marian. Optimizing top-k
selection queries over multimedia repositories. IEEE Trans-
actions on Knowledge and Data Engineering, 16(8):992–
1009, 2004.

[8] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquı́n.
Searching in metric spaces. ACM Comput. Surv., 33(3):273–
321, 2001.

[9] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algo-
rithms for middleware. In Proc. of the 20th ACM PODS’01,
pages 102–113, 2001.

[10] F. Falchi, C. Gennaro, and P. Zezula. A content-addressable
network for similarity search in metric spaces. In Proceed-
ings of DBISP2P, pages 126–137, 2005.

[11] U. Gntzer, W. Kieling, and W.-T. Balke. Towards effi-
cient multi-feature queries in heterogeneous environments.
In ITCC ’01: Proc. of the Int. Conference on Information
Technology: Coding and Computing, pages 622–628. IEEE,
2001.

[12] G. R. Hjaltason and H. Samet. Index-driven similarity
search in metric spaces. ACM Trans. Database Syst.,
28(4):517–580, 2003.

[13] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the internet with pier.
In Proc. of VLDB’03, pages 321–332, 2003.

[14] X. Long and T. Suel. Optimized query execution in large
search engines with global page ordering. In Proc. of the
29th VLDB’03, pages 129–140, 2003.

[15] S. Michel, P. Triantafillou, and G. Weikum. KLEE: A frame-
work for distributed top-k query algorithms. In Proc. of the
31st VLDB’05, pages 637–648, 2005.

[16] MPEG-7. Multimedia content description interfaces. part 3:
Visual. ISO/IEC 15938-3:2002, 2002.

[17] S. Nepal and M. V. Ramakrishna. Query processing issues
in image(multimedia) databases. In ICDE ’99: Proceedings
of the 15th International Conference on Data Engineering,
page 22. IEEE, 1999.

[18] D. Novak and P. Zezula. M-Chord: A scalable distributed
similarity search structure. In Proc. of 1st INFOSCALEi’06,
pages 1–10, New York, NY, USA, 2006. ACM Press.

[19] M. Theobald, R. Schenkel, and G. Weikum. The topx db&ir
engine. In ACM SIGMOD’07 Conference, pages 1141–
1143, 2007.

[20] C. Yu, P. Sharma, W. Meng, and Y. Qin. Database se-
lection for processing k nearest neighbors queries in dis-
tributed environments. In JCDL ’01: Proceedings of the 1st
ACM/IEEE-CS joint conference on Digital libraries, pages
215–222, New York, NY, USA, 2001. ACM.

[21] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similar-
ity Search: The Metric Space Approach, volume 32 of Ad-
vances in Database Systems. Springer-Verlag, 2006.

[22] P. Zezula, P. Savino, G. Amato, and F. Rabitti. Approxi-
mate similarity retrieval with m-trees. The VLDB Journal,
7(4):275–293, 1998.


