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Abstract. There is a growing amount of human motion data captured
as a continuous 3D skeleton sequence without any information about its
semantic partitioning. To make such unsegmented and unlabeled data
efficiently accessible, we propose to transform them into a text-like rep-
resentation and employ well-known text retrieval models. Specifically,
we partition each motion synthetically into a sequence of short segments
and quantize the segments into motion words, i.e. compact features with
similar characteristics as words in text documents. We introduce several
quantization techniques for building motion-word vocabularies and pro-
pose application-independent criteria for assessing the vocabulary qual-
ity. We verify these criteria on two real-life application scenarios.

Keywords: 3D skeleton sequence · motion word · motion vocabulary ·
quantization · border problem · text-based processing

1 Introduction

In recent years, we have witnessed a rapid development of motion capture devices
and 3D pose-estimation methods [2] that enable recording human movements as
a sequence of poses. Each pose keeps the 3D coordinates of important skele-
ton joints in a specific time moment. Effective and efficient processing of such
spatio-temporal data is very desirable in many application domains, ranging
from computer animation, through sports and medicine, to security [9, 7, 5].

To illustrate the range of possible tasks over motion data, let us assume that
we have the 3D skeleton data from a figure skating competition. Existing research
mainly focuses on action recognition [23], i.e. categorizing the figure performed
in a given, manually selected motion segment. This is typically solved using con-
volutional [1, 17] or recurrent [20, 22, 10] neural-network classifiers. However, this
approach is not applicable to other situations where motion data are captured as
long continuous sequences without explicit knowledge of semantic partitioning.
In such cases, other techniques need to be applied, e.g., subsequence search to
find all competitors who performed the triple Axel jump, or similarity joins to
identify different performances of the same choreography, similar choreographies,
or the most common figures. These techniques require identifying query-relevant
subsequences within the continuous motion data. To allow efficient evaluation of
such queries, the data need to be automatically segmented and indexed.
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Fig. 1. Representing motions by motion words: both data and queries are transformed
into MW sequences and efficiently organized and processed by text-based approaches.

Since a universal semantic segmentation is hardly achievable, we suggest to
partition each motion sequence synthetically into short fixed-size segments whose
length is smaller than the expected size of future queries. In this way, we trans-
form the input motion into an ordered sequence of segments, structurally similar
to a text document. To complete the analogy, we quantize the segments into com-
pact representations, denoted as motion words (MWs), having similar properties
as words in text documents. Individual MWs deal with the spatial variability of
the short segments, whereas the temporal variability of longer motions is cap-
tured by the MW order and quantified by mature text-retrieval models [12]. We
believe that such universal text-based representation is applicable for a wide
range of applications that need to process continuous motion data efficiently, as
illustrated in Fig. 1.

In this paper, we mainly focus on effective quantization of the motion seg-
ments to build a vocabulary of motion words. The most desirable MW property is
that two MWs match each other if their corresponding segments exhibit similar
movement characteristics, and do not match if the segments are dissimilar. This
is challenging with the quantization approach, since it is in general not possible
to divide a given space in such way that all pairs of similar objects are in the
same partition. Some pairs of similar segments thus get separated by partition
borders and become non-matching, which we denote as the border problem. We
answer this challenge by designing two MW construction techniques that reduce
the border problem but still enable efficient organization using text retrieval
techniques. Furthermore, we recommend generic (application-independent) cri-
teria for selection of a suitable vocabulary for specific application needs, and
verify the usability of such criteria on two real-life applications.

2 Related Work and Our Contributions

Most existing works that process continuous 3D skeleton sequences in an unsu-
pervised way focus on subsequence search [18], unsupervised segmentation [8],
or anticipating future actions based on the past-to-current data [4]. In [18], the
continuous sequences are synthetically partitioned into a lot of overlapping and
variable-size segments that are represented by 4, 096D deep features. However,
indexing a large number of such very high-dimensional features is costly. To move
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towards more efficient processing, the approaches in [3, 11] quantize the segment
features using a single k-means clustering. However, with such simple quantiza-
tion the border problem appears frequently, which decreases the effectiveness of
applications with an increasing number of clusters (i.e. the vocabulary size).

In our research, we also take inspiration from image processing where high-
dimensional image features are quantized into visual words. There are two lines
of research that are important to us: fundamental quantization techniques, and
reducing the border problem. The image quantization strategies have evolved
from basic k-means clustering used in [21], through cluster hierarchies [14], ap-
proximate k-means [16], to recent deep neural-network approaches [24]. The
influence of the border problem can be reduced using a weighted combination
of the nearest visual words for each feature [16], or by a consensus voting of
multiple independent vocabularies [6].

Contributions of This Paper

We propose an effective quantization of unlabeled 3D skeleton data into se-
quences of motion words that can be efficiently managed by text-retrieval tech-
niques. In contrast to previous works, we give a particular attention to the border
problem. Specifically,

– we systematically analyze the process of MW vocabulary construction and
discuss possible solutions of the border problem (Section 3);

– we propose application-independent criteria that do not require labeled data
for selecting a suitable MW vocabulary for a given task (Section 3.3);

– we implement three vocabulary construction techniques that differ in dealing
with the border problem, and evaluate their quality (Section 4);

– we verify the suitability of the proposed criteria by evaluating the best-
ranked vocabularies in the context of two real-world applications (Section 5).

3 MW Vocabulary Construction

The motion-word (MW) approach assumes that the continuous 3D skeleton data
are cut into short, possibly overlapping segments which are consequently trans-
formed into the motion words. The segment and overlap lengths are important
parameters of the whole system and have also been studied in our experiments,
however their thorough analysis is out of the scope of this paper. Therefore,
we assume that a suitable segmentation is available, and focus solely on trans-
forming the segment space into the space of motion words, denoted as the MW
vocabulary.

The MW vocabulary consists of a finite set of motion words and a Boolean-
valued MW matching function that determines whether two MWs are consid-
ered equal: matchMW : MW ×MW → {0, 1}. The Boolean matching of words
is a standard text-processing primitive required by most text retrieval tech-
niques [12]. The transformation from segments to MWs has to be similarity-
preserving : with a high probability, similar segment pairs need to be mapped to
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Fig. 2. Comparison of the hard, soft, and multi-overlay quantization of segments.

matching MWs and dissimilar segment pairs to non-matching MWs. Noticeably,
the vocabulary construction can be investigated independently of a particular
application, since it only considers the distribution of segments in the segment
space. We propose to build the MW vocabulary using quantization of the segment
space, which can be seen as analogous to the word stemming in text processing.

In the following, we first review the standard quantization approach that
leads to a basic MW model and discuss its limitations, namely the border prob-
lem. Next, we introduce a generalized MW model with two techniques for reduc-
ing the border problem. Lastly, we present the evaluation methodology that we
propose for comparing the quality of different vocabularies.

3.1 Basic MW Model

Basic data quantization is usually performed by the k-means algorithm that
divides the segment space into non-overlapping partitions [3, 11, 21]. Each parti-
tion can be assigned a one-dimensional identifier, which constitutes the motion
word. Each motion segment is associated with exactly one MW, which we denote
as the hard quantization (Fig. 2a). To compare two hard MWs, a trivial MW
matching function is defined: it returns 1 for identical words and 0 otherwise.

Using this approach, the 3D skeleton data are transformed into a sequence of
scalar MWs to be readily processed by the standard text-retrieval tools. However,
the hard quantization makes it difficult to preserve the similarity between the
segments. Unless the input data are inherently well-clustered, which is not likely
in the high-dimensional segment space, it is not possible to avoid the border
problem, i.e. the situations when two similar segments get assigned to different
MWs (s1 and s2 in Fig. 2a). Moreover, finding a good clustering is computation-
ally expensive. Therefore, approximate or sampling methods are often used for
large data, which makes the border problem even more pronounced.

3.2 Generalized MW Model

We believe that the border problem can be reduced significantly if we allow
a given segment to be associated with several partitions of the input space.
Therefore, we define the generalized MW as a collection of MW elements, where
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each element corresponds to a single partition of the input space. In contrast
to the basic model where individual MWs are atomic and mutually exclusive,
the generalized MWs may share some MW elements. This allows us to define a
more fine-grained MW matching function that better approximates the original
similarity between the motion segments.

As illustrated in Fig. 2b and 2c, we adopt the following two orthogonal prin-
ciples of selecting the MW elements for a given segment.

– Soft quantization. Recall again that the border problem occurs when two
similar segments are separated into different partitions. Intuitively, at least
one of these segments has to lie near the partition border. Segment s1 in
Figure 2a lies outside the partition D but is close to its borders, so there is a
good chance that some segments similar to s1 are in D. Therefore, it could
be helpful to associate s1 also with D. Following this idea, we define the
soft MW for s1 as an ordered set of one or more MW elements, where the
first base element identifies the partition containing s1 and the remaining
expanded elements refer to the partitions that are sufficiently close to s1
(see Fig. 2b for illustration). A naive MW matching function could return 1
whenever the intersection of two soft MWs is non-empty, however this tends
to match even segments that are not so close in the segment space (s1 and
s3 in Fig. 2b). Therefore, our soft-base matching function returns 1 only if
the intersection contains at least one base element.

– Multi-overlay quantization: So far, we have assumed that the MW elements
are taken from a single partitioning of the segment space. However, it is
also possible to employ several independent partitioning overlays obtained
by different methods. A single overlay may incorrectly separate a pair of
similar segments, but it is less probable that the same pair will be separated
by the other independent overlays. We define the multi-overlay MW as an n-
tuple of MW elements that are assigned to a given segment in the individual
overlays. To decide whether two MWs match, the consensus of m out of n
MW elements is used. The matching function returns 1 if the multi-overlay
MWs agree on at least m positions of the respective n-tuples (see Fig. 2c).

By allowing the MWs to be compound, we improve the quantization quality
but create new challenges regarding indexability. The generalized MWs are no
longer scalar and cannot be simply treated the same way as text words. However,
existing text retrieval tools can be adjusted to index both the soft and multi-
overlay MWs, as briefly discussed in Section 4.4.

3.3 Evaluation Methodology

For evaluating MW vocabularies, we need to consider two different aspects: (i)
vocabulary quality – measured by the application-independent ability to perform
a similarity-preserving transformation from the segment space to the MW space,
and (ii) vocabulary usefulness – measured by effectiveness of the application em-
ploying the specific vocabulary. Our objective is to show that both vocabulary
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quality and vocabulary usefulness are related, so we can choose a suitable vo-
cabulary without evaluating it within the real application, i.e. not needing the
application ground truth (GT).

In the following, we introduce the dataset used for both types of evaluation,
and describe the application-independent vocabulary quality measures that are
examined in Section 4. The vocabulary usefulness is discussed in Section 5.

Dataset. We adopt the HDM05 dataset [13] of 3D skeleton sequences, which
consists of 2, 345 labeled actions categorized in 130 classes. The actions capture
exercising and daily movement activities with the sampling frequency of 120 Hz
and track 31 skeleton joints. The action length ranges from 13 frames (108 ms)
to 900 frames (7.5 s). We use this dataset to evaluate the MW usefulness in two
applications: a kNN classification of actions, and a similar action search. These
applications do not require complex retrieval algorithms and allow us to clearly
show the effect of MWs on application effectiveness.

Both the vocabulary construction and the application-independent quality
assessment are designed for completely unlabeled segment data, which we extract
from the HDM05 dataset as follows. We divide each action synthetically into a
sequence of overlapping segments. As recommended in [3], we fix the segment
length to 80 frames and the segment overlap to 64 frames, so the segments are
shifted by 16 frames. This generates 28 k segments in total, with 12 segments
per action on average. We also down-sample the segments to 12 frames per
second. The similarity of any two segments is determined by the Dynamic Time
Warping (DTW), where the pose distance inside DTW is computed as the sum
of Euclidean distances between the 3D coordinates of the corresponding joints.

Estimating GT for unlabeled segments. The similarity-preserving prop-
erty states that similar segments should be mapped to matching MWs, whereas
dissimilar segments to non-matching MWs. To be able to check this property
for a given vocabulary, we need a ground truth (GT) of similar and dissimi-
lar segment pairs. Since the segments have no semantic labels, we can only use
pairwise distances to estimate the GT. Using the distance distribution of all seg-
ments from our dataset, we determine two threshold distances that divide the
segment pairs into similar pairs, dissimilar pairs, and a grey zone. In particular,
the 0.5th percentile distance becomes the similarity threshold Tsim and all seg-
ment pairs with the mutual distance lower than Tsim are the GT’s similar pairs.
The 40th percentile becomes the dissimilarity threshold Tdissim which defines
the dissimilar pairs. Both the thresholds are set tightly to eliminate the chance
that semantically unrelated segments are considered similar and vice versa. The
segment pairs with mutual distance between Tsim and Tdissim form the grey
zone and are ignored in the vocabulary quality evaluations.

Vocabulary quality measures. To assess how well a given MW vocabulary
manages to match a given segment with similar segments, we use standard IR
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measures of precision (P ) and recall (R) computed over the above-described GT
of similar and dissimilar segment pairs: P = tp

tp+fp and R = tp
tp+fn , where the

true positives (tp) are pairs of similar segments mapped to matching MWs, false
positives (fp) are dissimilar segments with matching MWs, etc. To quantify the
trade-off between P and R, we employ the Fβ score = (1 +β2) · P ·R

(β2·R)+P , where

the positive real β is used to adjust the importance of the precision and recall
according to the target application preferences.

As already mentioned, we test our vocabularies in context of two applications
with different needs. The kNN classification requires high precision of retrieved
actions for correct decision, but some positives can be missed. On the other
hand, action search typically requires high recall. With these two applications in
mind, we select the following two F scores for our experiments: F0.25 score that
emphasizes precision, as required by the classification task, and F1 score that is
the harmonic mean of both precision and recall and complies to the needs of a
search-oriented application.

4 Implementation and Evaluation

To create a vocabulary, we use a Voronoi partitioning of the segment space. It
assumes a set of sites (pivots) is selected beforehand by a particular selection
algorithm. The Voronoi cell of pivot p is formed by all segments closer to p than
to the other pivots. The pivots’ IDs become the motion words or MW elements.
Regarding the pivot selection, we must keep in mind that the segment space
may not be the Euclidean space, which is our case with DTW that brakes the
triangle inequality. So a particular pivot selection algorithm must respect that
an artificial data item (e.g., a mean vector) cannot be computed.

In the following, we introduce algorithms implementing the aforementioned
MW vocabulary construction principles, and show how the quality measures
introduced in Section 3.3 can be used to tune the parameters of the algorithms.

4.1 Hard Quantization

Firstly, we analyze the viability of three pivot selection techniques: the k-medoids,
the hierarchical k-medoids, and a random selection. We also study the influence
of the number of pivots, which determines the cardinality of the vocabulary.

Implementation. The k-medoids algorithm is a variation of the k-means
clustering that is mostly used for quantization. It works in iterations, gradually
moving from a random set of pivots to more optimal ones. With the k-medoids,
the pivots must be selected from existing motion segments. The optimization
criterion is to minimize the sum of distances to other segments within the cluster.
The algorithm does not guarantee to find the global optimum and is very costly
since the distances of all pivot-object pairs need to be computed in each iteration.
The hierarchical k-medoids (hk-medoids) seeks the pivots by recursive application
of k-medoids, which allows using much smaller values of k in each iteration to
create a vocabulary of the same size. The pivots for the next level are always
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Fig. 3. Vocabulary quality in relation to vocabulary method and varying vocabulary
size: (a) k-medoids, (b) hk-medoids and (c) random pivot selection.

selected from the parental cell, so the data locality is preserved. We use a constant
number of pivots per level and similar pivot numbers across levels. For example,
the set-up 39|38 denotes 39 pivots in the root level and 38 pivots in the second
level, which creates 1,482 cells. Finally, we also try a random selection of pivots
where a pivot too close to another one is omitted. This is the most efficient
approach which is known to perform well in permutation-based indexes [15].

Experimental evaluation. Using the three algorithms, we create vocabu-
laries of sizes ranging from 100 up to 3,000 MWs, and compare their quality.
The results presented in Fig. 3 are averages over five runs. In general, the higher
the precision is the more pivots are used, and vice-versa for the recall. A good
vocabulary is prepared by techniques choosing the pivots in correspondence to
the distribution of segments, thus the random selection should be rejected, since
its precision is low. Focusing on the vocabulary size, the F0.25 score that favors
precision guides us to pick the k-medoids with 350 or 500 pivots and the hk-
medoids of the 32|31 breakdown. In the F1 score, the optimum is 100 or 350
pivots by k-medoids, and 19|18 or 10|10|10 by hk-medoids.

The k-medoids with 350 pivots has been identified as the most promising hard
quantization method, therefore we use it in the following trials exclusively. We
also experimented with the best settings of the other algorithms and obtained
analogous trends, so we do not include them.

4.2 Soft Quantization

Secondly, it is vital for the soft quantization to assign additional MW elements
of neighboring cells only to the segments that are close to the cell borders. We
limit such closeness by the distance D and bound the number of MW elements
to the maximum number K. We study the influence of D and K on the quality
measures, which should show that the border problem is reduced.

Implementation. The distance of a segment s located in the Voronoi cell of

pivot p1 to the borderline of the cell of p2 is estimated as |DTW (p1,s)−DTW (p2,s)|
2 .

We gradually check all pivots pi and expand the segment’s MW with the MW el-
ement pi until the estimated distance exceeds D. The value of D must be smaller
than the similarity threshold Tsim discussed in Section 3.3, since it identifies ob-
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jects that should be assigned the same MW. There can be many neighboring
cells, so we constrain the MW elements to the K closest ones.

Experimental evaluation. We vary the values of D from 10 (1/8 · Tsim)
to 80 (Tsim), and K from 2 to 6. The relevant results are shown in Fig. 4a.
Increasing K for a small D (D10,K2–6) leads to improved recall and nearly
constant precision. On the other hand, multiplying D (D10–80,K6) produces
extensive MWs, which reduces the border problem (recall is boosted), but it
negatively effects precision. For the classification task (F0.25 score), D10,K6 and
D20,K6 are the best, while D40,K6 is the optimum for the search (F1 score).

4.3 Multi-overlay Quantization

Thirdly, independent sets of pivots are likely to provide different Voronoi parti-
tionings, thus increasing a chance of similar segments to share the same cell. We
create up to 5 overlays and vary the number of overlays required to agree.

Implementation. Since the k-medoids algorithm provides a locally optimal
solution, we ran it five times to obtain different sets of 350 pivots for the multi-
overlay quantization. Noticeably, the quality of hard vocabularies created from
individual sets of pivots differs up to 5 % in both the F scores.

Experimental evaluation. In Fig. 4b, we present the results for all com-
binations of the five overlays, where the notation m/n refers to the m-out-of-
n matching function. The combination 1/1 corresponds to hard quantization.
When we fix m to 1 and add more overlays, the border problem is reduced, as
witnessed by a major improvement of recall and only a marginal drop in preci-
sion. Similar trends can be observed also for higher values of m, but the actual
values of recall get lower when we require more overlays to agree. The most re-
strictive combination 5/5 requires all overlays to meet and performs similarly to
the hard quantization with more than 3,000 pivots (see Fig. 3a). The best F0.25

score is for the 2/5 setup and the best F1 score is for the 1/5 setting.

4.4 Discussion

By thorough experimentation, we have observed that the k-medoids clustering
is the best hard quantization method but its quality can still be significantly
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improved by the soft and multi-overlay principles. The suppression of the bor-
der problem is mainly attributed to the increased number of correctly matched
segment pairs (true positives) by both these principles. Although some new false
positives are introduced, they decrease the overall precision only marginally.

Since the k-medoids clustering has high computation complexity, we have
also considered cheaper techniques, i.e. the random clustering, with the soft
and multi-overlay approach. However, the experimental results were not much
competitive, so the k-medoids still remains a reasonable choice for quantization.

Our vocabulary construction techniques are universal, but the created vocab-
ulary is clearly data-dependent. Since our evaluation data are relatively small
(28,104 segments), the optimal vocabulary size is 350 MWs for the hard quan-
tization. For larger and more diverse data, we expect the quality measures to
recommend a larger vocabulary.

Finally, a successful application also requires fast access to the data, which
calls for indexes. The hard vocabulary can be directly organized in an inverted
file. The soft-assigned vocabulary just expands the query, so the inverted file is
sought multiple times (proportional to the number of MW elements in the query).
The multi-overlay vocabulary can be managed in separate search indexes (one
per overlay) and the query results merged to compute the m-out-of-n matching.

5 Motion Words in Applications

In this section, we experimentally verify that: (i) the MW representation pre-
serves important characteristics of complex 3D skeleton data and causes no drop
in application effectiveness (Section 5.2), and (ii) the vocabulary quality mea-
sures well approximate the usefulness of different vocabularies in applications.
Both these aspects are evaluated in context of two applications: the action clas-
sification that aims at recognizing the correct class of a given action using a kNN
classifier, and the action search where the goal is to retrieve all actions relevant
to a query, i.e. the actions belonging to the same class as the query.

5.1 Evaluation Methodology of Classification/Search Applications

The input for both classification and search applications is the dataset of 2, 345
synthetically-segmented actions discussed in Section 3.3. On average, each ac-
tion is transformed into a sequence of 12 MWs. To compare two MW sequences,
we again adopt the DTW sequence alignment function. Realize that the MW
matching function inside DTW deals with the spatial variability of short seg-
ments, whereas DTW considers the temporal dimension of the whole actions.

Both applications are evaluated on the basis of k-nearest neighbor (kNN)
queries. We use the standard leave-one-out approach to evaluate 2, 345 kNN
queries in a sequential way by computing the distance between the specific query
action and each of the remaining dataset actions. For the classification task, we
fix k to 4 and apply a 4NN classifier (similar to the classifier proposed in [19]).
We measure the application effectiveness as the average classification accuracy
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over all 2, 345 queries. For the search task, the value of k is adjusted for each
query individually based on the number of available actions belonging to the
same class as the query action. Such adaptive value of k allows us to focus on
recall as well as precision. The effectiveness of the search application is then
determined as the average recall over all the queries. Note that the recall is
always the same as the precision in the search task with the adaptive value of k.

5.2 Usefulness and Efficiency of MWs

We quantify the usefulness of the MW concept by evaluating application effec-
tiveness with different vocabularies and comparing it to the baseline case that
uses no quantization (i.e. the action segments are represented by original 3D
skeleton data). The most interesting results are summarized in Table 1.

For classification, we observe that the baseline case achieves the effectiveness
of 77.70 %. Worse results have been expected for any MW quantization due to the
dimensionality reduction of the original segment data. A standard hard quanti-
zation – the single-level k-medoids – indeed achieves the worst result (74.97 %).
Surprisingly, the soft-assignment D10,K6 vocabulary reaches basically the same
effectiveness (77.61 %) as the baseline, and the 2/5 multi-overlay quantization
is actually better (80.30 %). Thus, the best MW vocabulary not only preserves
important motion characteristics but also aggregates many tiny variations in
joint positions that confuse DTW on raw 3D skeleton data (the baseline case).

A similar trend can be observed on the search application where the hard
quantization has the worst result too. As the recall is very important for the
search task, the 1/5 multi-overlay vocabulary is now the best candidate that also
outperforms the baseline case. Compared to the state-of-the art approaches [3,
11] that employ the hard quantization, the proposed generalized MWs reach
much better effectiveness, e.g., about 25 % higher recall in the search application
(increase from 44.21 % to 55.62 %).

From the performance point of view, it takes almost 1.5 hours to evaluate
all the 2, 345 kNN queries with the baseline segment representation. Using any
of the MW representations, the evaluation finishes in 30 seconds, which is an
improvement by two orders of magnitude.

5.3 Concordance of Vocabulary Quality and Usefulness

Remember that in Section 3.3 we proposed to quantify the vocabulary quality
by the Fβ score, where the parameter β is set according to the precision/recall
preference of the target application. For classification and search, we proposed
to use F0.25 and F1, respectively. Here, we verify whether such Fβ scores cor-
respond to the actual usefulness of individual vocabularies. To do so, we apply
the vocabularies discussed in Sections 4.1–4.3 to our real-life applications and
measure the application effectiveness.

The results in Fig. 5 confirm that the estimated quality of vocabularies (red
line in Fig. 5a and yellow line in Fig. 5b) shares the same trend with the actual
vocabulary usefulness measured by the real classification (grey dashed line) and
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Table 1. Effectiveness of classification and search applications with different segment
representations (MW representations use the best-ranked vocabularies with 350 pivots).

segments MW segment representations
as raw 3D hard soft assignment multi overlays

application skel. data quant. D10,K6 D20,K6 1/4 1/5 2/5

classification 77.70 % 74.97 % 77.61 % 76.42 % 76.33 % 75.69 % 80.30%
search 53.84 % 44.21 % 47.92 % 50.26 % 54.97 % 55.62% 50.29 %
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Fig. 5. Comparison of Fβ score and actual effectiveness (accuracy, recall) for selected
vocabularies in the (a) classification and (b) search applications.

search (grey solid line) effectiveness. Therefore, the Fβ score can be used for
selecting the most suitable vocabulary for a given application, instead of a tedious
and costly experimenting with all candidate vocabularies within the application.

6 Conclusions

This paper studies the possibility of transforming unlabeled 3D skeleton data
into text-like representations that allow efficient processing. In particular, we
focused on quantizing short synthetic motion segments into compact, similarity-
preserving motion words (MWs). In contrast to existing works on motion quan-
tization, we recognize the border problem and try to minimize it using the
soft-assignment and multi-overlay partitioning principles. We also proposed a
methodology for application-independent evaluation of the MW vocabulary qual-
ity. The experimental results on two real-world motion processing tasks confirm
that we are able to construct MW vocabularies which preserve or even slightly
increase application effectiveness and significantly improve processing efficiency.

We believe that these achievements open new possibilities for efficient anal-
ysis of 3D motion data. In the future, we will study more thoroughly the prepa-
ration and preprocessing of the short segments, and develop scalable indexing
and search algorithms for the MW data. In particular, we plan to enrich the
segmentation process to include several segment sizes, which should help us deal
with possible speed variability of semantically related motions. Before the actual
quantization, the segments can be replaced by characteristic features extracted,
e.g., by state-of-the-art neural networks. To index and search MW sequences,
we intend to employ the shingling technique and adapted inverted files.
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