
Query Language for Complex Similarity Queries

Petra Budikova, Michal Batko, and Pavel Zezula

Masaryk University, Brno, Czech Republic

Abstract. For complex data types such as multimedia, traditional data
management methods are no longer suitable. Instead of attribute match-
ing approaches, access methods based on object similarity are becoming
popular in many applications. Nowadays, efficient methods for similarity
search are already available, but using them to build an actual search
system still requires specialists that tune the methods and build the
system. In this paper, we propose a novel query language that general-
izes existing solutions and allows to formulate content-based queries in a
flexible way, supporting various advanced query operations such as simi-
larity joins, reverse nearest neighbor queries, or distinct kNN queries, as
well as multi-object and multi-modal queries. The language is primarily
designed to be used with the MESSIF – a framework for content-based
searching – but can be employed by other retrieval systems as well.

1 Introduction

With the emergence of complex data types such as multimedia, traditional re-
trieval methods based on attribute matching are no longer satisfactory. There-
fore, a new approach to searching has been proposed, exploiting the concept of
similarity [17]. State-of-the-art search systems already support quite complex
similarity queries with a number of features that can be adjusted according to
individual user’s preferences. To communicate with such a system, it is either
possible to employ low-level programming tools, or a higher-level communication
interface that insulates users from the implementation details. As the low-level
tools can only be used by a limited number of specialists, the high-level inter-
face becomes a necessity when common users shall be allowed to issue advanced
queries or adjust the parameters of the retrieval process. In this paper, we are
proposing such high-level interface in a form of a structured query language.

The motivation to study query languages arose from the development of our
Metric Similarity Search Implementation Framework (MESSIF) [4]. The frame-
work offers a wide spectrum of retrieval algorithms and is used to support several
multimedia search applications, such as large-scale image search, automatic im-
age annotation, or gait recognition. To improve the usability of our systems,
we decided to offer a query language that would allow advanced users to ex-
press their preferences without having to deal with the technical details. After a
thorough study of existing solutions we came to a conclusion that none of them
covers all our specific needs. Therefore, we decided to propose a new language
based on and extending the existing ones. At the same time, it was our desire to
design the language in such a way that it could be also used by other systems.

2 Petra Budikova, Michal Batko, and Pavel Zezula

The paper is further organized as follows. First, we review the related work in
Section 2. Then we briefly summarize the requirements for a multimedia query
language and present the fundamental design decisions that determined the over-
all structure of the language in Section 3. Section 4 introduces the theoretical
model of the language, the syntax and semantics is defined in Section 5. Section 6
presents several real-world queries over multimedia data, formulated in our lan-
guage. An extended version of this paper with richer related work, throughout
analysis of requirements, and more examples is available as a technical report [5].

2 Related Work

The problem of defining a formal apparatus for similarity queries has been recog-
nized and studied by the data processing community for more than two decades,
with various research groups working on different aspects of the problem. Some
of these studies focus on the underlying algebra, others deal with the query
language syntax. Query languages can be further classified as SQL-based, XML-
based, and others with a less common syntax. Since the algebraic operations
used to express the queries are not meant to be used by users, we focus our brief
survey on the query languages.

The majority of early proposals for practical query languages are based on
SQL or its object-oriented alternative, OQL. Paper [10] describes MOQL, a
multimedia query language based on OQL which supports spatial, temporal,
and containment predicates for searching in image or video. However, similarity-
based searching is unsupported in MOQL. In [8], a more flexible similarity op-
erator for nearest neighbors is provided but its similarity measure cannot be
chosen. Commercial products, such as Oracle or IBM DB2, follow the strategy
outlined in the SQL/MM standard [11], which recommends to incorporate the
similarity-based retrieval into SQL via user-defined data types and functions.

Much more mature extensions of relational DBMS and SQL are presented
in [3, 9]. The concept of [3] enables to integrate similarity queries into SQL, using
new data types with associated similarity measures and extended functionality
of the select command. The authors also describe the processing of such ex-
tended SQL and discuss optimization issues. Even though the proposed SQL
extension is less flexible than we need, the presented concept is sound and elab-
orate. The study [9] only deals with image retrieval but presents an extension of
the PostgreSQL database management system that also allows to define feature
extractors, create access methods and query objects by similarity. This solution
is less complex than the previous one but, on the other hand, it allows users to
adjust the weights of individual features for the evaluation of similarity.

Recently, we could also witness interest in XML-based languages for sim-
ilarity searching. In particular, the MPEG committee has initiated a call for
proposal for MPEG Query Format (MPQF). The objective is to enable easier
and interoperable access to multimedia data across search engines and reposito-
ries [7]. The format supports various query types (by example, by keywords, etc.),
spacio-temporal queries and queries based on user preferences. From among var-

Query Language for Complex Similarity Queries 3

ious proposals we may highlight [16] which presents an MPEG-7 query language
that also allows to query ontologies described in OWL syntax.

Last of all, let us mention a few efforts to create easy-to-use query tools that
are not based on either XML or SQL. The authors of [14] propose to issue queries
via filling table skeletons and issuing weights for individual clauses, with the
complex queries being realized by specifying a (visual) condition tree. Another
approach [13] used the well-established Lucene query syntax.

3 Query Language Design

We strive to create a query language that can be used to define advanced queries
over multimedia or other complex data types. The language should be general
and extensible, so it can be employed with various search systems. To achieve
this, we first analyzed the desired functionality of the language. Subsequently,
fundamental design decisions concerning the language architecture were taken.

3.1 Analysis of Requirements

As detailed in [5], three sources were studied intensively to collect requirements
for a multimedia query language: (1) the current trends in multimedia infor-
mation retrieval, which reveal advanced features that should be supported by
the language; (2) existing query languages and their philosophies, so that we
can profit on previous work; and (3) the MESSIF framework architecture. The
following issues were identified as the most important:

– support for a wide range of query types: in addition to various search al-
gorithms, such as nearest neighbor search, range queries, similarity joins,
sub-sequence matching, etc., single- and multi-object similarity queries as
well as attribute-based (relational) and spacio-temporal queries need to be
taken into consideration;

– support for multi-modal searching: multiple information sources and com-
plex queries, combining attribute-based and similarity-based search, are a
fundamental part of modern information retrieval;

– adjustability of searching: users need means of expressing their preferences in
various parameter settings (e.g. precise vs. approximate search, user-defined
distance functions, or distance aggregation functions);

– support for query optimization: optimizations are vital for efficient evalua-
tion of complex queries in large-scale applications.

3.2 Language Fundamentals

The desired functionality of the new language comprehends the support for stan-
dard attribute-based searching which, while not being fully sufficient anymore,
still remains one of the basic methods of data retrieval. A natural approach
to creating a more powerful language therefore lies in extending some of the

4 Petra Budikova, Michal Batko, and Pavel Zezula

existing, well-established tools for query formulation, provided that the added
functionality can be nested into it. Two advantages are gained this way: only
the extended functionality needs to be defined and implemented, and the users
are not forced to learn a new syntax and semantics.

The two most frequently used formalisms for attribute data querying are the
relational data model with the SQL language, and the XML-based data modeling
and retrieval. As we could observe in the related work, both these solutions
have already been employed for multimedia searching, but they differ in their
suitability for various use cases. The XML-based languages are well-suited for
inter-system communication while the SQL language is more user-friendly since
its query structure imitates English sentences. In addition, SQL is backed by a
strong theoretical background of relational algebra, which is not in conflict with
content-based data retrieval. Therefore, we decided to base our approach on the
SQL language, similar to existing proposals [3, 9].

By employing the standard SQL [15] we readily gain a very complex set
of functions for attribute-based retrieval but no support for similarity-based
searching. Since we aim at providing a wide and extensible selection of similarity
queries, it is also not possible to employ any of the existing extensions to SQL,
which focus only on a few most common query operations. Therefore, we created
a new enrichment of both the relational data model and the SQL syntax so that
it can encompass the general content-based retrieval as discussed above.

The reasons for introducing new language primitives instead of utilizing user-
defined functions are discussed in [3]. Basically, treating the content-based oper-
ations as “first-class citizens” of the language provides better opportunities for
optimizations of the query evaluation. In our solution, we follow the philosophy
of [3] but provide a generalized model for the content-based retrieval.

3.3 System Architecture

In the existing proposals for multimedia query languages based on SQL, it is
always supposed that the implementing system architecture is based on RDBMS,
either directly as in [9], or with the aid of a “blade” interface that filters out and
processes the content-based operations while passing the regular queries to the
backing database [3].

Both these solutions are valid for the query language introduced here. Since
we propose to extend the SQL language by adding new language constructs,
these can be easily intercepted by a “blade”, evaluated by an external simi-
larity search system, and passed back to the database where the final results
are obtained. The integration into a RDBMS follows an inverse approach. The
database SQL parser is updated to support the new language constructs and
the similarity query is evaluated by internal operators. Of course, the actual
similarity query evaluation is the cornerstone in both approaches and similarity
indexes are crucial for efficient processing.

One of our priorities is creating a user-friendly tool for the MESSIF, a Java-
based object-oriented library that eases the task of implementing metric sim-
ilarity search systems. It offers an extensible way of defining data types and

Query Language for Complex Similarity Queries 5

their associated metric similarity functions as well as a generic hierarchy of data
manipulation and querying operations. The indexing algorithms can be plugged
in as needed to efficiently evaluate different queries and the framework auto-
matically selects indexes according to a given query. The storage backend of
the MESSIF utilizes a relational database and the functionality of the standard
SQL is thus internally supported. Therefore, we only need to provide a parser
of the query language and a translation to native MESSIF API calls and let the
framework take care of the actual execution.

4 Data Model and Operations

The core of any information management system is formed by data structures
that store the information, and operations that allow to access and change it. To
provide support for content-based retrieval, we need to revisit the data model
employed by SQL and adjust it to the needs of complex data management.

It is important to clarify here that we do not aim at defining a sophisticated
algebra for content-based searching, which is being studied elsewhere. For the
purpose of the language, we only need to establish the basic building blocks.
Our model is based on the general framework presented in [1]. Contrary to the
theoretical algebra works, we do not study the individual operations and their
properties but let these be defined explicitly by the underlying search systems.
However, we introduce a more fine-grained classification of objects and opera-
tions to enable their easy integration into the query language.

4.1 Data Model

On the concept level, multimedia objects can be analyzed using standard entity-
relationship (ER) modeling. In the ER terminology, a real-world object is repre-
sented by an entity, formed by a set of descriptive object properties – attributes.
The attributes need to contain all information required by target applications.
In contrast to common data types used in ER modeling, which comprise mainly
text and numbers, attributes of multimedia objects are often more complex (im-
age or sound data, time series, etc.). The actual attribute values form an n-tuple
and a set of n-tuples of the same type constitute a relation.

Relations and attributes (as we shall continue to call the elements of n-tuples)
are the basic building blocks of the Codd’s relational data model and algebra [6],
upon which the SQL language is based. This model can also be employed for
complex data but we need to introduce some extensions. A relation is a subset
of the Cartesian product of sets D1 to Dn, Di being the domain of attribute
Ai. Standard operations over relations (selection, projection, etc.) are defined
in first-order predicate logic and can be readily applied on any data, provided
the predicates can be reasonably evaluated. To control this, we use the concept
of data type that encapsulates both a an attribute domain specification and
functions that can be applied on domain members. Let us note here that Codd
used a similar concept of extended data type in [6], but he only worked with a

6 Petra Budikova, Michal Batko, and Pavel Zezula

few special properties of the data type, in particular the total ordering. As we
shall discuss presently, our approach is more general. We allow for an infinite
number of data types, which directly represent the primary objects (e.g. image,
sound), or some derived information (e.g. color histogram). The translation of
one data type into another is realized by specialized functions – extractors.

According to the best-practices of data modeling [15], redundant data should
not be present in the relations, which also concerns derived attributes. The ratio-
nale is that the derived information requires extra storage space and introduces
a threat of data inconsistency. Therefore, the derived attributes should only be
computed when needed in the process of data management. In case of complex
data, however, the computation (i.e. the extraction of a derived data type) can
be very costly. Thus, it is more suitable to allow storing some derived attributes
in relations, especially when these are used for data indexing. Naturally, more
extractors may be available to derive additional attributes when asked for. Fig-
ure 1 depicts a possible representation of an image object in a relation.

Daisy flower
Alps
20. 5. 2010

MPEG7_edge_histogram

SIFT

Tamura_features

Name Data type

id integer

image binary_image

color MPEG7_color_layout

shape MPEG7_contour_shape

title string

location string

date date

Fig. 1. Transformation of an image object into a relation. Full and dashed arrows on
the right side depict materialized and available data type extractors, respectively.

4.2 Operations on Data Types

As we already stated, each data type consists of a specification of a domain of
values, and a listing of available functions. As some of the functions are vital for
the formulation and execution of the algebra operations, we introduce several
special classes of functions that may be associated with each data type:

– Comparison functions: Functions of this type define total ordering of the
domain (fC : D×D → {<,=, >}). When a comparison function is available,
standard indexing methods such as B-trees can be applied and queries using
value comparison can be evaluated. Comparison functions are typically not
available for multimedia data types and the data types derived from them,
where no meaningful ordering of values can be defined.

– Distance functions: In the context of datatypes we focus on basic distance
functions that evaluate the dissimilarity between two values from a given
data domain (fD : D×D → R+

0). The zero distance represents the maximal

Query Language for Complex Similarity Queries 7

possible similarity – identity. We do not impose any additional restrictions
on the behavior of fD in general, but there exists a way of registering special
properties of individual functions that will be discussed later. More than
one distance function can be assigned to a data type, in that case one of
the functions needs to be denoted as default. When more distance functions
are available for a given data type, the preferred distance function can be
specified in a relation definition. In case no distance function is provided, a
trivial identity distance is associated to the data type, which assigns distance
0 to a pair of identical values and distance ∞ to any other input.

– Extractors: Extractor functions transform values of one data type into the
values of a different data type (fE : Di → Dj). Extractors are typically
used on complex unstructured data types (such as binary image) to produce
data types more suitable for indexing and retrieval (e.g. color descriptor).
An arbitrary number of extractors can be associated to each data type.

In addition to the declaration of functionality, each of the mentioned op-
erations can be equipped with a specification of various properties. The list of
properties that are considered worthwhile is inherent to a particular retrieval sys-
tem and depends on the data management tools employed. For instance, many
indexing and retrieval techniques for similarity searching rely on certain prop-
erties of distance functions, such as the metric postulates or monotonicity. To
be able to use such a technique, the system needs to ascertain that the distance
function under consideration satisfies these requirements. To solve this type of
inquiries in general, the set of properties that may influence the query processing
is defined, and the individual functions can provide values for those properties
that are relevant for the particular function. To continue with our example, the
Euclidean distance will declare that it satisfies the metric postulates as well as
monotonicity, while the MinimumValue distance only satisfies monotonicity. An-
other property worth registering is a lower-bounding relationship between two
distance functions, which may be utilized during query evaluation.

4.3 Operations on Relations

The functionality of a search system is provided by operations that can be evalu-
ated over relations. In addition to standard selection and join operations, multi-
media search engines need to support various types of similarity-based retrieval.
Due to the diversity of possible approaches to searching, we do not introduce a
fixed set of operations but expect each system to maintain its own list of meth-
ods. Each operation needs to specify its input, which consists of 1) number of
input relations (one for simple queries, multiple for joins), 2) expected query ob-
jects (zero, singleton, or arbitrary set), 3) operation-specific parameters, which
may typically contain a specification of a distance function, distance threshold,
or operation execution parameters such as approximation settings. Apart from
a special case discussed later the operations return relations, typically with the
scheme of the input relation or the Cartesian product of input relations. In case

8 Petra Budikova, Michal Batko, and Pavel Zezula

of similarity-based operations the scheme is enriched with additional distance at-
tribute which carries the information about the actual distance of a given result
object with respect to the distance function employed by the search operation.

Similar to operations on data types, operations on relations may also exhibit
special properties that can be utilized with advantage by the search engine. In
this case, the properties are mostly related to query optimization. As debated
earlier, it is not possible to define general optimization rules for a model with a
variable set of operations. However, a particular search system can maintain its
own set of optimization rules together with the list of operations.

A special subset of operations on relations is formed by functions that pro-
duce scalar values. Among these, the most important are the generalized distance
functions that operate on relations and return a single number, representing the
distance of objects described by n-tuples. The input of these functions contains
1) a relation representing the object for which the distance needs to be evalu-
ated, 2) a relation with one or more query objects, and 3) additional parameters
when needed. Similar to basic distances, generalized distance functions need to
be treated in a special way since their properties significantly influence the pro-
cessing of a query. Depending on the architecture of the underlying search engine
it may be beneficial to distinguish more types of generalized distance functions.
For the MESSIF architecture in particular, we define the following two types:

– Set distance fSD : 2D×D×(D×D → R+
0) → R+

0 : The set distance function
allows to evaluate the similarity of an object to a set of query objects of the
same type, employing the distance function defined over the respective object
type. In a typical implementation, such function may return the minimum
of the distances to individual query objects.

– Aggregated distance fAD : (D1 × ...×Dn)× (D1 × ...×Dn)× ((D1 ×D1 →
R+

0)×...×(Dn×Dn → R+
0)) → R+

0 : The aggregation of distances is frequently
employed to obtain a more complex view on object similarity. For instance,
the similarity of images can be evaluated as a weighted sum of color- and
shape-induced similarities. The respective weights of the partial similarities
can be either fixed, or chosen by user for a specific query. Though we do not
include the user-defined parameters into the definitions of the distances for
easier readability, these are naturally allowed in all functions.

4.4 Data Indexing

While not directly related to the data model, data indexing methods are a cru-
cial component of a retrieval system. The applicability of individual indexing
techniques is limited by the properties of the target data. To be able to con-
trol the data-index compatibility or automatically choose a suitable index, the
search system needs to maintain a list of available indexes and their properties.
The properties can then be verified against the definition of the given data type
or distance function (basic or generalized). Thus, metric index structures for
similarity-based retrieval (e.g. M-tree [17], GHT* [17], M-index [12]) can only
be made available for data with metric distance functions, whereas traditional

Query Language for Complex Similarity Queries 9

B-trees may be utilized for data domains with total ordering. It is also nec-
essary to specify which search operations can be supported by a given index,
as different data processing is needed e.g. for the nearest-neighbor and reverse-
nearest-neighbor queries. Apart from the specialized indexes, any search system
inherently provides the basic Sequential Scan algorithm as a default data access
method that can support any search operation.

5 SimSeQL Syntax and Semantics

The SimSeQL language is designed to provide a user-friendly interface to state-
of-the-art multimedia search systems. Its main contribution lies in enriching the
SQL by new language constructs that enable to issue all kinds of content-based
queries in a standardized manner. In accordance with the declarative paradigm
of the SQL, the new constructs allow to describe the desired results while shield-
ing users from the execution issues. On the syntactical level, the SimSeQL con-
tributes mainly to the query formulation tools of the SQL language. Data mod-
ification and control commands are not discussed in this paper since their adap-
tation to the generalized data types and operations is straightforward. On the
semantic level, however, the original SQL is significantly enriched by the intro-
duction of an unlimited set of complex data types and related operations.

A SimSeQL query statement follows the same structure as SQL, being com-
posed of the six basic clauses SELECT, FROM, WHERE, GROUP BY, HAV-
ING, and ORDER BY, with their traditional semantics [15]. The extended func-
tionality is mainly provided by a new construct SIMSEARCH, which is embed-
ded into the FROM clause and allows to search by similarity, combine multiple
sources of information, and reflect user preferences. Prior to a detailed descrip-
tion of the new primitives, we present the overall syntax in the following scheme:

SELECT [TOP n | ALL]
{attribute | ds.distance | ds.rank | f(params)} [, ...]

FROM {dataset |
SIMSEARCH [:obj [, ...]]

IN data source AS ds [, data source2 [, ...]]
BY {attribute [DISTANCE FUNCTION

distance function(params)]
| distance function(params)}

[METHOD method(params)]
WHERE /* restrictions of attribute values */
ORDER BY {attribute | ds.distance [, ...]}

In general, there are two possible approaches to incorporating primitives for
content-based retrieval into the SQL syntax. We can either make the similarity
search results form a new information resource on the level of other data collec-
tions in the FROM clause (an approach used in [9]), or handle the similarity as
another of the conditions applied on candidate objects in the WHERE clause
(exercised in [2, 3, 8, 10]). However, the latter approach requires standardized

10 Petra Budikova, Michal Batko, and Pavel Zezula

predicates for various types of similarity queries, their parameters etc., which is
difficult to achieve in case an extensible set of search operations and algorithms
is to be supported. In addition, the similarity predicates are of a different nature
than attribute-based predicates and their efficient evaluation requires special-
ized data structures. Therefore, we prefer to handle similarity-based retrieval as
an independent information source. Consequently, we only standardize the basic
structure and expected output, which can be implemented by any number of
search methods of the particular search engine.

As anticipated, the similarity-based retrieval is wrapped in the SIMSEARCH
language construct, which produces a standard relation and can be seamlessly
integrated into the FROM clause. The SIMSEARCH expression is composed of
several parts explained in the following sections.

5.1 Specification of query objects

The selection of query objects follows immediately after the SIMSEARCH key-
word. An arbitrary number of query objects can be provided, each object being
considered an attribute that can be compared to attributes of the target rela-
tions. Multiple query objects can be used to express a more complex information
need. A query object (attribute) can be represented directly by an attribute
value, by a reference to an object provided externally, or by a nested query
that returns the query object(s). The query objects need to be type-compatible
with the attributes of the target relation they are to be compared to. Often the
extractor functions can be used with advantage on the query objects.

5.2 Specification of a target relation

The keyword IN introduces the specification of one or more relations, elements
of which are processed by the search algorithm. Naturally, each relation can be
produced by a nested query.

5.3 Specification of a distance function

An essential part of a content-based query is the specification of a distance
function. The BY subclause offers three ways of defining the distance: calling
a distance function associated to an attribute, referring directly to a distance
function provided by the search engine, or constructing the function within the
query. In the first case, it is sufficient to enter the name of attribute to invoke its
default distance function. Non-default distance function of an attribute needs to
be selected via the DISTANCE FUNCTION primitive that also allows to pass
additional parameters for the distance function if necessary. The last case allows
greater freedom of specifying the distance function by the user, but both the
attributes for which the distance is to be measured must be specified. A spe-
cial function DISTANCE(x, y) can be used to call the default distance function
defined for the given data type of attributes x, y. The nuances of referring to a
distance function can be observed in the following:

Query Language for Complex Similarity Queries 11

SIMSEARCH ... BY color
/* search by the default distance function of the color attribute */

SIMSEARCH ... BY color DISTANCE FUNCTION color distance
/* search by color distance function of the color attribute */

SIMSEARCH ... BY some special distance(qo, color, param)
/* search by some special distance applied to the query

object qo, color attribute, and an additional parameter */
SIMSEARCH ... BY DISTANCE(qoc, color)+DISTANCE(qos, shape)

/* search by a user-defined sum of the default distance functions
on qoc and qos query objects and color and shape attributes */

5.4 Specification of a search method

The final part of the SIMSEARCH construct specifies the search method or, in
other words, the query type (e.g. range query, similarity join, distinct nearest
neighbor search, etc.). Users may choose from a list of methods offered by the
search system. It can be reasonably expected that every system supports the
basic nearest neighbor query, therefore this is considered a default method in
case none is specified with the METHOD keyword. The default nearest neighbor
search returns all n-tuples from the target relation unless the number of nearest
neighbors is specified in the SELECT clause by the TOP keyword.

The complete SIMSEARCH phrase returns a relation with a scheme of the
target relation specified by the IN keyword, or the Cartesian product in case of
more source relations. Moreover, information about distance of each n-tuple of
the result set computed during the content-based retrieval is available. This can
be used in other clauses of the query, referenced either as distance, when only
one distance evaluation was employed, or prefixed with the named data source
in the clause when ambiguity should arise (e.g. ds.distance).

6 Example Scenarios

To illustrate the wide applicability of the SimSeQL language, we now present
several query examples for various use-case scenarios found in image and video
retrieval. Each of them is accompanied by a short comment on the interesting
language features employed. For the examples, let us suppose that the following
relations, data types and functions are available in the retrieval system:

– video frame relation: list of video frames

id integer identity distance (default)
video id integer identity distance (default)
video binary video identity distance (default)
face descriptor number vector mpeg7 face metric (default)
subtitles string tf idf (default)
time second long L1 metric (default)

12 Petra Budikova, Michal Batko, and Pavel Zezula

– image relation: register of images

id integer identity distance (default)
image binary image identity distance (default)
color number vector mpeg7 color layout metric (default)

L1 metric
shape number vector mpeg7 contour shape metric (default)

L2 metric
title string tf idf (default)
location string simple edit distance (default)

Query 1 Retrieve 30 most similar images to a given example

SELECT TOP 30 id, distance
FROM SIMSEARCH :queryImage IN image BY shape

This example presents the simplest possible similarity query. It employs the
default nearest neighbor operation over the shape descriptor with its default
distance function. User does not need any knowledge about the operations em-
ployed, only selects the means of similarity evaluation. The supplied parame-
ter queryImage represents the MPEG7 contour shape descriptor of an external
query image (provided by a surrounding application). The output of the search
is the list of identifiers of the most similar images with their respective distances.

Query 2 Find all pairs of image titles with edit distance 1 (candidates for typos)

SELECT *
FROM SIMSEARCH

IN image AS i1, image AS i2
BY simple edit distance(i1.title, i2.title)
METHOD MessifSimilarityJoin(1)

In this case, a similarity join with a threshold value 1 is required. The similarity
join needs no query objects, is defined over two relations, and requires explicit
reference to a distance function with the input parameters.

Query 3 Retrieve images most similar to a set of examples (e.g. identifying a
flower by supplying several photos)

SELECT TOP 1 title
FROM SIMSEARCH

extract MPEG7 color layout(:o1) AS co1,
extract MPEG7 color layout(:o2) AS co2,
extract MPEG7 contour shape(:o3) AS sh3

IN image
BY minimum(DISTANCE(co1, color),

DISTANCE(co2, color), DISTANCE(sh3,shape))

Query Language for Complex Similarity Queries 13

This query represents an example of a multi-object query, input of which are ex-
ternal binary images (denoted as o1, o2, o3) that are transformed to the required
descriptors via extractors. Alternatively, the query objects could be provided as
a result of a nested query. The minimum aggregation function employed for sim-
ilarity evaluation would be formally defined on attributes and their respective
distance functions. Here it is applied on the distances to individual objects only,
as these are internally linked to the individual attributes and distance functions.
Note that the default distance functions of the respective attributes are applied
using DISTANCE(x, y) construct.

Query 4 Retrieve all videos where Obama and Bush appear

SELECT DISTINCT vf1.video id
FROM SIMSEARCH :ObamaFace IN video frame AS vf1 BY face descriptor

METHOD rangeQuery(0.01)
INNER JOIN
SIMSEARCH :BushFace IN video frame AS vf2 BY face descriptor

METHOD rangeQuery(0.01)
ON (vf1.video id = vf2.video id)

This query employs a join of two similarity search results, each of which uses a
range query operation to retrieve objects very similar to the given example.

7 Conclusions and Future Work

In this paper, we have proposed an extensible query language for searching in
complex data domains. The presented language is backed by a general model
of data structures and operations, which is applicable to a wide range of search
systems that offer different types of content-based functionality. Moreover, the
support for data indexing and query optimization is inherently contained in the
model. The SimSeQL language extends the standard SQL by new primitives
that allow to formulate content-based queries in a flexible way, taking into ac-
count the functionality offered by a particular search engine. The extensibility
of the presented model is achieved by the ability to define any complex data
type, distance function, or similarity query operation, as well as incorporate any
indexing structures that follow the design restrictions.

The proposal of the language was influenced by the MESSIF framework that
offers the functionality of executing complex similarity queries on arbitrary index
structures but lacks a user-friendly interface for advanced querying. Having laid
the formal foundations of the query interface here, we will proceed with the
implementation of a language parser which will translate the query into MESSIF
for the actual evaluation. We also plan to research the possibilities of adapting
the existing optimization strategies to utilize the reformulation capabilities of
the proposed extension.

14 Petra Budikova, Michal Batko, and Pavel Zezula

Acknowledgments

This work has been partially supported by Brno Ph.D. Talent Financial Aid and
by the national research projects GD 102/09/H042 and GAP 103/10/0886.

References

1. Adali, S., Bonatti, P., Sapino, M.L., Subrahmanian, V.S.: A multi-similarity alge-
bra. SIGMOD Rec. 27(2), 402–413 (1998)

2. Amato, G., Mainetto, G., Savino, P.: A query language for similarity-based retrieval
of multimedia data. In: ADBIS. pp. 196–203. Nevsky Dialect (1997)

3. Barioni, M.C.N., Razente, H.L., Traina, A.J.M., Traina Jr., C.: Seamlessly inte-
grating similarity queries in SQL. Softw., Pract. Exper. 39(4), 355–384 (2009)

4. Batko, M., Novak, D., Zezula, P.: MESSIF: Metric similarity search implementation
framework. In: First International DELOS Conference, Revised Selected Papers.
LNCS, vol. 4877, pp. 1–10. Springer (2007)

5. Budikova, P., Batko, M., Zezula, P.: Query Language for Complex Sim-
ilarity Queries. Computing Research Repository (CoRR) pp. 1–22 (2012),
http://arxiv.org/abs/1204.1185

6. Codd, E.F.: The relational model for database management: version 2. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (1990)

7. Döller, M., Tous, R., Gruhne, M., Yoon, K., Sano, M., Burnett, I.S.: The MPEG
Query Format: Unifying access to multimedia retrieval systems. IEEE MultiMedia
15(4), 82–95 (2008)

8. Gao, L., Wang, M., Wang, X.S., Padmanabhan, S.: Expressing and optimizing
similarity-based queries in SQL. In: Conceptual Modeling - ER 2004. LNCS, vol.
3288, pp. 464–478. Springer (2004)

9. Guliato, D., de Melo, E.V., Rangayyan, R.M., Soares, R.C.: POSTGRESQL-IE:
An image-handling extension for PostgreSQL. J. Digital Imaging 22(2), 149–165
(2009)

10. Li, J.Z., Özsu, M.T., Szafron, D., Oria, V.: MOQL: A multimedia object query
language. In: Proc. 3rd Int. Workshop on Multimedia Information Systems (1997)

11. Melton, J., Eisenberg, A.: SQL Multimedia and Application Packages (SQL/MM).
SIGMOD Record 30(4), 97–102 (2001)

12. Novak, D., Batko, M., Zezula, P.: Metric index: An efficient and scalable solution
for precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011)

13. Pein, R., Lu, J., Wolfgang, R.: An extensible query language for content based
image retrieval based on Lucene. In: Computer and Information Technology, 2008.
CIT 2008. 8th IEEE International Conference on (July 2008)

14. Schmitt, I., Schulz, N., Herstel, T.: WS-QBE: A QBE-like query language for
complex multimedia queries. In: Chen, Y.P.P. (ed.) MMM. pp. 222–229. IEEE
Computer Society (2005)

15. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 6th Edi-
tion. McGraw-Hill Book Company (2011)

16. Tsinaraki, C., Christodoulakis, S.: An MPEG-7 query language and a user pref-
erence model that allow semantic retrieval and filtering of multimedia content.
Multimedia Syst. 13(2), 131–153 (2007)

17. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach, Advances in Database Systems, vol. 32. Springer-Verlag (2006)

