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Abstract. We analyze the nature of the relevance feedback
problem in a continuous representation space in the context of
content-based image retrieval. Emphasis is put on exploring
the uniqueness of the problem and comparing the assump-
tions, implementations, and merits of various solutions in the
literature.An attempt is made to compile a list of critical issues
to consider when designing a relevance feedback algorithm.
With a comprehensive review as the main portion, this paper
also offers some novel solutions and perspectives throughout
the discussion.
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1. Introduction

Initially developed in document retrieval during the 1960s [37,
40], relevance feedback was transformed and introduced into
content-based multimedia retrieval, mainly content-based im-
age retrieval (CBIR), during the early and mid-1990s [20,29,
34,39]. Since then, this topic has attracted tremendous atten-
tion in the CBIR community – a variety of solutions has been
proposed within a short period, and it remains an active re-
search topic today. The reasons are that more ambiguities arise
when interpreting images than words, which makes user inter-
action more of a necessity; and in addition, judging a document
takes time, while an image reveals its content almost instantly
to a human observer, which makes the feedback process faster
and more sensible for the end user.

A fundamental difference of relevance feedback in image
retrieval as opposed to document retrieval is that the latter
is based on symbolic representations, with direct mapping to
human interpretations; while for images, a precise high-level
symbolic representation is hard to extract automatically; and
the extractable low-level features (e.g., color, texture, shape,
etc.) are often inadequate or even misleading for high-level
perception-based retrieval tasks. In a nutshell, “an image is

� Work was done while at the University of Illinois.

worth a thousand words”, and the machine does not know
what these words are.

Even if we assume that the low-level features are some-
what correlated with the high-level semantics, we still need a
user-in-the-loop, because images reside in a continuous repre-
sentation space, in which semantic concepts are best described
in discriminative subspaces – “cars” are of certain shape while
“sunset” is more describable by color. In other words, only a
small subset of features (or a subspace of the original space)
is active for describing any giving concept. More importantly,
different users at different times may have different interpreta-
tions or intended usages for the same image, which makes off-
line, user-independent learning undesirable in general. Fully
automated off-line preprocessing (e.g., clustering, classifica-
tion) makes sense for some specific applications with well-
defined image classes. However, for many others, the best an-
swer does not exist, and ignoring a user’s individuality can be
as senseless as trying to determine the world’s greatest color.

A straightforward way of getting the user into the loop is
to ask the user to tune system parameters during the retrieval
process, but it is too much of a burden for a common user. A
more feasible form of interaction is to ask the user to provide
feedback regarding the (ir)relevance of the current retrieval
results. The system then learns from these training examples to
achieve an improved performance in the next round, iteratively
if necessary.

Relevance feedback algorithms have been shown to pro-
vide dramatic performance boost in retrieval systems [18,27,
29,34,39,46,51,52,55,62].

2. The relevance feedback problem

Since the general assumption is that every user’s need is dif-
ferent [20] and time varying, a database cannot adopt a fixed
clustering structure; and the total number of classes and the
class membership are not available beforehand, since these
are assumed to be user-dependent, and time varying as well.
Of course, these rather extreme assumptions can be relaxed
in a real-world application to the degree of choice. (For more
arguments, see Sect. 4.3.)

A typical scenario for relevance feedback in content-based
image retrieval is as follows:
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Step 1. Machine provides an initial retrieval results, through
query-by-keyword, sketch, or example, etc.

Step 2. User provides a judgment on the currently displayed
images as to whether, and to what degree, they are relevant or
irrelevant to her/his request.

Step 3. Machine learns and tries again. Go to step 2.

If each image/region is represented by a point in a feature
space, relevance feedback with only positive (i.e., relevant)
examples can be cast as a density estimation [19,28] or nov-
elty detection [7,43] problem. While with both positive and
negative training examples it becomes a classification prob-
lem, or an online learning problem in a batch mode, but with
the following characteristics:

Small sample issue. The number of training examples is small
(typically < 20 per round of interaction, depending upon the
user’s patience and willingness to cooperate) relative to the
dimension of the feature space (from dozens to hundreds, or
even more), while the number of classes is large for most real-
world image databases. For such small sample sizes, some
existing learning machines such as support vector machines
(SVM) [50] cannot give stable or meaningful results [46,62],
unless more training samples can be elicited from the user [47].

Asymmetry in training sample. The desired output of infor-
mation retrieval is not necessarily a binary decision on each
point as given by a classifier, but rather a rank-ordered top-k
returns. This is a less demanding task, since the rank or con-
figuration of irrelevant classes/points is of no concern as long
as they are well beyond the top-k returns. Most classifica-
tion or learning algorithms (e.g., discriminant analysis [10] or
SVM [50]) treat positive and negative examples interchange-
ably, and assume that both sets represent the true distributions
equally well. However, in reality, the small number of negative
examples is unlikely to be representative for all the irrelevant
classes; thus, an asymmetric treatment may be necessary [62].

Real time requirement. Finally, since the user is interacting
with the machine in real time, the algorithm should be suffi-
ciently fast, and if possible avoid heavy computations over the
whole dataset.

It should be noted that the above discussion covers some
but not all the scenarios and proposals in the literature. For
example, user feedback may take the form of a “comparative
judgment” [8] instead of a class label; and local image match-
ing or object detection may be better accomplished by us-
ing multiple high-dimensional histograms or mixture models
as image descriptors, instead of using just one feature vector
(see the next section for a comprehensive review on existing
algorithms).

3. Variants of relevance feedback algorithms

It is not the intention of this section to list all the existing tech-
niques, but rather to point out major variants and compare their
merits. We would emphasize that under the same notion of
“relevance feedback”, different methods might have adopted

different assumptions or problem settings, and are thus incom-
parable. The following lists some of the conceptual dimen-
sions along which some schemes differ greatly from others.
These can be separated into two broad classes; one includes
several aspects of the user behavior model (Sects. 3.1–3.3),
and the other covers algorithmic assumptions and alternatives
(Sects. 3.4–3.7).

3.1. User model: What to look for?

While most of the work assumes the user is looking for “a class
of similar items” to the query at hand (“category search”),
Cox et al. [8,9] assume that the user is looking for “a partic-
ular target item” (“target search”) and that the feedback is in
the form of “relative judgment”, i.e., positive images are not
necessarily the target, but “closer” to the target than others. A
Bayesian framework is adapted to estimate an updated prob-
abilistic distribution over all the test images in the database
after each round of user interaction, until the target appears
in the set of displayed images. The user model is assumed
(arguably) to be sigmoidal in distance, reflecting the heuris-
tic that images closer to the selected (positive) images than
“nonselected” ones are more likely to be the target.

Note that in reality, user consistency is hard to achieve, i.e.,
it is often difficult for a user to tell between two images which
is “closer” to a third one consistently in accordance with the
underlying feature representations adopted by the machine. In
the light of this difficulty, the user modeling has to be “soft”,
or probabilistic in nature [9].

While searching a large image database for a specific tar-
get, it is expected that in general more than one round of user
interaction is needed. The machine then faces the question of
“how to select the best set of images for each round to ask for
user feedback so that the total number of iterations needed to
reach the target is minimal?” [9]. This issue is further elabo-
rated in Sect. 3.3.

3.2. User model: What to feed back?

Some algorithms assume the user will give a binary feedback
for positive and negative examples [32,46,47]; some only take
positive examples [7,38]; some take positive and negative ex-
amples with “degree of (ir)relevance” for each [39,62]; some
assumes the feedback is only a “comparative judgment” in-
stead of a definite hit or miss [9]; some uses both labeled and
unlabeled data for training: Wu et al. [58] proposed the D-EM
algorithm within a transductive learning framework, and used
examples from user feedback (labeled data) as well as other
data points (unlabeled data). It performs discriminant analysis
inside EM iterations to select a subspace of features, such that
the two-class (positive and negative) assumption on the data
distributions has better support. The results were promising,
but computation can be a concern for large datasets.

A novel form of training is “learning from layout of im-
ages” during browsing or the data visualization process [30,
41]. The idea is to ask the user to layout images on a “table”
(i.e., a 2D space, which can be obtained using multidimen-
sional scaling, or MDS techniques), or to manipulate an exist-
ing 2D layout of images, according to the user’s interpretation
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of the semantic relationships among images. The machine is
expected to layout other images in a similar fashion after learn-
ing. The learning can proceed by finding a feature-weighting
scheme under which a principle component analysis (PCA)
will yield a layout of the training images that is most simi-
lar to the user’s layout. The weights are then applied to test
images, and the PCA is used to splat (“spread flat”) the test
images for a 2D image layout [30].

3.3. User model: Greedy vs. cooperative

If we assume that the user is greedy and Impatient, and thus
expects the best possible retrieval results after each feedback
round, the machine should always display the most-positive
images based on previous training. In this case, the user can
terminate the query process at any point in time, and will
always get the best results so far. Additional user feedback or
“training”, if any, will be performed on these most-positive
images. This is the strategy adopted by most, if not all, early
relevance feedback schemes.

However, for applications where the user is co-operative
and willing to provide more than one screen of training sam-
ples before seeing the results, a new question arises: “After
getting feedback for one or more screens of training images,
which of the remaining images shall the machine select to ask
the user to label in order to achieve the highest information
gain?”

The key to understanding this problem is to realize that,
from the machine’s point of view, “selecting 40 examples in
one batch for user labeling and training” is not as good as
“selecting 20 first, training on them and then selecting another
20 based on what has been learned.”

In general, the most-informative images [8] will not co-
incide with the most-positive images, since some of the latter
might already be labeled, or tend to be very correlated with
images with known labels, thus providing less new informa-
tion. Intuitively, the most-informative images should be those
whose labels the learner is most uncertain about.

As shown in Fig. 1, we have also dubbed these two scenar-
ios the show-me-the-results and ask-me-questions user mod-
els, respectively.

Active learning [2], or selective sampling [13], studies the
strategy for the learner (i.e., the machine) to actively select
samples to query1 the teacher (i.e., the user) for labels, to
achieve the maximal information gain, or the minimized en-
tropy/uncertainty in decision-making. Its early application for
document classification can be found in Lewis and Gale [23].
Recent applications in image retrieval can be found in Cox et
al. [8], Li et al. [24], and Tong and Chang [47].

Cox et al. [8] used Monte Carlo sampling in search of the
set of images that, once labeled, will minimize the expected
number of future iterations. In estimating the expected num-
ber of future iterations, entropy is used as an estimate of the
number of questions to be asked under the ambiguity specified
by the current probability distribution of the target image over
all the test images.

1 A term used in the active learning literature to denote the action
by the learner (i.e., the machine) to ask for training data from the
teacher (i.e., the user). This should not be confused with the query
concept used in information retrieval.
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+ 

Fig. 1. Top: the show-me-the-results scenario for a greedy user, where
further training, if any, will be performed on the current best results.
Bottom: the ask-me-questions scenario for a co-operative user, where
the machine can actively select more than one screen of samples to
be added sequentially into its training set

Tong and Koller [48] and Tong and Chang [47] proposed
the SVM active learning algorithm for applications in text
classification and image retrieval [50]. The aim is to select the
item(s) to maximally reduce the size of the version space in
which the class boundary lies. Without knowing a priori the
label of the candidate, the best strategy is to halve the version
space each time. They attempted to justify that selecting the
points near the SVM boundary can approximately achieve this
goal, and it is more efficient than other, more sophisticated
schemes, which require exhaustive trials on all the test items.
Therefore, in their work, the points near the SVM boundary
are used to approximate the most-informative points; and the
most-positive images are chosen as those furthest from the
boundary on the positive side in the feature space2 [50].

Note that the differences between Cox et al. [8] and Tong
and Chang [47] are not only in the analyzing tools they use,
but also in the problem settings they assume: the former looks
for a target image, while the latter searches for a classifier.
(Though the two scenarios may overlap at extreme cases.)

Finally, there is no reason why we cannot mix the most-
informative and most-positive images on one screen [46] – the
question is how do we strike a balance between the two opti-
mally (in a sense, e.g., by maximizing a confidence measure
of retrieval performance)?

3.4. Algorithmic assumptions: Feature selection and
representation

In terms of feature selection, while most CBIR systems use tra-
ditional image features such as color histogram or moments,
texture, shape, and structure features, there are alternatives.
Tieu and Viola [46] used more than 45,000 “highly selective
features”, and a boosting technique to learn a classification
function in this feature space. The features were demonstrated
to be sparse with high kurtosis, and were argued to be expres-
sive for high-level semantic concepts. Weak two-class clas-
sifiers were formulated based on a Gaussian assumption for

2 A term used in the kernel machine literature to denote the new
space after the nonlinear transform implied by the kernel – this should
not be confused with the feature space concept otherwise used to
denote the image representation space.
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both positive and negative (randomly chosen) examples along
each feature component, independently. The strong classifier
is a weighted sum of the weak classifiers as in AdaBoost [12].

As for feature representation, while most assume one fea-
ture vector per image/region as the basic representation, Vas-
concelos and Lippman [51] adopted a Gaussian mixture model
on DCT coefficients as the image representation. Bayesian in-
ference is then applied for classification and learning over
time. Richer information captured by the mixture model also
makes image regional matching possible.

3.5. Algorithmic assumptions: Class distribution

Another issue is what distribution to impose on the target
class(es). Gaussian assumption is a common and convenient
choice [19,38]. A specific form of nonlinear distribution is the
so-called “disjunctive set” or “multimode” distribution, which
has been addressed by a number of researchers in various ad
hoc ways [5]. Wu et al. [58] treated multiple queries as a dis-
junctive set, and used an aggregate dissimilarity function to
combine for a candidate image the pair-wise distances to ev-
ery positive example as the distance measure. This should be
compared to a Parzen window method [28], in which Parzen
window density estimation was applied to capture nonlinear-
ity in the distribution of positive examples. A principled way
to deal with nonlinearity is to use reproducing kernel-based
algorithms. A kernel-based one-class SVM as the density es-
timator for positive examples was shown in Chen et al. [7] to
outperform whitening transform-based linear/quadratic meth-
ods. BiasMap [62] and the SVM active learning algorithm [47]
both adopt the kernel form to cope with nonlinear distribu-
tions, with the former emphasizing the small sample issue,
while the latter explores the active learning aspect. It is worth
noting that most of the above algorithms use the RBF ker-
nel or Gaussian kernel, which has the “over-fitting” problem.
The selection of kernel parameters can be tricky, and is under
active investigation.

3.6. Data structure

If a hierarchical tree structure is adopted in a database for more
efficient access [6], learning becomes more difficult, since the
tree structure needs to be updated after new knowledge is dis-
covered through the user interaction. To efficiently update such
a tree structure, the trade-off offered by Chen et al. [6] between
speed and accuracy for searching becomes crucial. However,
in any case, the reorganization of a hierarchical structure (such
as a similarity pyramid) for a large image database is still a
stunning task to perform, and perhaps should only be carried
out once in a while. The question is: how to update the tree
structure according to the user’s understanding of similarity?
This is similar to the problem of “learning the relative fea-
ture importance from a layout of images”, as mentioned in
Sect. 3.2. One approach is to find the set of feature weights
under which the clustering behaviors among training images
can best approximate those provided by the user. Using the
newly weighted features as the representation, all test images
can be re-clustered, hopefully in a way reflecting the user’s
understanding and preference.

Relevance 
feedback 

algorithms 

Short-term 
learning 

Long-term 
learning 

 

Heuristic-based (feature axis weighting) 

Density estimation-based 

Classification-based 

Comparison searching-based 

MDS-based interactive visualization 

Heuristic-based  

Information retrieval- and data mining-based 

Incremental learning-based 

Fig. 2. A nonexhaustive taxonomy of relevance feedback algorithms

3.7. Objective functions and learning machines

In this direction lies the greatest variability among different
methods. A number of early methods – self-labeled as “rele-
vance feedback” [6,32,33,39,41] or not [25] – propose to learn
a new query and the relative importance of different features or
feature components, while others learn a linear transformation
in the feature space, taking into account correlations among
feature components [19,38,62]. Some of the latest work treats
it either as a density estimation [7,58], learning [27,46,48,47],
or classification [51,58] problem. A nonexhaustive taxonomy
is show in Fig. 2. In this section, we discuss mainly short-
term learning. Long-term learning is discussed in Sect. 4.4.
We should point out that some of the categories are not yet
fully explored in the literature, so this should be interpreted
as the authors’ proposed future research directions; for exam-
ple, the use of incremental learning principles in relevance
feedback.

In its short history, relevance feedback developed along the
path from heuristic-based techniques to optimal learning al-
gorithms, with early work inspired by term weighting and rel-
evance feedback techniques in document retrieval [40]. These
methods proposed heuristic formulation with empirical pa-
rameter adjustment, mainly along the line of independent axis
weighting in the feature space [33–35,39,41]. The intuition is
to emphasize more those feature(s) that best cluster positive
examples and separate the positive and negative.

Early work [34,39] had clear roots in the document re-
trieval field. For example, in Rui et al. [39], learning based
on “term frequency” and “inverse document frequency” in the
text domain was transformed into learning based on ranks of
the positive and negative images along each feature axis in
the continuous feature space. Picard et al. [34] quantized the
features and then grouped images or regions into hierarchical
trees whose nodes were constructed through single-link clus-
tering. Groupings were then weighted using set operations.

Kohonen’s learning vector quantization (LVQ) algo-
rithm [54] and tree-structured self-organizing map (TS-
SOM) [21] were used for dynamic data clustering during rele-
vance feedback. Laaksonen et al. [21] used TS-SOMs to index
images along different feature axes such as color and texture.
Positive and negative examples were mapped to positive and
negative impulses on the maps, and a low-pass operation on the
maps was argued to implicitly reveal the relative importance of
different features, because a “good” map will keep positive ex-
amples cluster while negative examples scatter away. This was
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based on a similar intuition as that of Peng et al. [33], where a
probabilistic method was used instead to capture feature rel-
evance. The assumption of feature independence imposed in
these methods is rather artificial.

Later on, researchers began to look at this problem from
a more systematic point of view by formulating it into an
optimization, learning, or classification problem. In Ishikawa
et al. [19] and Rui and Huang [38], based on the minimization
of total distances of positive examples from the new query,
the optimal solutions turned out to be the weighted average
as the new query and a whitening transform (or Mahalanobis
distance metric) in the feature space. Additionally, Rui and
Huang [38] adopted a two-level weighting scheme to better
cope with singularity issue due to the small number of training
samples. To take into account negative examples, Schettini et
al. [42] updated feature weights along each feature axis by
comparing the variance of positive examples to the variance
of the union of positive and negative examples.

MacArthur et al. [27] cast relevance feedback as a two-
class learning problem, and used a decision tree algorithm to
sequentially “cut” the feature space until all points within a
partition are of the same class. The database was classified
by the resulting decision tree: images that fall into a relevant
leaf were collected and nearest neighbors of the query were
returned.

Some of the approaches are intended for offline learning,
but have the potential for online implementation. For exam-
ple, Guo et al. [15] used AdaBoost for face recognition and
audio retrieval. In 2001, a constrained majority voting (CMV)
strategy was proposed to speed up pair-wise comparisons for
multi-class classification. Note that, in their case, labeled train-
ing samples are available for all classes.

There were also schemes for learning object structure from
examples based on image segmentation. Xu et al. [59] pro-
posed a hierarchical formation scheme for object description
from elementary regions determined by a segmentation using
color and edge. From examples, the system learns a “com-
posite node” of several regions with an adjacency matrix rep-
resenting their spatial relationships. Ratan et al. [36] used a
multiple-instant learning model to learn the most important
subimage(s) from example images, which are represented as
a bag (collection) of instances (subimages). The adopted Di-
verse Density algorithm tries to find the area in feature space
that is shared by all positive images while far from all nega-
tive subimages. Along the same line is the work by Forsyth
and Fleck [11], where the system learns a “body plan” for ob-
ject. Hong and Huang [17] defined an object (or scene) as a
contextual pattern and adopted an ARG (attributed relational
graph) [49] to represent it. They developed an automatic con-
textual pattern modeling scheme, which learns a probabilistic
pattern ARG model from multiple sample ARGs via the EM
algorithm. The learned patternARG model captures the proba-
bilistic characteristics of both the appearance and the structure
of the object, which may be observed under changing condi-
tions, and may only occupy portions of the training images and
can be partially occluded. The concern is on the computational
complexity, which is still far beyond the real-time requirement
of relevance feedback.

4. Issues to consider
when designing a relevance feedback algorithm

In the following, we try to compile a list of critical issues
to consider when designing or selecting a relevance feedback
algorithm. These are intended to be common issues across
various applications or user assumptions.

4.1. Negative examples

How to treat the small number of negative examples may be
the central issue when negative feedback is to be considered.
Tieu and Viola [46] used random sampling to get around the
small sample issue, taking a risk of treating positive points
as negative training samples. Vasconcelos and Lippman [52]
assumed that a negative example for class Si shall be a positive
example for the complement of class Si, and quantified in
terms of likelihoods as follows:

P (ȳ|Si = 1) = P (y|Si = 0) (1)

where ȳ means that y is treated as a negative example. Special
steps are needed to avoid over-emphasizing the importance of
negative examples.

Nastar et al. [32] proposed empirical formulae to take into
account negative examples while estimating the distribution
of positive examples along each feature component. Another
ad hoc formulation was proposed by Brunelli and Mich [5].
Zhou and Huang [60,62] used the intuition that “all positive
examples are alike in a way, each negative example is negative
in its own way”, and proposed an asymmetric treatment for
positive and negative examples: they assumed that positive ex-
amples have a compact low-dimensional support, while nega-
tive examples can have any configuration. A custom designed
discriminant analysis, namely, biased discriminant analysis
(BDA), is applied to find the transformed, reduced-dimension
space where positive examples cluster while the negative scat-
ter away. This scheme can be regarded as a “discriminative
whitening transform”. The proposed kernel form, namely, Bi-
asMap, can handle nonlinear configurations (e.g., multimode
for the positive distribution) in a principled way.

As a side note, it would be interesting to explore the pos-
sibility of incorporating negative examples in learning object
structure from examples [11,17,36,59].

4.2. Singularity issue in sample covariance matrix

Many relevance feedback algorithms make use of the sam-
ple covariance matrix and its inverse [19,24,39,42,62]. When
the number of training examples is smaller than the dimen-
sionality of the feature space, the singularity issue arises. The
substitution of the Moore–Penrose inverse or pseudo-inverse
matrix for the regular inverse proposed in Ishikawa et al. [19] is
not only mathematically unfounded, but also counter-intuitive:
Imagine a diagonal covariance matrix with the ith diagonal el-
ement being 0; according to the “weight by the inverse of the
variance” heuristic implied in this method, this indicates that
the ith axis of the feature space is very expressive, thus it will
receive a very high weight. However, Ishikawa [19] will put a
weight of zero on the i axis.
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Another proposal was to adopt a hierarchical weighting
scheme (assuming a block diagonal matrix instead of the full
covariance matrix) so that fewer parameters need to be esti-
mated, and in the extreme case, just use a diagonal matrix [38].
This implies a forced independence assumption. Although in-
tuitively appealing – the independence assumption between
color and texture in some cases may be valid – for cases in
which this assumption does not hold, the block-diagonal or
diagonal treatment can yield extremely biased eigenvalue es-
timations. As an example, assuming two positive examples
[0, 0]T and [1, 1]T , the sample covariance matrix C is

C =
[

0.5 0.5
0.5 0.5

]
; Cdiag =

[
0.5 0
0 0.5

]
. (2)

Only estimating the diagonal matrix Cdiag will result in
equal weighting of the two axes by the weight vector [2, 2]T
(ignore normalization). While an apparently better solution is
to rotate the space clockwise by 45◦, and then weight the verti-
cal axis more.Additionally, invertibility is still not guaranteed,
only diagonal elements are estimated.

It is known that under a small sample, the sample covari-
ance matrix is statistically biased, in the sense that the large
eigenvalues become larger and the small become smaller. A
statistically valid solution is to add regularization terms on the
diagonal of the sample covariance matrix before the inversion,
which is also known as a “linear shrinkage estimator” [16,14,
62]:

Ĉ = (1 − µ)C +
µ

n
tr[C]I. (3)

Here tr[C] denotes the trace of C, n is the dimension of the
feature space, and 0 < µ < 1 controls the amount of shrinkage
toward the identity matrix I . µ can be set as a function of the
number of training examples: the smaller the training sample,
the larger is µ.

This operation, although simple and seemingly uninten-
tional, actually compensates the aforementioned bias [16,14].
Following the example above:

Ĉ =
[

0.5 + 0.01 0.5
0.5 0.5 + 0.01

]
; Ĉ−1 = V ΛV −1;

V =
[−0.707 −0.707

−0.707 0.707

]
; Λ =

[
1 0
0 100

]
.

(4)

The solution in Eq. (4) provides the rotation of 45◦ (by V ),
followed by a proper weighting of the axes (by Λ).

At this point it is worth noting that a unifying view of rel-
evance feedback algorithms can be of “learning an optimal
transform in the feature space”, because: when only positive
examples are considered, the “generalized ellipsoid distance
metric” [19] is equivalent to a whitening transform followed
by the Euclidean metric [38], since the eigenvalues are also
the singular values; when negative examples are considered
using discriminant analysis, as in Zhou and Huang [62], the
generalized eigenvalues are not the same as the singular val-
ues, and the solution is a generalized whitening transform or
discriminative whitening transform followed by the Euclidean
metric.

Feature normalization

Different image features need to be normalized to have compa-
rable statistics, say normal distribution. (A set of alternatives
is discussed in Aksoy and Haralick [1].) Not surprisingly, this
normalization can also be extended to a transformation of the
feature space. From a discrimination point of view, the opti-
mal normalization shall be the transform that separates all the
semantically meaningful classes in the dataset from clusters
within each class. Since the class membership is not known a
priori, one possible solution is to use the accumulated feedback
from all the users as the training set to be fed into a multiple
discriminant analysis [9,10] framework to yield a transform
that is optimal for the training data available so far. This im-
plies more computation, but can give better performance than
the straightforward normal distribution assumption. A simpli-
fied example is that if all users emphasize color feature more
than texture in all cases, then there is no reason for maintain-
ing equal variances along these two axes – stretching the color
axis can give a better initial retrieval result. This is illustrated
in Fig. 3. Note that the “stretching direction” does not have
to be aligned with the original axes as shown in the figure –
correlations among axes can be modeled as well.

4.3. Pre-clustering and long-term learning

It may be argued that unsupervised clustering techniques –
EM using minimum description length criteria, or mean shift
– can determine the number of clusters in the database offline,
automatically. However, semantically meaningful clustering
depends upon the subspace in which a semantic concept class
lies: an image of a “white horse” in the feature space is not nec-
essarily closer to a “red horse” than it is to a “white sheep”, un-
less a proper discriminating subspace (say, discounting color)
can be specified beforehand – which is, however, exactly what
relevance feedback is trying to learn in the first place. So in
principle, the rationale of relevance feedback contradicts that
of pre-clustering. It is even more so when differences in per-
ception and interpretation among different users at different
times are taken into account – the clustering structure of a
database changes for different users at different times.

However, in practice, prior domain knowledge – if it holds
true for all users of the system – can be used to guide a pre-
organization of the dataset. This can be the case for some ap-
plications such as medical image databases, for which seman-
tically meaningful static clusters exist and can be identified
offline to improve the real time performance. In such cases,
knowledge can also be “accumulated” during user interaction
from time to time, and from user to user, and we refer to this
as “long-term learning” (see Fig. 2) [4,22,29,45].

In Bartolini et al. [4], the authors have assumed the exis-
tence a static mapping from each point to an “optimal” query
point (the cluster center) and an “optimal” distance function
(the shape of the cluster). This mapping is learned across time
and across different users, and is then used to “bypass” sub-
sequent relevance feedback loops.

Su et al. [45] used incremental updating formulae across
relevance feedback sessions to efficiently estimate class-
specific Gaussian parameters in the PCA subspace.

Overall, in considering the pre-clustering or long-term,
across-user learning issue, a trade-off has to be made between
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Fig. 3. Feature normalization as a discriminating transformation: assuming all meaningful classes have ellipsoidal contours as shown

flexibility (in supporting individuality online) and efficiency
(by storing common knowledge offline).

4.4. Global vs. regional query

Most relevance feedback schemes are designed to deal with
global image features only, which apparently is not the best
choice. Some algorithms can be extended to deal with im-
age blocks using a concatenated feature vector as the repre-
sentation, and a hierarchical weighting scheme automatically
reveals the relative importance of different image blocks dur-
ing user interactions [61]. Vasconcelos and Lippman [52] used
Bayesian inference on image local features for relevance feed-
back learning. This scheme is inherently capable of image
regional query, given properly learned priors. Explicit local
object learning and modeling schemes [11,17,29,31,36,59,
64], if robust and fast enough, could be the ultimate choice
to achieve the highest performance for image regional query
through relevance feedback.

4.5. Incorporating textual annotations

The so-called “semantic gap” between high-level concepts in
the user’s mind and low-level features extracted by the ma-
chine is so wide in many cases that the use of keywords or
annotations (where available) is key to meaningful retrieval.
The research efforts in combining low-level features with text
include joint use of textual and visual features for querying
and relevance feedback learning; learning of visual models
for concept classes annotated by keywords; and the learning
of keyword relations from relevance feedback [3,26,44,63].

4.6. Complexity of a nearest neighbor search

When the size of the dataset is large and the dimensional-
ity of the representation space is high, even a simple nearest

neighbor search (under changing distance metric) can be com-
putationally formidable for real time performance. One solu-
tion can be an adaptive nearest neighbor search [57], which
updates a relatively small number of nearest neighbors intel-
ligently and efficiently from one iteration to the next without
searching the whole dataset repeatedly. Other solutions ex-
ploit hierarchical data structures as well as parallel processing
architectures to speed upp the nearest neighbor search [53].

A challenging problem, as mentioned before, is how to
dynamically update a hierarchical data structure according to
user fed-back information.

5. Summary

Targeted at a very specific application scenario, namely the
real-time learning from user interactions during information
retrieval, relevance feedback as a classification or learning
problem possesses very unique characteristics and difficulties.
A successful algorithm is one that is tailored to address these
special issues.

In this paper, we have compared and analyzed a variety of
relevance feedback algorithms in the literature, most of which
are from the content-based multimedia retrieval research area,
with some from other areas, but having the essence of – or the
potential of being used as – a relevance feedback algorithm
during information retrieval.

One of the key observations is that, even though labeled
the same as “relevance feedback” algorithms, many schemes
were developed under quite different application or user as-
sumptions. We highlight these differences, and compare their
merits. Through the comparison and analysis of existing lit-
erature, we have discovered some common problems across
different approaches, as well as some misconceptions; a list
of such critical issues is presented and elaborated upon in the
hope of aiding readers’ efforts in designing fast and effective
relevance feedback algorithms.

Some future research directions were proposed throughout
the discussion.
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