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ABSTRACT
Content-based image retrieval techniques rely on automatic
features extracted from images to process similarity queries.
Usually low-level features are extracted, and when they are
used to compare images stored in a database to a reference
image (through single center selection queries), they often
lack the ability to convey to the users what they understand
as similarity. To deal with the gap between what the user
expects and what the system can automatically provide, rel-
evance feedback techniques have been employed. In this pa-
per we present a generalization of the single center similarity
queries over data in metric spaces, taking into account both
range and k-nearest neighbors. Allowing a query to include
multiple query centers, it straightforwardly attends the rel-
evance feedback requirements. Thus, we analyze how well
our new approach contribute to relevance feedback methods
for content-based image retrieval.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Multimedia
databases; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Relevance feedback

Keywords
Aggregate Similarity Queries, Relevance Feedback, Content-
based Image Retrieval

1. INTRODUCTION
Similarity queries are very useful to search complex data.

A similarity query searches the database looking for ele-
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ments similar to a reference element (query center) accord-
ing to a certain similarity measure, ranking the results based
on the distances to the query center. The similarity com-
parisons usually require the data domains to be represented
in metric spaces, which embody both spatial data with fixed
dimensions as well as non-dimensional data [17]. A metric
space is defined by a pair 〈S, δ()〉, where S is the data do-
main and δ() is a dissimilarity function δ : S × S → R+

that complies with the symmetry, non-negativity, identity,
and triangle inequality properties. Some studies also con-
sider non-metric similarity, such as in [1]. However, when
a dataset is represented in a metric space, it is possible to
create index structures (metric access methods) that allow
the optimization of similarity queries.

Complex data (such as images, audio or video) require ex-
tracting features that are used in place of the data element
when performing the comparisons. The features are usually
the result of mathematical algorithms, resulting in low level
features. Considering the image domain, the features are
usually based on color, texture and shape, as in Content-
Based Image Retrieval (CBIR). However, there exists a se-
mantic gap between the low level features and the human
interpretation subjectivity. To deal with the semantic gap,
relevance feedback techniques have been developed. In these
techniques, positive and/or negative examples are informed
by the user to allow the system to derive a more precise rep-
resentation of the user intent [18]. The new representation
of the user intent can be achieved through query point move-
ment or multiple point movement techniques. Furthermore,
implicit feedback techniques have also been developed for
web search engines. In these techniques, the system learns
from search results provided by the user and takes advantage
of this information to adapt ranking functions. One way to
tell to the system what is the user’s intention is specifying,
in the same query, other elements besides the query center,
which are positive or negative examples of the intend answer.
This representation is based on multiple query centers.

Previous works have employed aggregate functions to rank
the elements from a dataset based on multiple query centers.
Considering metric spaces, [15] proposed the Falcon tech-
nique to rank images based on an aggregate function up to
a threshold ξ. The works presented in [14] and [10] propose
the use of an aggregate function to rank low-dimensional
spatial data respectively by range and by k-nearest neigh-
bors.

In this paper, we propose the generalization of the two
most common similarity queries in metric spaces – the range
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and the k-nearest neighbor query – defining the Aggregate
Similarity Query, which retrieves elements based on their
composite similarity regarding multiple centers. An aggre-
gate similarity query can be limited either by an aggregate
threshold ξ – resulting in the Aggregate Range Query – or
by a quantity k of elements – resulting in the Aggregate
k-Nearest Neighbor Query. We also discuss their usage for
positive and negative weighted relevance feedback for CBIR,
showing results over real image datasets.

The remainder of the paper is structured as follows. Sec-
tion 2 summarizes existing related works. Section 3 presents
the fundamental concepts regarding the proposed aggregate
similarity query. A representative set of experiments is pre-
sented in Section 4. Finally, Section 5 gives the conclusions
of this paper.

2. RELATED WORK
Relevance feedback is a real-time learning strategy that

adapts the answer of a retrieval system exploring the user
interaction. It is a process that takes advantage of the in-
formation fed back by the user about the relevance of the
answers returned by a given query to automatically adjust
the answer to the next queries [3]. Thus, it aims at obtain-
ing a better approximation of the user’s expectations and
preferences.

The typical steps of a relevance feedback cycle in image
retrieval systems are: (1) the system returns the initial an-
swers of a query-by-example; (2) the user judges the answers
returned informing a degree of relevance to a set of images;
(3) the system learns the user intention based on the user
feedback. When the user poses a new query, the system
changes its search rules to adapt the answer to the learned
intention. The cycle is repeated until the user is satisfied
with the results, as shown in Figure 1 [9].

Relevance Feedback loop

Initial user query Retrieved results Labeled images 
(relevant/irrelevant)

Learning (adjusting 
query parameters

User feedback

Final retrieval 
results

Figure 1: CBIR with relevance feedback.

Considering step 2, several algorithms with different ap-
proaches have been proposed. There are some algorithms
that assume the feedback either as positive or negative [16,
4], others that only deal with positive feedback [2] and oth-
ers that accept varying degrees of relevance for positive and
negative examples [19]. There is also a number of tech-
niques that can be employed in step 3. According to the
strategy employed, these techniques can be divided into two
main categories: query point movement, and multiple point
movement.

The query point movement techniques consider that a
query is represented by a single query center. Therefore,
at each user interaction cycle, the strategy estimates an
ideal query center in the query space, moving the center
towards the relevant examples and away from the irrelevant
ones, as in Figure 2. When dealing with multidimensional
data, these techniques usually perform a refinement of the

dissimilarity function using the information obtained from
the user to decide which dimensions should be emphasized
and which should have their influence diminished. The re-
finement is done assigning weights to all dimensions of the
feature vector [13, 7].

(a) (b)

qo
qo

Query 
center
Relevant 
element

Figure 2: Query point movement example. (a) Ini-
tial query. (b) New query point.

Considering that the feedback may be composed of pos-
itive and negative examples, the Rocchio’s technique [12]
is one of the most common techniques employed to com-
pute the query point movement. However, the Rocchio’s
technique can be employed when the feature vectors have
a fixed dimension. It is based on the formula expressed by
Equation 1, where Q is the query vector and Q′ is the resul-
tant vector, D′

R and D′
N are respectively the positive and

negative examples, NR′ and NN′ are the number of posi-
tive and negative examples in D′

R and D′
N and α, β and γ

are selected constants, obtained experimentally. The Roc-
chio’s relevance feedback technique maximizes the difference
among the query center Q and the images selected as non-
relevant D′

N and minimizes the difference among the query
center Q and the images selected as relevant D′

R. In this
way, all relevant and non-relevant elements are employed to
move the query center Q, adding the normalized differences
of D′

R and subtracting the normalized differences of D′
N , re-

sulting in a new element Q′. It is important to note that
the query point movement creates a new feature vector that
may not correspond to an image from the dataset.

Q′ = αQ + β

 1

NR′

∑
i∈D′

R

Di

− γ

 1

NN′

∑
i∈D′

N

Di

 (1)

On the other hand, multiple point movement techniques
utilize multiple query centers to represent a query, as shown
in Figure 3. The strategy of these techniques consists in as-
signing the elements informed as relevant in clusters, where
each cluster is represented by the closest element to the clus-
ter center. The new centers are called representatives, and
are used to execute a multiple center query that calculates
a single contour to cover all the representative elements. In
this type of query, it is common to use the number of el-
ements associated to each center as its weight. Thus, the
distance of one query center to the representatives in a mul-
tiple center query corresponds to a weighed combination of
the individual distances among the associated elements and
the representatives. This strategy was employed in [6] and
[11]. In addition to these techniques, there are also strate-
gies based on multiple point movement, where the elements
labeled as relevant form disjunctive clusters, thus allowing
the execution of disjunctive queries [15, 8].
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Query 
center
Relevant 
element

(c)(a) (b)

Figure 3: Multiple point movement example. (a)
Initial query. (b) Query expansion based on weights.
(c) Multiple query center technique.

3. AGGREGATE SIMILARITY QUERIES
In order to search by similarity, the dataset elements can

be represented as vectors in a multidimensional space (e.g.
color features extracted from images), by a non-fixed num-
ber of values (e.g. fingerprints, where the number of deltas
and endings may differ from one person to another) or by
values in an adimensional space (e.g. DNA sequences rep-
resented as texts), depending on the type of application. It
is worth to note that multidimensional data compared with
the Minkowski distance functions are special cases of metric
spaces. As in this paper we aim at generalizing the concept
of aggregate similarity queries, we focus on the metric space
model because it is less restrictive and embodies all of these
cases. Provided with adequate dissimilarity functions, the
metric space also includes the multidimensional space.

Aggregate similarity queries are based on aggregate simi-
larity predicates, and we define an aggregate similarity pred-
icate as follows. Given a set of elements S ⊂ S, where S is
the domain of elements from a metric space 〈S, δ()〉, a set
of query centers Q ⊂ S and a similarity aggregation func-
tion dg() that calculates the aggregate similarity of each
element si ∈ S regarding its similarity measured by δ()
to every element sq ∈ Q, an aggregate similarity predicate
℘(〈dg(), Q, `〉) : S retrieves every element si ∈ S whose sim-
ilarity aggregated by the aggregation function dg() does not
exceed the limit `.

There are two basic types of similarity predicates: those
limiting the answer based on a given similarity threshold
ξ and those limiting the answer based on the number k of
elements in the answer. If a proper aggregation function
dg() is employed, the predicates of the well-known similarity
range and k-nearest neighbor queries turn out as special
cases of the ℘ aggregate similarity predicates, where the
set of query centers has only one element Q = {sq} and the
limit ` is either the range radius or the number of neighbors,
respectively.

Relevance feedback techniques are usually similarity
queries expressed by the similarity selection operation σ̂
based on similarity predicates. The similarity selections ex-
hibit properties distinct from those of the traditional selec-
tions (for example, they are not commutative), so we use
the (σ̂) symbol instead of the traditional σ. Therefore, we
define the following two kinds of similarity queries.

Definition 1: Aggregate Range Query (ARq): given
a maximum aggregate query distance ξ, a similarity aggre-
gation function dg() and a set of query centers Q, the query
ARq retrieves every element si ∈ S, such that dg ≤ ξ. An
aggregate range selection can be expressed in relational al-

gebra as σ̂(
ARq〈dg(),Q,ξ〉

)S.

Definition 2: Aggregate k-Nearest Neighbor Query
(kANNq): given an integer value k ≥ 1, the query kANNq
retrieves the k elements that result in the minimum value
of the similarity aggregation function dg() from the query
centers Q in S. An aggregate k-nearest neighbor selection
can be expressed as σ̂(

kANNq〈dg(),Q,k〉
)S.

Following the definition of metric spaces, the dissimilarity
function δ() can be any function comparing pairs of elements
si, sj ∈ S that follows the symmetry, non-negativity, iden-
tity, and triangle inequality properties. However, as the set
of query centers Q may have more than one element, the
distance δ(si, sq) from each query center sq ∈ Q to the el-
ement si ∈ S must be evaluated to calculate the similarity
aggregation function dg : P (S)×S → R+ between si and the
set of query centers Q ⊂ P (S). The similarity predicate uses
the resulting value to rank the elements in S with respect
to Q.

There may be several alternatives to define the similarity
aggregation function dg(). We consider that it is generated
by Equation 2, where δ() is a dissimilarity function, Q is the
set of query centers, si ∈ S is an element of the dataset S,
wq is the weight corresponding to element sq and g ∈ R+ is
a non-zero real value we call the grip factor of the similar-
ity aggregation function. Considering Equation 2, the Ag-
gregate Range Queries and the Aggregate k-Nearest Neigh-
bor Queries applied over single query centers correspond to
the traditional Range Queries and the k-Nearest Neighbor
Queries respectively.

dg(Q, si) = g

√√√√ ∑
sq∈Q

[ δ(sq, si)
g · wq ] (2)

g = 1 g = 2 g =

g = 1/2 g = 1/4 g = 1/8

g = -1 g = -2 g = -

Figure 4: The effect of the grip factor g in an
Euclidean 2-dimensional space, considering Q =
{q1, q2, q3}.
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Figure 4 presents the effect of the grip factor g in a 2-
dimensional Euclidean space, considering Q composed of the
3 shown query centers. Each line represents the geometric
place where Equation 2 has the same value, thus they are
isolines in the 2D Euclidean space, or isohypersurfaces in
a generic metric space. Each isoline represents a different
covering radius, allowing the definition of both range and
k-limited aggregate queries. Notice that for g < 1 they may
generate disjunctive regions.

Weights can be used to model the perception of users in
relevance feedback methods. The methods may let the users
to set the weights or automatically compute them based on
the user’s feedback. Figure 5 shows the covering regions in
a 2-dimensional space for a set of three query centers using
the grip factor g = 1. In this figure, isoline (a) represents
the covering region considering all weights equal to 1 (posi-
tive feedback) and isoline (b) represents the covering region
setting the weight w2 = −0.5 (negative feedback) for the
query center q2 and w1 = w3 = 1 to the query centers q1

and q3.

(b)

(a)

w = -0.52

q2

q1

q3

Figure 5: Aggregate range (g = 1) covering regions
in a 2-dimensional Euclidean space for the set of
query centers Q = {q1, q2, q3}. Isoline (a) represents
the covering region considering all weights equal to
1. Isoline (b) represents the covering region con-
sidering the weight w2 = −0.5 for the query center
q2.

4. EXPERIMENTS
In order to show the effectiveness of our approach, we

present two representative sets of experiments chosen from
those we have performed with several datasets. The im-
age dataset employed in the experiments is the Amsterdam
Library of Object Images (ALOI) [5], a color image collec-
tion of one-thousand small objects, recorded for scientific
purposes in several configurations. The ALOI Illumination
Color dataset is composed of 12 different illumination pho-
tos of each object, resulting in 12,000 images. For the sake
of the simplicity of the aggregate similarity queries analy-
sis, the feature extractor employed returns the values of the
red, green and blue in a 256-scale histogram for each image
(256 dimensions) and the distance function employed is the
Manhattan (L1()), although specific applications, such as
content-based medical image retrieval, should employ more

sophisticated feature extractors and distance functions. Fig-
ure 6 shows a sample of 10 elements of this dataset.

Figure 6: A sample of the images of the ALOI Illu-
mination Color dataset.

In the experiments, we evaluate the effect of the grip factor
g regarding the precision versus recall plots of 300-nearest
neighbor queries and the first three relevance feedback cy-
cles. Notice that, in the precision versus recall graphs, the
closer a curve is to the top, the better is the method under
evaluation. We present herein the results based on near-
est neighbors due to the fact that the k-limited queries are
the ones that most relevance feedback methods employ. All
feedback cycles were run for aggregate 300-nearest neighbor
queries. To evaluate the correctness of each image retrieved,
we used the object portrayed in the image as a class at-
tribute, therefore performing a supervised automated eval-
uation of the algorithm. This is a common configuration
employed to perform a large number of tests over the al-
gorithm under evaluation. For each query, the images fed
back and the images considered for the computation of pre-
cision are those related to the same class in the dataset. The
plots show the average result for 100 randomly chosen query
images.

4.1 Positive Feedback
In the first set of experiments, we evaluate positive feed-

back. It explored the grip factors g = 2, g = 1, g = 1/2
and g = 1/4. Figure 7 shows the precision versus recall
results. The feedback increased the precision in the three
first cycles, and after them, comparing the results for up to
76% of recall, they resulted in the precisions of 78.4% for
g = 2, 85.2% for g = 1, 90.5% for g = 1/2 and 93.4% for
g = 1/4. High precision values up to high recall levels are
the desirable results.

The same experiment was executed with the Rocchio’s
technique, setting the positive feedback constant for two val-
ues of β, β = 0.5 and β = 1.0, executing the initial k-nearest
neighbor queries and performing query point movements in
each cycle. These settings enable direct comparison of the
results, as the experiments were run under the same condi-
tions. Figure 8 shows the precision versus recall graphics.
The feedback also increased the precision in the three first
cycles, and after that, comparing the results for up to 76%
of recall, they resulted in the precisions of 67.8% for β = 0.5
and of 77.8% for β = 1.0. Other values of β were also tested,
but did not result in better precision than for β = 1.0. As
it can be noticed, even the first cycle of our proposed algo-
rithm achieves a better precision than the best one obtained
using the Rocchio’s technique (86.8% for g = 1/4 versus
74.3% for β = 1.0, both at 76% of recall).
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and crop it as 207, 173, 354, 592
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Figure 7: ALOI Illumination Color dataset precision
versus recall graphics of k-nearest neighbor queries
and the first 3 cycles. Positive feedback. (a) g = 2
(b) g = 1 (c) g = 1/2 (d) g = 1/4.
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Figure 8: ALOI Illumination Color dataset precision
versus recall graphics of k-nearest neighbor queries
and the first 3 cycles. Positive feedback. (a) Rocchio
β = 0.5 (b) Rocchio β = 1.0.

4.2 Positive and Negative Feedback
In the second set of experiments, we evaluate the posi-

tive and negative feedbacks. The negative feedback images

were chosen from the resultant set of k images of each query
among those with class distinct from the query center, in
a number not larger than 33% of the images selected as
positive feedback (images of the same class), by setting the
weight w = −0.5. It also explored the grip factors g = 2,
g = 1, g = 1/2 and g = 1/4. Figure 9 shows the precision
versus recall results. The feedback increased the precision
in the first three cycles, and after them, comparing the re-
sults for up to 76% of recall, they resulted in the precisions
of 70.9% for g = 2, 76.9% for g = 1, 81.7% for g = 1/2 and
85.8% for g = 1/4.

Again, we run the same experiment with the Rocchio’s
formula, combining the positive feedback constant β = 0.5
and β = 1.0 with the negative feedback constant γ = 0.5,
executing the initial k-nearest neighbor queries and perform-
ing query point movements in each cycle. Figure 10 shows
the precision versus recall graphics. The feedback also in-
creased the precision in the first three cycles, and after them,
comparing the results for up to 76% of recall, they resulted
in the precisions of 65.3% for β = 0.5 and γ = 0.5 and
of 73.8% for β = 1.0 and γ = 0.5. Other combinations of
values of β and γ were also tested, but did not result in
better precision than for β = 1.0 and γ = 0.5. As occurred
in the positive feedback experiment, even the first cycle of
our proposed algorithm achieves a better precision than the
best one obtained using the Rocchio’s technique (81.5% for
g = 1/4 versus 76.2% for β = 1.0, both at 76% of recall).
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Figure 9: ALOI Illumination Color dataset precision
versus recall graphics of k-nearest neighbor queries
and the first 3 cycles. Positive and negative feed-
back. (a) g = 2 (b) g = 1 (c) g = 1/2 (d) g = 1/4.
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Figure 10: ALOI Illumination Color dataset pre-
cision versus recall graphics of k-nearest neighbor
queries and the first 3 cycles. Positive and negative
feedback. (a) Rocchio β = 0.5 γ = 0.5 (b) Rocchio
β = 1.0 γ = 0.5.

5. CONCLUSION
This paper presented the aggregate similarity queries in

metric spaces, which can be seen as the generalization of
the most common queries (range and k-nearest neighbors)
for multiple query centers, and their usefulness for relevance
feedback. As shown in the experiments section, the aggre-
gate similarity queries are useful in real applications and
present better behavior than the Rocchio’s technique, one
of the best and most used techniques for relevance feedback
in CBIR. Further work includes the development of opti-
mization algorithms to perform these queries using metric
access methods.
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