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Abstract

Today’s Content-Based Image Retrieval (CBIR) 
techniques are based on the “k-nearest neighbors” (k-
NN) model.  They retrieve images from a single 
neighborhood using low-level visual features.  In this 
model, semantically similar images are assumed to be 
clustered in the high-dimensional feature space. 
Unfortunately, no visual-based feature vector is sufficient 
to facilitate perfect semantic clustering; and semantically 
similar images with different appearances are always 
clustered into distinct neighborhoods in the feature space.  
Confinement of the search results to a single 
neighborhood is an inherent limitation of the k-NN 
techniques. In this paper we consider a new image 
retrieval paradigm – the Query Decomposition model - 
that facilitates retrieval of semantically similar images 
from multiple neighborhoods in the feature space.  The 
retrieval results are the k most similar images from 
different relevant clusters.  We introduce a prototype, and 
present experimental results to illustrate the effectiveness 
and efficiency of this new approach to content-based 
image retrieval. 

1. Introduction 

Nearest neighbor search [14] is the standard technique 
for today’s content-based image retrieval (CBIR) systems.  
In this framework, images are represented as feature 
vectors, or points in a high-dimensional feature space.  
Images are considered similar if they are located “close” 
to each other in this high-dimensional space, according to 
some distance measure.  Query processing is performed 
by finding k nearest images to a given example image in 
the feature space.  A limitation of this approach is due to 
the weak correlation between retrieval objects and their 
appearance in images.  A given object type can have 
various color patterns and diverse shapes from different 
view points.  Consequently, the best-matching images are 
not necessarily located near each other in any single 
neighborhood in the feature space.  A better technique 

will combine the top ranked images from all the 
semantically relevant clusters in order to optimize the 
overall precision and recall.  This is the idea behind our 
Query Decomposition (QD) approach introduced in this 
paper.  In other words, a QD search is not based on the 
traditional k nearest neighbors in a single neighborhood, 
but rather finding the k best-matching images wherever 
they might be in the feature space. 

1.1 Limitation of Traditional k-NN Model 

Since it is inconvenient and inherently difficult to 
express queries in terms of low-level visual features such 
as color, texture, and shape, these feature values are 
generally “described” indirectly through the use of 
example images.  This query model, called Query by 
Example (QBE), is used in essentially all CBIR systems 
today.  To support QBE, images are characterized using 
their low-level visual features.  Each image can be viewed 
as a data point in a multidimensional feature space, where 
each dimension corresponds to a visual characteristic.  
Similarly, a query image (that is, the example image) is 
mapped to a query point in that same multidimensional 
space.  Query processing is then accomplished by finding 
the images corresponding to the k data points nearest to 
the query point.  This popular query processing strategy is 
known as the k-Nearest Neighbors (k-NN) model. 

The k-NN model confines the search result to a single 
neighborhood in the feature space.  In practice, however, 
the k nearest neighbors may not be the real semantic 
neighbors.  Cars, for example, come in many different 
shapes and colors; even the same car may look very 
different from different standpoints.  These images would 
belong to different clusters in the feature space; and a 
simple retrieval of the k neighbors nearest the query point 
would not capture all the “car” images.  The inherently 
weak association between the high-level semantic 
concepts human perceive in images and the low-level 
visual features used to characterize images causes poor 
recall in today’s CBIR systems.  Although this situation 
can be improved upon by conservatively retrieving more 
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images (i.e., employing a larger k value), this strategy 
would likely result in poor precision with many irrelevant 
images in the query result. 

To further illustrate the limitation of the k-NN model, 
let us consider the images of “a white sedan” in a real 
database.  This database is organized according to a 37-
dimensional feature space (see Section 4 for additional 
details).  We applied Principle Component Analysis (PCA) 
to project the data set onto a 3-dimensional orthogonal 
subspace, as shown in Figure 1.  PCA is a powerful 
method for dimensionality reduction.  The similarity of 
data vectors is preserved well in Figure 1.  We observe in 
this 3-dimensional space four distinct clusters of the 
“white sedan” images, namely “side-view,” “front-view,” 
“back-view,” and “angle-view.” In this circumstance, 
retrieval techniques based on the k-NN model would not 
be able to find all these semantically identical images 
because they are not in any single k-NN neighborhood.  
This problem causes poor recall (i.e., failing to include 
many relevant images) in today’s CBIR systems.  
Although this situation can be improved by using a very 
large k value to include more “Sedan” images in the 
database, the larger k value would inevitably also cover 
many semantically irrelevant images (represented by 
small triangles in Figure 1, scattered in-between the four 
“white sedan” clusters) resulting in poor precision. 

1.2 Multiple Neighborhoods Approach 

To address the limitation of the k-NN model due to the 
confinement of the result images to a single neighborhood, 
we consider a Query Decomposition (QD) technique.  
The idea is to decompose an initial query into localized 
subqueries based on user relevance feedback.  These 
subqueries are processed independently, and their local 

results are merged to form the final result.  This procedure 
is inspired by query processing techniques for distributed 
and parallel database management systems.  It ensures 
that all semantically relevant data partitions are 
considered, even if they are positioned far apart in the 
feature space. 

As an efficient way to facilitate query decomposition, 
we propose a Relevance Feedback Support (RFS) 
structure.  This tree structure is constructed by 
hierarchically clustering the images in the database. With 
this facility, query decomposition becomes a multi-path 
tree descending procedure, in which the specific 
decomposition paths are influenced by user relevance 
feedback.   The advantages of this computation technique 
are twofold.  First, processing relevance feedback does 
not incur k-NN computation, and second, execution of the 
final subqueries requires only localized k-NN
computation.  We present experimental results later to 
show that the RFS approach is substantially less 
expensive than traditional relevance feedback processing 
based on a series of global k-NN computation. 

1.3 Contributions 

The primary contributions of this paper are as follows: 

1. We introduce the Query Decomposition technique 
as a solution to address the limitation of the 
traditional single neighborhood k-NN model.  The 
new method is capable of retrieving images with 
similar semantics but very different visual 
characteristics, i.e., relevant images that are 
scattered in the feature space. 

2. We introduce the RFS structure to significantly 
reduce the cost of relevance feedback processing. 

The remainder of this paper is organized as follows. 
Section 2 provides a survey of related work.  In Section 3, 
we present the details of the Query Decomposition 
approach. The system prototype is introduced in Section 4 
and we discuss our experimental study in Section 5.  
Finally, we conclude this study and discuss our future 
work in Section 6. 

2. RELATED WORK 

In trying to reduce the semantic gap [18] between low-
level visual features and the high-level concepts conveyed 
by the query images, recent research has focused on 
retrieval techniques based upon relevance feedback.
These schemes interact with the user.  In each round, the 
user helps by identifying the relevant images within the 
set of images retrieved in the last round.  The system then 
utilizes this feedback to modify the current query and thus 
to improve its retrieval results in the next round.  This 
process is repeated until the user is satisfied with the 

Side-view

Front-view

back-view

Angle-view

Side-view

Front-view

back-view

Angle-view

Figure 1.  Four distinct “white sedan” clusters in a 
3-dimensional feature space of an image database.

irrelevant
image 
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results.   A query can be modified by a process called 
query point movement [7], the use of a multipoint query 
[13], or utilizing a more flexible query contour [9].  We 
briefly discuss these recent techniques in this section. 

Query Point Movement [7]:  A query is treated as a 
query point in the feature space.  During every round of 
feedback, the centroid of the relevant images is used as 
the new query point in the next iteration.  Furthermore, 
the distance function is weighted such that the query 
contour, enclosing the result images, is shaped in such a 
way as to optimize the trade-off between precision and 
recall.

Multipoint Query [13]: This technique offers another 
way to control the query contour.  The relevant points 
according to user feedback are grouped into clusters, each 
represented by the data point nearest its centroid.  These 
representatives are treated collectively as a multipoint 
query, and the distance of a data point to this multipoint 
query is defined as the weighed combination of the 
individual distances from the representatives, where the 
weight associated with each representative is proportional 
to the number of relevant images in its cluster.  The effect 
is the expansion of the query contour, in accordance with 
the distribution of the centroids in the feature space, to 
capture more relevant images near by.  

Qcluster [9]:  The Multipoint Query likely includes 
irrelevant images when the desired images are in clusters 
significantly far apart in the feature space.  In this 
circumstance, using separate contours can retrieve the 
desired images with greater precision.  This is achieved in 
Qcluster by using a quadratic distance function to 
approximate any contour and to support disjunctive 
queries such that only images near the cluster 
representatives are considered relevant.  

The design of the above and some other existing CBIR 
techniques, e.g., [2, 8, 10, 15, 20, 21], are based on the k-
NN model: objects of similar semantics look similar in 
many aspects. This strategy fails when the image 
characterization and similarity measure do not follow 
perceptual characteristics. In this circumstance, images 
with similar semantics could be scattered in distinct 
neighborhoods in the feature space.  Relevance feedback 
techniques based on k-NN would navigate along a single 
path to select, among these relevant neighborhoods, the 
one with the best tradeoff between precision and recall, 
instead of merging better matches from all these relevant 
neighborhoods in order to achieve a more optimal result. 

To overcome the confinement of the traditional k-NN 
image retrieval, some top k retrieval approaches have 
been proposed recently.  The result of such retrieval 
approaches are typically a ranked list of the top k objects 
that match the given attributes.  The top k images can be 
acquired by merging information from multiple systems 
[3, 4], or using multiple viewpoints [5].  

Merge information from Multiple Systems [3, 4]: 
This approach evaluates atomic queries (e.g., “find red 

objects”) in separate subsystems consecutively. By using 
the first atomic query in the first subsystem, a result set is 
generated. Then the result set is evaluated in the second 
subsystem by applying the second atomic query (e.g., 
“find rectangular objects”).  Consequently, the result set is 
ordered based on the query criteria in different 
subsystems.  Finally, the top k images are selected from 
the overall ranked list as the result. 

Multiple Viewpoints [5]: This recent technique 
improves on Qcluster by searching for relevant images 
using multiple queries; each considers only a subset of the 
visual features.  As a result, images differing slightly in 
some visual aspect (e.g., a blue bus vs. a green bus) can 
still be found.  In this model, multiple neighboring 
clusters can be returned as query results to achieve better 
retrieval effectiveness.   

The above two techniques try to capture the user’s 
perception by selecting retrieval results from a ranked list. 
Though these top-k techniques can archive better 
performance than the standard k-NN techniques, they 
degrade significantly when the relevant images can not be 
covered by a single neighborhood. A neighborhood in this 
context may include more than one neighboring cluster, 
such as those identified by the Multiple Viewpoint 
approach.

3. Query Decomposition Approach 

From the examples in Section 1, we can see that 
semantically identical images (e.g., “sedan”) may exhibit 
very different visual characteristics, and thus may not be 
projected to data points lying close together in the feature 
space.  From this perspective, the problem of bridging the 
semantic gap becomes that of finding the semantically-
related clusters, and more such clusters found results in 
improved precision and recall.   

The goal of our Query Decomposition approach is to 
find all of these clusters. Existing relevance feedback 
methods are designed to avoid less relevant 
neighborhoods (local optimums) in order to find the most 
relevant one (the global optimum) in the feature space, 
where relevancy is defined in terms of precision and 
recall.  In contrast, the Query Decomposition approach is 
designed to find the best matching images whether they 
are in a single or multiple relevant neighborhoods.  We 
describe the details of the Query Decomposition 
technique in this section. 

3.1 Relevance Feedback Support structure 

The purpose of the relevance feedback support (RFS) 
structure is to make query decomposition more efficient.  
This structure is our implementation of the proposed QD 
model, with other implementation techniques also 
possible.  A RFS structure is constructed in two stages.  
We discuss this procedure in the following. 
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Data Clustering: A hierarchical clustering technique, 
similar to the R*-tree [1], is used to organize the entire 
image database into a hierarchical tree structure.  As each 
node in this hierarchy represents a cluster, we extend the 
original node structure of the R*-tree [1] to include also 
information to identify the corresponding representative 
images.  Without lost of generality, we selected the R*-
tree for our study because it is well known and has been 
widely used in practice.  We could have also chosen other 
clustering techniques such as the Hierarchical Generative 
Topographic Mapping [12]. 

Representative Images Selection: A bottom-up 
representative-selection procedure is performed as 
follows: 

At the bottom level of the RFS structure, the images in 
each leaf node are clustered into subclusters by an 
unsupervised k-mean clustering algorithm.  Here we use 
Si to represent an image set in the ith leaf node.  By 
applying unsupervised k-mean clustering, Si is clustered 
into subclusters: {Ci1, Ci2, Ci3, … ,Cik}.  For each of the 
subclusters, one or more images nearest its center are 
selected as the representative images of Si.  We use Ri
to denote the set of representative images of Si.

For each subsequent cluster in the upper level of the 
hierarchy, the representative images of all its child 
clusters are again aggregated and clustered by an 
unsupervised k-mean clustering algorithm.  The images 
nearest these k-mean-cluster centers are selected as the 
representative images for the current node.  For 
example, if a node has children S1 through Sn, then R1,
R2, …, Rn are aggregated and clustered, and 
representative images are selected from the new k-
mean-clusters. 

The number of representative images for each cluster 
is proportional to the number of images in that cluster. In 
other words, clusters in the upper levels of the RFS 
structure have more representative images than those in 
the lower levels of the hierarchy.  The list of 
identifications of the representative images is stored in the 
modified R*-tree structure as part of the corresponding 
tree node.  Thus, all of the information needed to support 
localized relevance feedback is self-contained in the RFS 
structure.

As our clustering method is based on visual features, a 
cluster may contain images with different semantics and 
therefore can have semantically different representative 
images. Each distinct category of objects, however, is 
likely to have one or more meaningful representative 
images somewhere in the RFS hierarchy. This form of 
clustering, although imperfect in terms of semantic 
clustering, is sufficient for the query decomposition 
process when combined with user relevance feedback. We 
will discuss this in more detail shortly.  For convenience, 
in this paper we will refer to a cluster by the semantics of 
one of its representative images (e.g., a “desktop” cluster) 

given that the context of the current discussion is clear 
(e.g., the query is “finding computers”). 

3.2 Decomposition Technique 

In the QD environment, two data clusters are 
semantically related if they have semantically similar 
subclusters.  For instance, given the query “finding 
passenger cars,” a data cluster with a “sedan” subcluster is 
considered semantically related to another data cluster 
with a “coupe” subcluster.  The idea of query 
decomposition is to split the initial query into more 
localized subqueries to explore distant relevant subspaces.  
Each subquery may be split again in the next iteration in 
order to cover more specific subclusters or to discard 
irrelevant ones.  In this strategy, each subquery is 
processed independently to explore its own subspace.  
Initially, the semantically relevant clusters may also 
contain many irrelevant images.  However, as the 
hierarchical decomposition makes progress, the localized 
subqueries become more refined, and ultimately the final 
subqueries identify only clusters with mostly relevant 
images. 

To help the user formulate the initial query, the system 
displays some randomly selected representative images 
from the root node of the RFS structure.  From these 
images, the user identifies the most relevant ones.  If 
necessary, this process can be repeated with additional 
rounds of random displays in order to select additional 
relevant images.   To process the initial query, the system 
determines the relevant subclusters to which these 
selected representative images correspond.  If this process 
results in more than one relevant subcluster, the initial 
query is “split” into separate localized subqueries, one for 
each relevant subcluster.  In other words, these 
subclusters are treated conceptually as separate databases, 
and localized relevance feedback is now performed 
separately on each of these individual subclusters. 

We illustrate the query decomposition process with the 
example in Figure 2.  We note that the images presented 
in this figure are not all of the representative images of 
the respective clusters.  Similarly, only tree nodes relevant 
to the current discussion are shown in Figure 2.  A more 
realistic diagram would include many more tree nodes 
and representative images.  In this example, the RFS 
structure has three levels, with Node 1 representing the 
root cluster of the entire image database.  Suppose the 
user wants to find images of cars.  She found, in the first 
feedback iteration, two relevant representative images in 
Node 1 - a steamed car and a modern car.  In response, the 
system determines that these two images came from Node 
2 and Node 3 in Level 2, respectively; and the initial query 
is split into two subqueries as follows.  Random 
representative images from Node 2 and Node 3 are 
presented to the user, at the beginning of the second 
iteration, for relevance feedback.  The user can now find 

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: Masaryk University Brno. Downloaded on December 4, 2009 at 13:55 from IEEE Xplore.  Restrictions apply. 

petra
Highlight

petra
Highlight

petra
Highlight

petra
Highlight

Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.



more relevant images according to her interest, say, a 
steamed car and an antique car in Node 2, plus two 
modern cars of different colors in Node 3.  With these 
new relevant images, the system recognizes in Level 3 the 
corresponding relevant subclusters to be Nodes 4, 5, 6,
and 7. Finally, the user identifies the relevant 
representative images in these subclusters as illustrated in 
Figure 2.  These images are then used as the final four 
localized k-NN subqueries to search the corresponding 
subclusters independently; and their results are merged to 
form the overall result of car.  We discuss the merging 
procedure in Section 3.4. 

We observe from the above example that the user 
starts with an initial set of randomly selected 
representative images. As the user is subsequently 
presented with more relevant representative images from 
various subclusters, the user can indirectly refine the 
initial query by selecting more specific relevant images.  
In other words, the query is decomposed into multiple 
subqueries where, after several rounds, the subqueries 
better capture the user’s intent.  We claim that because 
real-world objects can have very different appearances 
when represented in 2-dimensional images, multiple 
independent subqueries are better suited for their retrieval.  

3.3 Localized k-NN Computation 

To facilitate the query decomposition procedure, in 
each round of user relevance feedback, the system records 
each relevant image and its associated subcluster.  In the 
final round, a localized multipoint query is computed for 
each subset of relevant images belonging to a given 
subcluster represented by a leaf node in the RFS structure.  
In the situation when some of these local query images 
are located near the boundary of the given leaf node, since 
some of their nearest images might actually reside in the 
sibling leaf nodes, the system instead computes the 

multipoint query over the parent node, in order to also 
consider possibly relevant images from neighboring 
clusters.  The detailed procedure is as follows. 

To determine if a query image is near the boundary of 
its leaf node, we compute the ratio between the distance 
of this image from the center of the leaf node and the 
diagonal of the leaf node.  If this ratio exceeds a 
predetermined threshold, the search area is expanded to 
the parent node.  The same computation is repeated in the 
parent cluster and the expansion is continued, as 
necessary, to the higher levels in the hierarchy.  The 
threshold used in this test can be determined empirically 
based on the database size and content as follows.  If the 
images in the database are well clustered, we can set this 
threshold higher, which reduces the probability of 
expanding the search to the parent cluster.  For our 
database with 15,000 images from about 150 categories, 
we set our threshold to 0.4.   

3.4 Similarity Ranking 

The Query Decomposition technique typically has 
results obtained from multiple localized multipoint k-NN 
queries.  Any of the multipoint query processing 
techniques, discussed in Section 2, can be used to process 
these local queries.  In our implementation, we compute 
the similarity score for each image, in a relevant 
subcluster, as the Euclidian distance between the image 
and the centroid of the local query points.    To combine 
the results computed by the different localized k-NN
subqueries, we include several top-ranked images from 
each set of local results.  The number of result images 
selected from each local set is proportional to the number 
of query images the user has identified in the 
corresponding subcluster as relevant to the query.  The 
rationale is that such a subcluster is more relevant to the 
intent of the query.  

Node 2 

Node 4 Node 5 Node 6 Node 7 

Figure 2. A 3-level RFS structure 

Level 1 

Level 2 

Level 3 

Node 3 

Node 1 
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Various presentation techniques can be considered for 
displaying the final results on screen.  In our current 
system, we present the result images in groups as follows.  
First, we compute the ranking score for each set of local 
results as the sum of the similarity scores of the individual 
result images contained therein.  We present these result 
groups in the order of their ranking scores.  Within each 
group, the images selected for the final result are 
displayed in the order of their individual similarity scores.  
An example screenshot is given in Figure 3, where the 
result images are presented in three groups.  We will 
discuss the system prototype in details shortly.  

This presentation scheme is used in this paper to 
illustrate the scattering nature of semantically similar 
images in the feature space and the effectiveness of the 
QD technique in capturing such distant clusters.  In 
practice, the query decomposition process could be made 
more transparent to the user by displaying all the local 
result images in a single ranked list according to their 
individual similarity scores. 

4. PROTOTYPE 

We have constructed a CBIR system using the Query 
Decomposition model. This prototype system consists of 
the following four major components:    

Feature Extraction Module:  This module extracts the 
low-level visual features for each image in the 
database. The system uses a 37-dimensional feature 
vector of numerical values, selected from three groups 
- Color, Texture and Edge Structure.  More 
specifically, they consist of 9 color moment features 

[17], 10 Wavelet-based texture features [16], and 18 
edge-based structural features [22]. 

RFS Structure: This access structure provides an 
efficient facility to support the new relevance feedback 
paradigm based on the query decomposition model.  
This subsystem includes a database builder for 
building the RFS structure and populating the image 
database.  Our test database was populated with 
15,000 images taken from the Corel database with a 
few hundreds new images we created to test the 
capability of proposed techniques.  We specified the 
RFS-structure nodes to contain a maximum of 100 and 
minimum of 70 images each, resulting in a RFS 
structure that is 3 levels deep.  By adjusting the 
aforementioned parameters we can change the breadth 
and depth of the RFS structure, however, the 3-level 
tree we used in our experiments is sufficient for 
research and illustrative purposes.  

Query Processor: This software module implements 
the Query Decomposition procedure presented in 
Section 2. 

Presentation Manager: This software subsystem, based 
on the ImageGrouper [11], provides the graphical user 
interface (GUI) for posting queries, providing 
relevance feedback, and receiving query results. A 
screenshot is shown in Figure 3, with current results 
displayed in the left panel and user relevance feedback 
accepted in the right panel.  In each iteration, the user 
picks relevant images from the left panel and moves 
them to the right panel for feedback processing.  
Figure 3 shows the final query results for “bird”, 
which includes “eagle”, “sparrow”, and “owl”. The 
results are sorted within each of the subcategories and 

            

Control 
panel 

Relevance 
feedback 
panel 

Figure 3.  A screenshot of the prototype with query results displayed in the left pane and query images in 
the right.   The localized subqueries are “eagle”, “sparrow”, and “owl”. 

Result 
panel 
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then among the subcategories.  We notice that the 
“owl” category is listed last because it contains more 
less relevant images affecting its overall ranking score. 

In Figure 3, our system presents 21 images in the result 
panel at a time for user relevance feedback.  During the 
first few rounds of feedback, since the nodes in the upper 
levels of the RFS tree represent large subsets of the 
database, the number of available representative images is 
much larger than 21.  To make it convenient for the user 
to browse these candidates for interesting images to 
include in the query set, we provide a “Random” function 
in the GUI to allow the user to view 21 images at a time, 
randomly selected from the set of all candidate images.  
We note that the Query Decomposition model enables the 
user to provide localized and therefore more specific 
relevance feedback.  To the best of our knowledge, this 
capability is a new contribution to CBIR research.  

In our prototype system, 5% of the images are 
designated as representative images and is the only 
information we need to process relevance feedback.  
Since these images are substantially smaller than the total 
database size, in practice our software can be configured 
such that the RFS structure and relevance feedback 
mechanisms may run in the user computer.  In this client-
server configuration, the user would first identify the final 
query images on the client machine and only then submit 
them to the server to initiate the localized k-NN
computations and final image retrieval.  This capability is 
unique to the Query Decomposition approach and is not 
possible with any existing relevance feedback techniques; 
our system can be made to be highly scalable to support a 
very large user community.    

5. Experimental Studies

We used the prototype system, presented in Section 4, 
for our performance study.   Our objectives are twofold.  
First, we want to evaluate the capability of the Query 
Decomposition technique in handling scattered clusters of 
semantically similar images; and secondly, we would like 
to assess the efficiency of the proposed RFS structure as 
an implementation of the QD model.  All experiments 
were performed on a 2.5-GHz Pentium IV-based 
computer with 1GBytes of RAM. 

5.1 Datasets and Test Queries 

Our test database includes 15,000 images taken from 
the Corel image database with a few hundreds new 
images we created to test the capability of the proposed 
techniques in handling the semantic gap in CBIR.  We 
specified the RFS-structure nodes to contain a maximum 
of 100 and minimum of 70 images each, resulting in a 
RFS structure that is 3 levels deep.  By adjusting the 

aforementioned parameters we can change the breadth 
and depth of the RFS structure. 

The Corel images have been classified into distinct 
categories by domain professionals.  We also classified 
the additional images we created for this experimental 
study into the appropriate Corel categories.  Since users 
search for images based on high level semantic concepts 
(as opposed to low level image features), we used the 
Corel category information as the ground truth in our 
experiments.  To test our system’s capability of bridging 
the semantic gap we compare it with the Multiple 
Viewpoints (MV) approach using the queries listed in 
Table 1.  This query set is carefully designed to 
investigate the impact on performance under both general 
(e.g., “finding computers”) and more specific (e.g., 
“finding laptop computers”) queries.  Some of the test 
queries also allow us to compare the two techniques when 
the subject looks the same from most angles (e.g., 
mountain views). 

5.2 Experimental Results 

To facilitate a fair comparison, both the QD and MV 
techniques were evaluated using the same 11 queries 
listed in Table 1, and the same image dataset with the 
same feature vector.  Both techniques retrieved the same 
number of images for each test query. For the MV 
approach, we combined the images returned by the four 
color channels to form the final result set.  As relevance 
feedback is user subjective, we asked 20 students to test 
the systems by searching for the relevant images in the 
database.  In addition, we evaluate the efficiency of our 
QD approach under various database sizes by using 
simulated queries to evaluate the computation times. We 
discuss our experimental results in the following 
subsections. 

5.2.1 Retrieval Effectiveness 

To evaluate the accuracy of the QD technique, we 
compared it with the MV approach in terms of precision 
and “ground truth inclusion ratio (GTIR)”. In our 
experiments, since the number of retrieved images equals 
the size of ground truth, the precision and recall have the 
same value and we report only precision in this paper. 
The concept of “ground truth inclusion ratio” is defined as 
follow:  

GTIR =
 truthgroundinssubconcept totalofNum

(s)subconceptretrievedofNum

To illustrate the GTIR, we take the query “a person” 
from Table 1 as an example.  In this case, the MV can 
only capture 1 out of 3 ground truth subcategories, thus  
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resulting in GTIR=1/3; while QD can capture all three 
subcategories achieving a value of 1 for GTIR. 

We compared the precision and GTIR of MV and QD 
in 3-round relevance feedback processing in Table 2.   
The results are based on the averages over the 11 test 
queries.  The precision and GTIR at the end of each round 
of the 3-round relevance feedback are given in Table 2.  
We note that the QD technique does not actually commit 
any k-NN computation until Round 3, and consequently 
does not have any precision measurements for Rounds 1 
and 2.  In Round 3, the QD technique determines the 
result images by selecting top-ranked images from each of 
the localized k-NN queries, as described in Section 3.4.  
We observe in Table 2 that the QD technique performs 
significantly better than MV.  Furthermore, the precision 
of MV cannot improve by much after the second round of 
relevance feedback. Due to the confinement of the 
traditional k-NN model, the GTIR of MV can not be 
improved after Round 2 with further relevance feedback. 

We need to point out here that one should not interpret 
the experimental results as evidence for choosing QD 
over the MV technique.  They are designed to address two 
orthogonal issues.  While QD is a framework for 
decomposing queries into localized k-NN subqueries, MV 
is a technique to compute a given k-NN query.  As we 
have mentioned previously, we could have used MV for 

the computation of our localized k-NN subqueries.  The 
lesser performance of MV, observed in this paper, is due 
to the limitation of the k-NN model (confining the search 
area to single, as opposed to multiple distant clusters), and 
not a drawback of the MV technique itself.  In fact, we 
selected MV for our study because it performs very well 
in identifying the better cluster among multiple 
semantically relevant clusters. 

The top eight images retrieved for “portable computer” 
are presented in Figures 4 and 5 for the MV and QD 
techniques, respectively.  Figure 4 shows that the result 
images of MV only include one type of the “portable 
computer”: “laptop with bright background”.  In contrast, 
we observe in Figure 5 that the QD approach is able to 
capture all semantically relevant neighborhoods of 
“portable computer” scattered in the feature space.  

We also present the top 16 images for “personal 
computer” from MV in Figure 6 and QD in Figure 7.  The 
“personal computer” includes “desktop” and “portable 
computer”.  Under the “personal computer” concept, there 
are two subcategories: “computer on a table” and 
“computer on the floor.”  Again, the MV approach can 
only find one neighborhood, and the feature space that 
MV covered by using multiple channels can only include 
one type of the computer in the ground truth.  The set of 
“desktop on the floor” images and the set of “desktop on a 
table” images are too far apart in the feature space for the 
MV technique to capture both.   

In Figure 8, we show the top 24 images of “computer” 
returned by MV. The top 24 images retrieved by QD, in 
this test, are shown in Figure 9.  In the QD approach, both 
the “Sun workstation” and “HP workstation” 
subcategories are covered, in contrast, MV only finds one 
subcategory. We notice that with the QD approach, all the 
relevant ground truth subcategories are covered, while the 
MV approach can only catch one of the subcategories.  
These experimental results confirm our assertion that the 

Table 1. Various Query Evaluation in QD & MV  approaches
 MV  QD 

Query Precision GTIR Precision GTIR
A person (Hair-model, fitness, Kongfu) 0.25 0.33 0.81 1
Airplane (single, multiple) 0.21 1 0.85 1
Bird (eagle, owl, sparrow) 0.23 0.33 0.61 1
Car (modern sedan, antique car, steamed car) 0.35 0.33 0.85 1
Horse (polo, wild horse, race) 0.37 0.67 0.72 1
Mountain view (snow, with water) 0.38 1 0.46 1
Rose (yellow, red) 0.22 0.5 0.71 1
Water Sports ( surfing, sailing) 0.11 0.5 0.44 1
Computer (server, desktop, laptop) 0.42 0.5 0.86 1
Personal computer (desktop, laptop) 0.44 0.5 0.69 1
Laptop (with clear background, with complicated background) 0.50 0.5 0.71 1

Average 0.32 0.56 0.70 1
     

Table 2. Quality Comparison 
Techniques

MV QD
Feed-
back 
Round

Precision GTIR Precision GTIR 
1 0.1 0.51 n/a 0.695 
2 0.30 0.56 n/a 0.907 
3 0.32 0.56 0.70 1 
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traditional k-NN model confines the query results of MV 
to a single neighborhood in the feature space.  

The average precision and GTIR for the 11 test queries 
are presented in Table 1 for both MV and QD.  For some 
cases such as “airplane,” the images with single airplane 
and images with multiple airplanes have similar feature 
characteristics, i.e., the background is clear.  Under this 
circumstance, MV can also catch all the ground truth 
subcategories. However, QD can perform better in terms 
of precision because the MV approach brings some 
unrelated images in the color-negative, black-white, and 
black-white negative channels.  For the case of “mountain 
view,” the QD approach is not significantly better than the 
MV approach for the reason that the “mountain” images 
are faraway views and due to the feature we selected, the 
complexity of “mountain view” images bring in a lot of 
unrelated images. Nevertheless, the QD approach could 
pick up both the “snow mountain” images and the 
“mountain with water” images by exploring the two 
corresponding subclusters independently giving it a small 
performance edge over MV in this case.   

Finally, the average results over all 11 test queries are 
presented at the bottom of Table 1.  We observe that for 
all the cases, the QD approach can catch all the semantic 
subcategories allowing it to outperform the MV approach 
in terms of both precision and GTIR. 

5.2.2 Computation Efficiency 

Another advantage of the QD approach is the 
efficiency attained by using the RFS structure.  With this 
structure, the expensive k-NN computation in each round 
of relevance feedback is avoided.  We used simulated 
queries to evaluate the computation time of our system.  
We randomly generated 100 initial queries and evaluated 
their average query processing time (Figure 10), as well 
as the average relevance feedback processing time (Figure 
11) for a single round.  For each query, we performed two 
rounds of relevance feedback in addition to the initial 
query processing and the final localized k-NN 
computation.  From Figures 10 and 11, we can see that 
the overall query processing time and the average 
iteration processing time increase linearly with larger 
database sizes.  The results indicate that the QD approach 
is very time efficient, suitable for very large databases 
with many concurrent users. 

The efficiency of the Query Decomposition approach 
can also be attributed to low disk utilization.  Since the 
information required for relevance feedback processing is 
stored in the RFS structure, this technique needs to access 
only one tree node for a given representative image when 
marked relevant by the user. This I/O cost is significantly 
less when multiple relevant representative images are 
chosen from the same cluster, and therefore share the 
same node in the RFS structure.  The number of disk 
access for each localized k-NN computation is usually 

one, unless the query image is located far away from the 
centroid of the cluster; in which case, the searching of 
parent nodes incurs additional disk accesses.  
Nevertheless, processing of all the localized k-NN 
subqueries need to access only a few neighborhoods in 
the feature space. 

6. Conclusions and Future work 

The three primary contributions of this paper are as 
follows: 

Better Query Result:  The traditional k-NN image 
retrieval framework confines query results to a single 
neighborhood in the feature space.  The QD approach 
considers multiple neighborhoods, and therefore can 
better address the inherent challenge in image retrieval, 
namely, that objects of similar semantics can look quite 
different and may be scattered in the feature space. 

More Efficient Query Processing:  Unlike traditional 
relevance feedback processing which performs k-NN 
computation on the entire database in each round of 
relevance feedback, the QD approach only performs 
localized k-NN computation on very small subclusters in 
the final round of the relevance feedback process. 

More Scalable: Since the relevance feedback 
mechanism of the QD approach relies on only a tiny 
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fraction of the database, relevance feedback processing 
can run on the client machines leaving the server mainly 
to retrieve the final query results for the small localized 
queries.  This highly scalable solution is unique to the QD 
technique.

Future research may investigate more effective and 
intuitive user interfaces for the Query Decomposition 
environment.  We can also investigate ways to leverage 
existing advanced techniques such as allowing the user to 
define the importance of specific image features, e.g., the 
user may define color as the most important feature in the 
retrieval procedure [6].  Another possible extension is to 
ask the user to draw a contour around the object of 
interest in the example images [19], thus decreasing 
unintended noise in the query formulation.  Our system 
may also be extended to support video retrieval.  Also 
conceivable is the development of an image search engine 
for the Web based upon the QD idea. 

REFERENCES 

[1] N. Beckmann, H-P. Kriegel, R. Schneider  and B. Seeger, 
The R*-tree: an efficient and robust access method for points 
and rectangles. In Proc. Of ACM SIGMOD, pp. 322-331, 1990. 

[2] A. D. Bimbo, P. Pala, J. Assfalg, Three-dimensional 
interfaces for querying by example in content-based image 
retrieval. IEEE Trans. on visualization and computer graphics,
8(4): 305-318, 2002 

[3] R. Fagin, Combining fuzzy information from multiple 
systems. In Proc. of PODS, pp. 216-226, 1996.

[4] R. Fagin, Fuzzy queries in multimedia database systems. In
Proc. of PODS, pp. 1-10, 1998. 

[5] J. French and X-Y. Jin, An empirical investigation of the 
scalability of a multiple viewpoint CBIR system, In Proc. of 
CIVR, pp. 252-260, 2004. 

[6] T. Gevers, Color in image search engine. Survey on color for 
image retrieval from Multimedia Search, ed. M. Lew, Springer 
Verlag, 2001.

[7] Y. Ishikawa, R. Subramanya, and C. Faloutsos, MindReader: 
Querying databases through multiple examples. In Proc. of 
24thVLDB, pp. 218-227, 1998.

[8] H. Koo and N. I. Cho, A relevance feedback algorithm based 
on the clustering and parzen window. In Proc. of IEEE ICIP,
3(II): 551-554, 2003. 

[9] D. H. Kim and C. W. Chung, Qcluster: relevance feedback 
using adaptive clustering for content-based image retrieval. In 
Proc. of ACM SIGMOD, pp. 599-610, 2003. 

[10] D. Liu, K. A. Hua, K. Vu, and N. Yu, Efficient target 
search with relevance feedback for large CBIR Systems. In Proc. 
of the 21st  ACM Symposium on Applied Computing, 2006 

[11] M. Nakazato, L. Manola and T. S. Huang, ImageGrouper: a 
group-oriented user interface for content-based image retrieval 
and digital image arrangement. Journal of Visual Languages 
and Computing, 14 (4): 363-386, 2003.

[12] I. T. Nabney, Y. Sun, P. Tino and A. Kaban, 
Semisupervised learning of hierarchical latent trait models for 
data visualization. IEEE Trans. on Knowledge and data 
engineering, 17(3): 384-400, 2005. 

[13] K. Porkaew, K. Chakrabarti, and S. Mehrotra, Query 
refinement for multimedia similarity retrieval in MARS. In Proc. 
of ACMMM 1999, pp. 235-238, 1999.

[14] C. J. Van Rijsbergen, Information Retrieval (2nd edition). 
Butterworth-Heinemann, Newton, MA, USA, 1979. 

[15] Y. Rui, T. Huang, and S. Mehrotra, Content-based image 
retrieval with relevance feedback in MARS. In Proc. of the 
IEEE international conference on image processing, pp. 815–
818, Oct. 1997.  

[16] J. R. Smith and S-F. Chang, Transform features for texture 
classification and discrimination in large image databases. In 
Proc. of IEEE ICIP, Vol. 3, pp. 407-411, 1994. 

[17] M. Sticker and M. Orengo, Similarity of Color Images. In 
Proc. of SPIE, Vol. 2420, pp. 381-392, 1995. 

[18] A. Smeulders, M. Worring, S. Santini, A. Gupta and R. Jain, 
Content-Based Image Retrieval at the end of the early years. 
IEEE Trans. On PAMI, 22(12): 1349-1380, 2000 

[19] K. Vu, K. A. Hua, and N. Jiang, Improving Image Retrieval 
Effectiveness in Query-By-Example Environment. In Proc. of 
the 2003 ACM symposium on Applied computing, pp. 774-781, 
2003.

[20] J. Yoon and N. Jayant, Relevance feedback for semantics 
based image retrieval. In Proc. of IEEE ICIP,  pp. 42-45. 2001.  

[21] R. Zhao and W. I. Grosky, Narrowing the semantic gap – 
improved text-based web document retrieval using visual 
features. IEEE Trans. on Multimedia, 4(2): 189-200, 2002. 

[22] X. S. Zhou and T. S. Huang, Edge-based structural feature 
for content-based image retrieval. Pattern Recognition Letters, 
Special issue on Image and Video Indexing, 457-468, 2000 

Figure 4. “Portable computer” from MV 

Figure 5. “Portable computer” from QD 
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Figure 6. “Personal computer” from MV Figure 7. “Personal computer” from QD 

Figure 8. “Computer” from MV Figure 9. “Computer” from QD 
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