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Abstract

Distance permutation indexes support fast proximity searching in high-dimensional
metric spaces. Given some fixed reference sites, for each point in a database the
index stores a permutation naming the closest site, the second-closest, and so on.
We examine how many distinct permutations can occur as a function of the number
of sites and the size of the space. We give theoretical results for tree metrics and
vector spaces with L1, L2, and L∞ metrics, improving on the previous best known
storage space in the vector case. We also give experimental results and commentary
on the number of distance permutations that actually occur in a variety of vector,
string, and document databases.
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1 Introduction

Let 〈S, d〉 be a metric space with points S and distance function d. Given k
points x1, x2, . . . , xk in S, called the sites, the distance permutation of a point
y in S, denoted by Πy, is the unique permutation on {1, 2, . . . , k} such that if
i < j then d(xΠy(i), y) < d(xΠy(j), y) or d(xΠy(i), y) = d(xΠy(j), y) and Πy(i) <
Πy(j). In other words, Πy is the permutation that sorts the site indices into
order of increasing distance from y, using order of increasing index to break
ties. This definition was first introduced by Chávez, Figueroa, and Navarro [7].
In this work we consider the number of distinct distance permutations that
occur in a space, that is |{Πy|y ∈ S}|, and the maximum value of this count
over all choices of k sites.
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The question of counting distance permutations arises from attempts to im-
prove index data structures for proximity searching. Many kinds of data, in-
cluding images, text documents, genetic sequences, and audio and video clips,
are native to high-dimensional metric spaces, in which it is expensive to com-
pute distance. For instance, the SIFT local descriptor technique described by
Lowe, although successful at recognizing images containing the same object,
requires processing each image into a set of potentially hundreds of keypoints
and then computing distances and vector transforms on sets of keypoints [16].
The word space model, used for studying semantic relations in text, converts
words into context vectors with thousands or millions of dimensions [24].

Proximity search data structures attempt to organise the points in a database
to answer distance-based queries efficiently. In a k-nearest neighbour (kNN)
query, the task is to find the k points in the database nearest to a query point.
In a range query, the input is a sphere and the task is to return all database
points inside the sphere. Approximate variants of these kinds of problems also
exist. It is normally assumed that evaluating the metric is an expensive task,
so data structures and algorithms are designed to minimise the number of
evaluations of the metric even if that comes at significant cost elsewhere.

The naive algorithm for proximity search measures the distance from the query
point to each object in the database in turn, requiring as many distance mea-
surements as there are objects in the database. The challenge for a data struc-
ture is to answer the query with fewer distance measurements. If we can find
an excuse to skip over a subset of points in the database without computing
their distances explicitly, that will speed up the search. Many existing data
structures for proximity search, such as VP-trees and GH-trees, work that way.
In these structures, the points are organised into trees and the search algo-
rithm attempts to exclude subtrees from examination by applying the triangle
inequality [29,31].

Another approach stores precomputed data for individual points, so that even
though the points are considered one at a time, they can sometimes be ex-
cluded without actually computing the distance. AESA is the prototype for
this kind of technique. It stores the complete quadratic-sized matrix of pair-
wise distances among database points [30]. But storing index data quadratic in
the size of the database only seems appealing because it exploits our definition
of cost, which considers only search time: AESA pays a high cost in precom-
putation and storage instead. For this reason, pure AESA is seldom used in
practical applications. A practical data structure must be much smaller.

Micó, Oncina, and Vidal improve on AESA by storing only part of the distance
matrix: distances from each database point to k chosen points instead of all
the n points in the database [20]. The resulting technique is called LAESA.
The space requirement becomes Θ(kn) instead of Θ(n2); and with a suitably
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chosen k, which can be significantly less than n, the resulting search algorithm
is almost as efficient for searching as AESA.

Chávez, Figueroa, and Navarro suggest a further improvement [7]. Instead of
storing the actual distances from each database point to the k chosen points,
which we call the “sites” for consistency with the Voronoi diagram literature,
they store only permutations of the sites: which site is closest to each database
point, which one is second-closest, and so on. We call these objects distance
permutations to emphasise their connection with existing work on permutation
metrics, combinatorics of permutations, and so on. Other authors have referred
to them as proximity preserving orders.

The experimental results of Chávez, Figueroa, and Navarro show that distance
permutations provide enough information to do an efficient search, comparable
to LAESA, while consuming much less storage space. They claim a reduction in
storage space requirement from O(nk log n) bits for LAESA, to O(nk log k) [7].
The same authors with Paredes extend the concept further to create an al-
gorithm called improved AESA (iAESA), in which distance permutations are
also used to select pivot elements, providing a further improvement in search
speed over AESA [11]. We focus on the storage space improvement, which is
unique to the distance permutation representation; the enhanced pivot selec-
tion of iAESA seems applicable even to the older LAESA data structure by
computing the distance permutations on demand.

We might ask, out of the k! unrestricted permutations of k sites, how many
can actually occur. For general metric spaces, the answer is all of them; for any
k there always exists a metric space with a choice of k sites such that every
permutation π of the sites has some point with π as its distance permutation.
Any Lp space with k − 1 dimensions suffices by Theorem 6 below.

However, many practical spaces have structural limitations (for instance, small
dimensionality) under which the set of all permutations that can be distance
permutations is much smaller than k!. Then a distance permutation can be
stored in fewer bits than an unrestricted permutation, and the index can be
made even smaller without changing the search performance. In particular, in
the d-dimensional Euclidean case the storage space requirement is reduced to
Θ(nd log k), an improvement on the previous best known theoretical result.
Smaller storage space is valuable in itself, but it also points to the limitations
of distance permutation-based algorithms like iAESA [11]. Because only a few
distance permutations are possible, that limits how much benefit in reduced
search time can ever come from storing and using distance permutations.
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Fig. 1. Euclidean Voronoi diagram
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Fig. 2. Second-order Euclidean Voronoi diagram

2 Distance permutations as Voronoi cells

The cells of Voronoi diagrams correspond to classes of distance permutations.
For instance, in the conventional nearest-neighbour Voronoi diagram of Fig-
ure 1, the cell at left contains all the points closer to A than to B, C, or D.
Those are exactly the points whose distance permutation begins with A. Many
generalizations of Voronoi diagrams have been studied, including higher-order
diagrams in which the cells correspond to the set of k nearest neighbours in-
stead of just the one very nearest neighbour [3]. An example for k = 2 is
shown in Figure 2. Here the small cell in the middle corresponds to distance
permutations beginning with B and D, in either order.
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Fig. 3. Bisectors of four points in the Euclidean plane

If we consider the entire distance permutation, and consider order to be sig-
nificant, we can divide the space into a distinct cell for each permutation and
get a diagram like that in Figure 3. All the cell boundaries of the previous two
diagrams are included in this one, because the division according to distance
permutation is a refinement of the division according to closest site, or closest
k sites. Also, the boundaries in Figure 3 consist exactly of the six (that is,(

4
2

)
) lines that bisect pairs of sites. For each pair of sites, a point is closer to

one or the other depending on whether it falls on one side or the other of the
corresponding line; its position relative to all six lines defines its distance per-
mutation. Because bisectors are useful in other spaces too, we give a general
definition and notation for them:

Definition 1 The bisector of two points x and y, denoted by x|y, is the set
of all points z such that d(x, z) = d(y, z).

An example system of bisectors in a non-Euclidean metric is shown in Fig-
ure 4. Here we show the six bisectors of four points in the plane using the L1

(Manhattan) metric. Our question of how many distance permutations occur
in a space can be interpreted as asking how many cells occur in this type of
generalised Voronoi diagram.

If points can be on either side of each of six bisectors in Figure 3, that suggests
there should be 26 = 64 cells, evidently impossible when there are only 4! =
24 permutations of the four sites; and in fact, the diagram only contains 18
cells, not even one for each permutation. The fact that these are bisectors in
Euclidean space and not arbitrary subsets of the plane limits the number of
cells. Note that the system of bisectors in Figure 4, with the L1 metric, also
produces 18 cells corresponding to 18 distance permutations, but they are not
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Fig. 4. Bisectors of four points in the L1 plane

the same 18 distance permutations. Some permutations exist in each diagram
that are not in the other.

Arrangements of hyperplanes, which include bisector systems in Euclidean
space, create combinatorial objects called oriented matroids, and those are
well-studied [5]. Unfortunately, most of the relevant results are inapplicable
to bisectors in more general spaces. Many authors including Grünbaum [13]
and Mandel [18] have applied oriented matroids to arrangements of pseudo-
lines and pseudospheres (respectively), which describe intersections of gener-
alised hyperplanes that are not necessarily flat. Arrangements of pseudolines
as currently defined retain the restriction that each pair of pseudolines must
intersect in exactly one point, using the projective plane if necessary to force
parallel lines to intersect; and arrangements of pseudospheres have a similar,
higher-dimensional requirement for well-behaved intersections. The bisector
system shown in Figure 4 does not have that property, and the associated
sign vectors do not form an oriented matroid. Santos successfully generates a
Delaunay oriented matroid from a point arrangement in non-Euclidean space
by considering the triangulation of the points instead of their bisectors, but his
main result is specific to two dimensions, and the connection to our question
about bisectors is not clear [25].

Icking and others investigate the behaviour of bisectors with convex distance
functions in two and three dimensions, and show a number of surprising re-
sults, including that three spheres in general position in 3-dimensional L4

space can intersect at four distinct points [14], and that the combinatorial
structure around the one-dimensional bisector of three points can be differ-
ent for different connected components of the bisector [15]. Note that there
being more than one connected component in a bisector in the first place is
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a deviation from the intuitive behaviour of Euclidean bisectors. They survey
other problematic results on non-Euclidean bisectors and comment on “the
surprising, really abnormal, structure of the bisectors which behave totally
different[ly] from what is known for the Euclidean distance.” [15]

3 Tree metrics

First we consider distance permutations in tree metric spaces. These spaces
have a simple definition and notable applications in approximation of other
metrics [4].

Definition 2 A tree metric space is a set S and distance function d such that
there is a tree T with S as its vertex set, and for any x, y ∈ S, d is the number
of edges in the unique path from x to y in T . Then d is called a tree metric.
If T is instead a weighted tree, with a positive real weight associated with each
edge, and d(x, y) is the sum of the edge weights on the path from x to y, then
d is a weighted tree metric. By setting all weights equal to 1, every tree metric
is a weighted tree metric.

Terminology used to describe tree metrics varies, and many authors assume the
definition without stating it precisely [2,17]. There are also other definitions
in use, including those that assume a finite number of points [1], and those
that define tree metrics as all metrics satisfying the “four-point condition”
that for every set of four distinct points {x, y, z, t} we have d(x, y) + d(z, t) ≤
max{d(x, z) + d(y, t), d(x, t) + d(y, z)}. That condition permits the points to
be a proper subset of the vertices of the tree [19]. Topological studies of tree
metrics sometimes turn the edges into homomorphic images of real intervals
and allow points anywhere along the edges, which creates a fundamentally
different kind of space [10]. We reserve the term tree metric space for the spaces
satisfying Definition 2, following Lynn, Prabhakaran, and Sahai, whose work
on obfuscated neighbourhoods (robust hashes) does not define tree metrics
rigorously but assumes the ability to traverse a tree metric one edge at a time
finding a point at each step [17]. As Buneman shows, any finite metric space
satisfying the four-point condition must also be a subset of a tree metric space
satisfying Definition 2 [6].

The prefix metric gives an especially convenient tree metric space; it names
points with strings, and the distance is easy to calculate from the strings. Here
is the formal definition:

Definition 3 The prefix distance between two strings x and y is the minimal
number of edits to transform one string into the other, where an edit consists
of adding or removing a letter at the right-hand end of the string.
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Fig. 5. The prefix metric is a simple tree metric.

The distance between two strings in the prefix metric is the sum of their
lengths, minus twice the length of their longest common prefix. Figure 5 shows
an example. It can be thought of as measuring the distance between two items
organised in an hierarchical structure labelled with strings, such as books in
a library; longer common prefix of LC or Dewey decimal call numbers implies
more closely related content.

Theorem 4 For k sites in a space with a (possibly weighted) tree metric, there

can be at most
(
k
2

)
+ 1 distinct distance permutations.

PROOF. Let d be the tree metric. For any three vertices x, y, and z with
x 6= y, consider whether d(x, z) ≤ d(y, z). There is exactly one edge, and it
happens to be on the path between x and y, where the statement is true at
one endpoint and not the other. Removing that edge splits the tree into two
connected components, one containing all vertices z where the statement is
true and one containing all vertices where it is false. Repeat that procedure
setting x and y to every pair chosen from the k sites. The resulting components
correspond to the distinct distance permutations that can occur. There are at
most

(
k
2

)
+ 1 of them. 2

Furthermore, the bound of Theorem 4 is easily achievable in spaces like that
of the prefix metric, where long paths are abundant.

Corollary 5 The bound of
(
k
2

)
+1 distinct distance permutations is achievable

in a tree metric space that contains a path of 2k−1 edges with the same weight.

PROOF. Label the vertices along the path sequentially from one end with
the integers 0 to 2k−1. Let the sites, in order, be the vertices labelled 0 and
2, 4, 8, . . . , 2k−1. Note that there are 2k vertices, all of which have labels, but
we have chosen only k of those to be sites. Now the midpoint of the vertices
0 and 2i for any i ≥ 1 will fall on the vertex labelled 2i−1; and the midpoint
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of the vertices labelled 2i and 2j will fall on the vertex labelled 2i−1 + 2j−1.
All those

(
k
2

)
midpoint vertices are distinct (easily seen by examining the

binary representations of their indices), and the edges from them to their
higher-numbered neighbours are the distinct splitting edges of Theorem 4.
Removing those edges separates the tree into

(
k
2

)
+ 1 connected components

corresponding to the
(
k
2

)
+ 1 distinct distance permutations. Note that the

midpoint vertices follow their lower-numbered neighbours in the division be-
cause of the tiebreaking rule, which considers lower-indexed sites, which are
the lower-labelled sites by our choice, to be closer in case of ties. 2

The proof is based on the fact that every edge in a tree is a cut-edge. When we
split up the tree into distance permutations by cutting on all the bisectors, the
number of components increases by at most one for each bisector. It is possible
to design a tree metric with extremely uneven edge weights, or no sufficiently
long paths, so that the bound of Theorem 4 is unachievable; and in a finite
space, k could be chosen large enough that

(
k
2

)
+1 is more than the number of

points in the space and thus could not possibly be achieved. However, those
are exceptional cases. In general, for practical tree metrics such as the prefix
metric, long paths are plentiful and the bound of

(
k
2

)
+ 1 is easily achieved.

4 Real vectors with Lp metrics

Euclidean spaces are familiar and widely used, so it is natural to examine
metric space questions there. We also consider the other Minkowski Lp metrics,
defined for points x = 〈x1, x2, . . . , xn〉 and y = 〈y1, y2, . . . , yn〉 by d(x, y) =

(
∑n
i=1 |xi − yi|p)

1/p for real p ≥ 1 or d(x, y) = maxni=1 |xi−yi| for p =∞. These
spaces are a simple generalization of Euclidean space and share many of its
properties; in particular, the L2 metric is the Euclidean metric. Let Nd,p(k)
represent the maximum number of distinct distance permutations generated
by k sites in the space of d-dimensional real vectors with the Lp metric.

First of all, it is possible to make all k! permutations occur in sufficiently high
dimension. The construction places points with care at approximately unit
distance from the origin, one on each coordinate axis and an additional one
on the opposite side on the first axis, as shown in Figure 6. All permutations
are forced to occur inside a small sphere centred on the origin, giving the
following theorem.

Theorem 6 In d-dimensional real vector space with any Lp metric, k sites
can be chosen such that all k! distinct distance permutations exist, for any
k ≤ d+ 1. That is, Nd,p(k) = k! for d ≥ k − 1 and any p ≥ 1.
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Fig. 6. Achieving all permutations in the vicinity of the origin

PROOF. For k = 1 the question is trivial: zero-dimensional space has only
one point, we choose it as the site, and it has the single distance permutation
consisting of itself. For k ≥ 2 we prove a somewhat stronger statement by
induction on k, namely that for any integer k ≥ 2 and real ε > 0, there
exist k sites x1,x2, . . . ,xk in (k − 1)-dimensional Lp space such that for any
permutation π : {1, 2, . . . , k} → {1, 2, . . . , k}, there is a point yπ such that

Πyπ = π (1)

d(0,yπ) < ε (2)

|1− d(xi,yπ)| < ε (3)

d(xi,yπ) 6= d(xj,yπ) if xi 6= xj . (4)

In other words, with k − 1 dimensions we can achieve all k! permutations (1)
with points that are near the origin (2), almost exactly unit distance from all
the sites (3), and not equidistant from any two sites (4).

Basis case. For k = 2, let x1 = 〈−1〉, x2 = 〈1〉. Then where the two permuta-
tions are denoted by 12 and 21, we have y12 = 〈−ε/2〉 and y21 = 〈ε/2〉. These
points are easily seen to meet the conditions (1)–(4).

Inductive step. For k > 2 and some ε > 0, assume that there exist k − 1 sites
x′1,x

′
2, . . . ,x

′
k−1 in (k−2)-dimensional space such that for any permutation π′ :

{1, 2, . . . , k−1} → {1, 2, . . . , k−1}, there is a point y′π′ such that Πy′
π′

= π′ (1),

d(0,y′π) < ε/4 (2), |1− d(x′i,y
′
π)| < ε/4 (3), and d(x′i,y

′
π) 6= d(x′j,y

′
π) if x′i 6=

x′j (4). This is simply the statement currently being proved, with one less
dimension and ε divided by four.
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Let x1,x2, . . . ,xk−1 be the sites x′1,x
′
2, . . . ,x

′
k−1 extended to one more dimen-

sion by appending a zero component to each, and let xk = 〈0, 0, . . . , 0, 1+ε/4〉;
that is, we are adding one dimension and placing a new site on the newly-
introduced coordinate axis at distance 1 + ε/4.

Let π be an arbitrary permutation of the k site indices and π′ be π with
k removed; for instance, if k = 5 and π = 12543 then π′ would be 1243.
Let y represent y′π′ augmented with one more component (to make it (k− 1)-
dimensional) and let z represent the value of the last component of y. Consider
the distance permutation of y as we increase z from −ε/2 to 3ε/4. In all cases
the distance permutation of y with respect to the first k − 1 sites will be π′,
because the distance permutation is determined by inequalities of the form
d(xi,y) ≤ d(xj,y), each distance is the 1/p power of a sum of p-th powers of
per-component differences, and we are changing one of those per-component
differences that is added equally to all the distances. All the functions involved
are monotonic, so the inequalities continue to hold as we vary z.

Note 1 In the case of the L∞ metric we depend on the fact that the per-
component difference for the last component is smaller than any of the dis-
tances from y to sites and so does not enter into the maximum that defines
the metric. We can ensure this by assuming ε less than 1/2, so that 1− ε > ε;
we are free to do that because the statement we are proving always holds for
larger ε if it holds for small ε.

When z = −ε/2, the distance d(xk,y) must be at least 1+3ε/4 because that is
the last per-component difference. But all the distances d(xi,y) for i < k must
be less than 1 + 3ε/4 by the triangle inequality, because d(xi,y

′) < 1 + ε/4
by the inductive assumption and d(y′,y) = −z = ε/2 by definition. Therefore
when z = −ε/2, y is strictly farther from xk than any other site, and the
distance permutation of y ends with k.

On the other hand, when z = 3ε/4, the distance d(xk,y) must be less than
1 − ε/4, because it is at most the last per-component difference of 1 − ε/2,
plus d(0,y′π) < ε/4 by the inductive assumption. The distance d(xi,y) for
all i < k must be at least 1 − ε/4 because it must be at least d(xi,y

′) by
the construction and d(xi,y

′) is at least 1− ε/4 by the inductive assumption.
Therefore when z = 3ε/4, y is strictly nearer to xk than any other site, and
the distance permutation of y begins with k.

By choosing a value of z between those two extremes, we can find a value of
y where k appears in any position in the distance permutation; and since this
holds for any permutation π′ of the first k − 1 sites, we can find a yπ for any
permutation π of the k sites, giving (1), a point for every permutation. By
doing this we are perturbing each y′ by at most 3ε/4 from its original position
which was within ε/4 of the origin, so each y remains within ε distance of
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the origin (2); similarly, the distance from each y to each site must be in the
interval 1± ε (3); and by our choices of z, all the distances to sites are distinct
at each y (4). Therefore the theorem holds for k sites.

By induction, the theorem holds for all values of k. 2

A classical problem (often stated in terms of cutting a cake, or a cheese) asks
how many pieces can be formed by cutting d-dimensional Euclidean space with
m hyperplanes of dimension d− 1 in general position. Price shows that where
Sd(m) represents the number of pieces formed by m cuts in d-dimensional
Euclidean space, then Sd(0) = S0(m) = 1; and Sd(m) = Sd(m−1)+Sd−1(m−
1) for d,m > 0 [23]. His proof is an induction that follows the structure of the
recurrence relation: when we add the m-th hyperplane to an arrangement that
already contains Sd(m− 1) pieces, then the new hyperplane is itself a (d− 1)-
dimensional space cut up by the m− 1 existing hyperplanes into Sd−1(m− 1)
pieces, and each of those partitions off a new piece in the original d-dimensional
space, proving the recurrence. It also follows easily that Sd(m) = Θ(md) [23].

The Euclidean cake-cutting problem provides a starting point for counting
the pieces formed by bisectors in real vector spaces. Since there are

(
k
2

)
bi-

sectors between k sites, if the bisectors were in general position relative to
each other then we would have the number of distance permutations in Eu-
clidean space equal to the number of pieces formed by

(
k
2

)
hyperplanes, or

Nd,2(k) = Sd
((

k
2

))
. Since the bisectors are not in general position, the actual

number of distance permutations is less; but that remains as an upper bound,
giving Nd,2(k) = O(k2d) because

(
k
2

)
is Θ(k2) and Sd(m) is Θ(md). That re-

sult will be extended to other metrics in Theorem 9, but first we give an exact
result for the Euclidean case.

Theorem 7 In d-dimensional Euclidean space,

N0,2(k) = Nd,2(k) = 1 (5)

Nd,2(k) = Nd,2(k − 1) + (k − 1)Nd−1,2(k − 1) . (6)

PROOF. Zero-dimensional space contains only one point and so can only
contain one piece, and with only one site, there are no bisectors and the space
remains undivided. Therefore N0,2(k) = Nn,2(1) = 1.

For the general case we extend the line of reasoning used by Price [23]. Consider
the space with n dimensions that already contains k− 1 sites, their bisectors,
and the resulting pieces. It contains, by definition, Nn,2(k− 1) pieces. Adding
one more site adds a group of k − 1 bisectors. The first of those is a (n− 1)-
dimensional space cut by the existing bisectors of k−1 sites into (by definition)
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Nn−1,2(k − 1) pieces, and each of those pieces creates a new piece in the n-
dimensional space as well.

The second of the k − 1 new bisectors appears to be cut by the existing
bisectors and also the one we just added. However, the intersection of the
first new bisector and the second new bisector is exactly the same set as the
intersection of the second new bisector with some other bisector that already
existed. Letting a and b be sites added earlier and x be the new site, then
we have a|x ∩ b|x = a|b ∩ b|x by the transitivity of equality. So intersections
between bisectors in the same group need not be counted; they are always
equal to the intersections already counted between bisectors in the new group
and bisectors in earlier groups.

Therefore each of the k− 1 new bisectors in the new group, not just the first,
adds exactly Nn−1,2(k−1) pieces. There are also by definition Nn,2(k−1) pieces
that existed before we added the latest site. Therefore we have the recurrence
relation (6). 2

Numerical results are shown in Table 1. Note the factorials that appear in the
lower triangle, corresponding to Theorem 6. For the one-dimensional case, the
formula reduces to

(
k
2

)
+ 1, which is equal to the value for tree metrics from

Theorem 4. The proof of Theorem 7 takes the same general approach used by
Price [23]. The complication is that because equality is transitive, some of the
intersections among bisectors must coincide. With three sites A, B, and C,
A|B∩B|C ⊆ A|C. Accounting for those intersections and the resulting missing
pieces leads to Theorem 7. Bounds on Nd,2(k) then follow by induction:

Corollary 8 The function Nd,2(k) satisfies:

Nd,2(k) ≤ k2d (7)

Nd,2(k) =
k2d

2dd!
+ o(k2d) . (8)

Therefore, the distance permutation in a Euclidean space can be stored in
Θ(d log k) bits.

PROOF. The proof for (7) is by induction on k. The result holds trivially
for k = 1. Then we have Nn,2(k) = Nn,2(k − 1) + (k − 1)Nn−1,2(k − 1), and
substituting in the inductive hypothesis gives Nn,2(k) ≤ k2n. Then the space
to store a distance permutation is lgNn,2(k) bits, so 2n lg k is an upper bound.

For (8) we use induction on n. It holds trivially for n = 0. Let an and bn rep-
resent the leading two coefficients of the polynomial in k that defines Nn,2(k);
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k = 2 3 4 5 6 7 8

d = 1 2 4 7 11 16 22 29

2 2 6 18 46 101 197 351

3 2 6 24 96 326 932 2 311

4 2 6 24 120 600 2 556 9 080

5 2 6 24 120 720 4 320 22 212

6 2 6 24 120 720 5 040 35 280

7 2 6 24 120 720 5 040 40 320

8 2 6 24 120 720 5 040 40 320

9 2 6 24 120 720 5 040 40 320

10 2 6 24 120 720 5 040 40 320

k = 9 10 11 12

d = 1 37 46 56 67

2 583 916 1 376 1 992

3 5 119 10 366 19 526 34 662

4 27 568 73 639 177 299 392 085

5 94 852 342 964 1 079 354 3 029 643

6 212 976 1 066 644 4 496 284 16 369 178

7 322 560 2 239 344 12 905 784 62 364 908

8 362 880 3 265 920 25 659 360 167 622 984

9 362 880 3 628 800 36 288 000 318 540 960

10 362 880 3 628 800 39 916 800 439 084 800
Table 1
Number of distance permutations Nd,2(k) in Euclidean space

then we have:

Nn,2(k) = ank
2n + bnk

2n−1 + o(k2n−1)

= an(k − 1)2n + bn(k − 1)2n−1 + (k − 1)an−1(k − 1)2n−2 + o(k2n−1)

= ank
2n − 2nank

2n−1 + bnk
2n−1 + an−1k

2n−1 + o(k2n−1) .

The sum of the coefficients for the k2n−1 term must be bn by definition, so we
have bn = −2nan + bn + an−1. Solving for an gives an = an−1/(2n), and with
a0 = 1 from the basis case we have an = 1/(2nn!). 2

With other Lp metrics, the situation is more complicated. Consider the two-
dimensional L1 case shown in Figure 4. A bisector in this space generally
consists of an orthogonal line with a diagonal kink in the middle. In the Eu-
clidean plane, two bisectors either coincide, intersect at exactly one point, or
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do not intersect at all; and if they are in general position relative to each other,
they must intersect at exactly one point. But here, two bisectors can be in
general position relative to each other and still fail to intersect, like A|D and
B|C; or they can intersect at exactly two points, like A|B and C|D. There
are also many degenerate cases possible, in which the intersection might be
for instance two disjoint rays, or a ray with a line segment attached. Higher
dimensions are even worse. Because the intersections are not well-behaved in
non-Euclidean metrics, we cannot treat each bisector as a space of the same
type, subject to the overall result as part of an induction.

However, the difficult combinatoric issues come from seeking an exact and
general answer. In the two special cases of L1 and L∞ spaces, which happen
to be of great practical interest, we can prove a new asymptotic bound with
elementary results. For p ∈ {1, 2,∞}, bisectors are piecewise linear. That is,
each bisector consists of a union of subsets of hyperplanes; and the maxi-
mum number of hyperplanes per bisector is a function of the dimension. For
instance, in two-dimensional L1 space as seen in Figure 4, each bisector is
a union of subsets of at most three lines. Then cutting up d-dimensional Lp
space with the bisectors of k points can yield no more pieces than cutting up d-
dimensional Euclidean space with O(f(d)k2) hyperplanes in general position;
that gives the following result.

Theorem 9 The function Nd,p(k) satisfies:

Nd,1(k) = O(22d2k2d) (9)

Nd,2(k) = O(k2d) (10)

Nd,∞(k) = O(22dd2dk2d) . (11)

All three of these are O
(
k2d
)

for constant d.

PROOF. The case of the L2 metric is already covered by Corollary 8. For
the other two, consider a pair of sites x and y, and let z be on their bisector;
then d(x, z) = d(y, z). We will show that for each value of p ∈ {1, 2,∞}, the
bisector is a subset of the union of some flat hyperplanes, with an upper bound
on the number of hyperplanes determined only by the number of dimensions
n. Subscripts denote individual components of the vectors.

For the L1 metric, we have d(x, z) = |x1 − z1| + |x2 − z2| + · · · + |xn − zn|,
which is ±(x1 − z1)± (x2 − z2)± · · · ± (xn − zn) for some choice of the signs
dependent on the component values. Thus d(x, z) is equal to one of 2n linear
functions of x and z. Similarly, d(y, z) is equal to one of 2n linear functions
of y and z. The set of points at which d(x, z) = d(y, z) is thus a subset of the
set of points at which at least one of the functions for d(x, z) equals at least
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one of the functions for d(y, z); therefore it must be a subset of the union of
22n hyperplanes.

For the L∞ metric, we have d(x, z) = max{|x1 − z1|, |x2 − z2|, . . . , |xn − zn|},
which is ±(xi − zi) for some choice of the sign and the index i dependent on
the component values. So, similarly to the L1 case, d(x, z) is equal to one of 2n
linear functions of x and z, and d(y, z) is equal to one of 2n linear functions
of y and z. The bisector is a subset of the union of 4n2 hyperplanes.

Since each bisector is a subset of the union of some hyperplanes, we can only
increase the number of cells in an arrangement of bisectors if we expand each
bisector to be the entire union instead of a proper subset. In the cake analogy,
that is like extending a cut to slice all the way through the cake instead of
only through the first layer. Assuming the hyperplanes to be in general position
can also only increase the number of cells. With k sites, there are

(
k
2

)
= Θ(k2)

bisectors, and by Price’s result the number of cells for m hyperplanes in general
position in n dimensions is Θ(mn) [23]. Combining those with the upper bound
on number of hyperplanes per bisector given above, the theorem follows. 2

This result gives an asymptotic improvement in the bound on storage space
for distance permutations, because a general permutation of k sites would
require Θ(k log k) bits. When the number of points in the database is large
in comparison to the number of permutations, the bound can be achieved
simply by storing the full permutations in a separate table and storing the
index numbers into that table alongside the points. For smaller databases a
more sophisticated structure may be possible, taking into account the special
structure of the set of permutations. The practical consequence of the limit
on number of permutations is that adding sites costs very little in index space
requirement, once the number of sites is significant compared to the number
of dimensions. On the other hand, it also suggests that once we have about
twice as many sites as dimensions, there is little value in adding more sites;
the distance permutation contains little more information.

We emphasize that the bounds for L1 and L∞ are very loose with respect
to d. In applications we are generally given a space and cannot change it,
whereas we have the opportunity to choose the number of sites k. For that
reason Theorem 9 is aimed primarily at determining the asymptotic behaviour
with respect to k, not d. The counting procedure assumes every hyperplane
intersects with and is in general position relative to all other hyperplanes. In
fact many hyperplanes will be parallel to each other, or have their extents
limited, such that they do not intersect. Fewer intersections lead to fewer
cells. In Figure 4 we see an example from L1 where the number of distance
permutations is 18, exactly equal to the number from L2 space despite the
22d2 term in the bound; that was the largest number obtainable in informal
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computer-graphics experiments, and it seems intuitively clear that the number
of permutations should be approximately the same for all the Lp metrics.
Then we face the question of whether the Euclidean bound might actually be
a bound for all Lp spaces, or a practical estimate even if not strictly a bound.
That question is examined in the experiments.

5 Experimental results

Because we are interested in worst-case storage space of data structures, our
theoretical results focus on computing the maximum possible number of dis-
tance permutations that could occur in any data set. That is also the best case,
in one sense, for permutation-based similarity search algorithms like iAESA:
having as many distinct permutations in the index as possible means that
maximum information can be extracted from the index without needing dis-
tances to be computed at search time. However, in a real database which may
not fill the space completely, the number of distance permutations actually
occurring may be significantly less than the theoretical maximum.

Figure 7 shows two ways a distance permutation could fail to be included
in the database. The grey box represents the range of values present in the
database, and the circles represent individual database points. Some cells of
the generalized Voronoi diagram may not happen to contain any database
points, and in that case their permutations will not appear. A large enough
database would be expected to hit all such cells. But other cells, like the cross-
hatched ones at the right of the figure, may lie entirely outside the range of
database values. Those permutations will never appear no matter how large
the database grows, if data values stay range-limited.

To examine such issues, we implemented distance permutations for the SISAP
library of Figueroa, Navarro, and Chávez [12], as a new index type called
distperm. Our distperm code is a minor modification of the library’s pivots
index type. The library’s iaesa index type uses distance permutations in-
ternally, but as part of a more sophisticated algorithm, making it harder to
modify for counting permutations. Our build-distperm-* programs write
out the permutations in ASCII as a side effect of index generation, so that
the number of unique permutations can easily be counted with sort | uniq

| wc.

We used our code to count the number of unique distance permutations for a
variety of metric spaces including randomly-generated vectors and the sample
databases supplied with the library. Results on the SISAP library’s sample
databases [12] are shown in Table 2, and for vectors (106 uniformly chosen
from the unit cube) in Table 3. Because the result for vectors depends on the
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Fig. 7. The database may not hit every cell.

random choice of sites, we ran each vector experiment 100 times, and show
both the mean and maximum number of distance permutations observed, for
selected values of k, the number of sites.

These data sets were chosen for consistency with others’ work. The benefits
to the field from test data standardisation are obvious, and use of the SISAP
library in particular was a stated requirement for the workshop at which we
announced these results [9]. As we and others have noted (and as seen in our
present results) the properties of the uniform distribution may be significantly
different from those of more realistic data sets [26]. However, partly because its
high dimensionality tends to push the limits of indexing systems, the uniform
distribution remains the standard for testing index data structures [7,20,22,30].

The most obvious feature of these results is that the numbers are so small.
For instance, with the sample database long, which contains feature vectors
extracted from news articles, with 12 sites there are only 261 distinct distance
permutations. That is not just because the database is small. It contains 1 265
points, much less than

√
12!, so if the distance permutations were chosen

uniformly from all possible permutations we should expect no collisions and
1 265 distinct permutations. The observed number is less by a factor of about
4.8. Similar effects show up in the listeria and colors databases at the
maximum permutation length, and in many of the sample databases for shorter
permutations: the number of permutations observed is often much less than
the number of database points even when k! is larger still.

By comparing numbers from Table 2 with the values for Euclidean spaces in
Table 3, we see that colors has a few more distance permutations than a
two-dimensional uniform distribution in Euclidean space. The nasa database
has as many distance permutations as a Euclidean uniform distribution with
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database n ρ k = 3 4 5 6 7 8

Dutch 229 328 7.159 6 24 119 577 2 693 11 566

English 69 069 8.492 6 24 120 645 2 211 7 140

French 138 257 10.510 6 24 118 475 2 163 8 118

German 75 086 7.383 6 24 119 517 1 639 4 839

Italian 116 879 10.436 6 24 120 653 3 103 10 872

Norwegian 85 637 5.503 6 24 118 632 2 530 7 594

Spanish 86 061 8.722 6 24 118 598 2 048 5 428

listeria 20 660 0.894 4 11 19 29 49 85

long 1 265 2.603 5 10 22 47 51 98

short 25 276 808.739 6 24 111 508 2 104 6 993

colors 112 544 2.745 6 18 44 96 200 365

nasa 40 150 5.186 6 24 115 530 1 820 3 792

database n ρ k = 9 10 11 12

Dutch 229 328 7.159 34 954 74 954 116 817 163 129

English 69 069 8.492 16 212 28 271 38 289 45 744

French 138 257 10.510 19 785 35 903 58 453 81 006

German 75 086 7.383 10 154 19 489 30 347 43 208

Italian 116 879 10.436 27 843 45 754 71 921 90 316

Norwegian 85 637 5.503 15 147 25 872 42 992 57 988

Spanish 86 061 8.722 13 357 23 157 39 443 54 628

listeria 20 660 0.894 206 510 952 1 145

long 1 265 2.603 114 163 252 261

short 25 276 808.739 13 792 20 223 23 102 23 940

colors 112 544 2.745 796 1 563 2 800 4 408

nasa 40 150 5.186 7 577 13 243 19 066 24 154
Table 2
Number of distance permutations for the SISAP sample databases.

between three and four dimensions, ignoring the values for k = 12 because
there the permutations appear to be limited by the number of points in the
database. The dictionary databases vary, but seem equivalent to Euclidean
uniform distributions with up to six dimensions. And the listeria database,
despite having plenty of points, seems equivalent to a Euclidean uniform dis-
tribution with just under two dimensions. In this way we can characterise the
dimensionality of a database in a highly general way.

Comparison to the intrinsic dimensionality ρ, defined by Chávez and Navarro
as mean squared divided by twice the variance of distance between two random
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mean perms max perms

d ρ k = 4 8 12 k = 4 8 12

L1 1 1.00 7.00 29.00 66.99 7 29 67

2 2.00 14.86 261.71 1 436.87 18 305 1 541

3 3.00 21.08 1 464.98 16 398.42 24 1 923 19 658

4 4.00 23.56 4 832.90 81 304.91 24 6 661 100 133

5 5.00 23.92 9 909.68 218 714.35 24 13 573 258 874

6 6.00 24.00 15 937.97 399 705.65 24 20 666 485 317

7 7.00 24.00 21 593.99 580 001.49 24 30 086 661 262

8 8.00 24.00 25 261.27 720 120.79 24 33 637 788 347

9 9.00 24.00 28 730.97 811 518.59 24 37 198 872 023

10 10.00 24.00 31 418.99 878 756.82 24 37 667 935 715

L2 1 1.00 7.00 28.99 66.99 7 29 67

2 2.21 15.35 271.79 1 456.10 18 312 1 583

3 3.52 21.35 1 360.24 14 605.82 24 1 664 16 326

4 4.88 22.74 3 970.11 67 709.09 24 5 247 77 766

5 6.27 23.50 8 043.95 181 511.81 24 11 277 226 874

6 7.68 23.86 13 089.65 343 377.92 24 22 644 439 620

7 9.09 23.91 15 891.40 504 358.71 24 30 652 615 441

8 10.50 23.99 20 431.39 646 276.54 24 35 694 796 775

9 11.92 24.00 22 891.22 729 070.09 24 34 037 864 896

10 13.35 24.00 26 128.61 817 225.75 24 39 417 924 472

L∞ 1 1.00 6.99 28.97 66.95 7 29 67

2 2.23 13.81 237.53 1 317.41 18 298 1 528

3 3.59 18.90 1 222.09 12 805.30 24 1 888 17 441

4 5.05 21.73 3 665.22 56 767.84 24 5 688 73 315

5 6.58 22.67 7 133.63 149 166.98 24 12 566 235 359

6 8.17 23.73 10 772.22 252 573.87 24 20 988 352 150

7 9.80 23.72 14 774.93 371 777.13 24 27 150 574 611

8 11.47 23.73 16 489.73 475 934.17 24 29 989 683 855

9 13.17 23.85 19 999.01 567 307.71 24 33 293 730 139

10 14.90 24.00 23 159.34 637 689.81 24 34 984 770 769
Table 3
Number of distance permutations for uniform random vectors.
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points [8], seems natural but may not be meaningful. The intrinsic dimension-
ality depends heavily on the probability distribution [26], whereas the number
of distinct distance permutations depends only on which points can exist at
all. Thus, no firm relationship between ρ and distance permutations can ever
exist. Two different distributions with the same support can have different
ρ values and the same maximum number of distance permutations. The ρ
statistic also describes distances only among random points chosen from the
entire space, which will usually be far apart; an indexing data structure’s be-
haviour with small query radius may be better described by other measures of
dimensionality, such as the Dq dimensions. The Dq dimensions describe how
probability density increases with radius at small radii [21,28]. Nonetheless, ρ
is a convenient way to describe distributions in metric spaces, and we give ρ
values for reference only based on the assumption of choosing points uniformly
from the databases.

The random-vector experiments suggest that all three tested metrics produce
comparable numbers of distance permutations. There is a general downward
trend in number of permutations from L1 to L2 and from L2 to L∞. Database
size interferes with comparison to the Euclidean maximum when that ap-
proaches and exceeds 106, but we can see from smaller permutations and di-
mensions that the Euclidean maximum is seldom achieved even when it could
be. For instance, with four-dimensional vectors and permutations of length
12, the Euclidean value from Table 1 is 392 085, and the largest number of
permutations we saw with any Lp metric was 100 133. The Euclidean value de-
scribes the number of generalised Voronoi cells for all non-degenerate choices
of sites, so all 392 085 permutations could be achieved with database points in
the right places; and the average of about 10 database points per permutation
observed suggests that we cannot have missed very many of the cells intersect-
ing the unit cube. It seems the usual case is for many distance permutations
to be associated with cells that nowhere intersect the unit cube.

A notable result not shown in Table 3 is that in three-dimensional L1 space,
the experiment found a database and choice of five sites giving 108 distinct
distance permutations in the test database, exceeding the limit of 96 for Eu-
clidean space. Even more than 108 permutations may exist because the ex-
periment only counted permutations represented in the database. Therefore
the hypothesis that the Euclidean limit applies to all Lp spaces is false. The
exceptional sites are:

x1 = 〈0.205281, 0.621547, 0.332507〉,
x2 = 〈0.053421, 0.344351, 0.260859〉,
x3 = 〈0.418166, 0.207143, 0.119789〉,
x4 = 〈0.735218, 0.653301, 0.650154〉,
x5 = 〈0.527133, 0.814207, 0.704307〉 .

(12)
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Similar counterexamples were found for three-dimensional spaces with L1 and
k = 6, L∞ and k = 5, and for four-dimensional space with L1 and k = 6.
These prove that Nn,p(k) = Nn,2(k) is not true in general.

6 Conclusions

We have described the problem of counting how many distance permutations
are possible in a space, and given exact solutions for tree metrics and Euclidean
spaces. For the L1 and L∞ metrics on real vectors, we have given an asymptotic
analysis, which is sufficient to improve the best previous bound. We have
also implemented permutation counting in the SISAP library [12], and given
experimental results on the number of distance permutations found in the
sample databases. The experimental results suggest a novel way of estimating
the dimensionality of databases.
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