
Counting Distance Permutations

Matthew Skala
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

mskala@ansuz.sooke.bc.ca

Abstract

A distance permutation index supports fast proximity
searching in a high-dimensional metric space. Given
some fixed reference sites, for each point in a database
the index stores a permutation naming the closest site,
the second-closest, and so on. We examine how many
distinct permutations can occur as a function of the
number of sites and the size of the space. We give the-
oretical results for tree metrics and vector spaces with
L1, L2, and L∞ metrics, improving on the previous best
known storage space in the vector case. We also give
experimental results and commentary on the number of
distance permutations that actually occur in a variety
of vector, string, and document spaces.

1. Introduction

Proximity searching is important for databases of
images, text documents, genetic sequences, and audio
and video clips, among others. These objects are often
native to high-dimensional spaces, in which it is expen-
sive to compute distance. For instance, the SIFT lo-
cal descriptor technique described by Lowe, although
successful at recognizing images containing the same
object, requires processing each image into a set of po-
tentially hundreds of keypoints and then computing dis-
tances and vector transforms on sets of keypoints [11].
The word space model, used for studying semantic re-
lations in text, converts words into context vectors with
thousands or millions of dimensions [17].

The naive algorithm for a range or kNN query mea-
sures the distance from the query point to each object
in the database in turn, requiring as many distance mea-
surements as there are objects in the database. The chal-
lenge for a data structure is to answer the query while
doing fewer distance measurements. The data structure
stores some precomputed information about the rela-

tionships among database objects, which can be used to
infer things about the distance to the query object with-
out measuring it directly. For instance, if it is known
that the distance obeys the triangle inequality, the query
measures the distance from query x to database point
y as 3, and the data structure stores the fact that the
distance from y to another database point z is 1, then
the query can infer without measuring that the distance
from x to z is at least 2.

There is a trade-off as to how much information
the data structure should store. At one extreme, AESA
stores all the pairwise distances among database points,
paying a quadratic cost in space complexity but gain-
ing significant speed [16]. Near the other extreme, a
data structure can still gain some speed by storing as
little information as the identities of the k nearest neigh-
bours of each database point, with no other information
about distances [14]. In this work we consider a choice
between those two extremes: an approach introduced
by Chávez, Figueroa, and Navarro that stores a permu-
tation of k sites for each database point, representing
which of the k sites is closest, which is second-closest,
and so on [4].

In many spaces of interest, not all permutations can
actually occur, and so the space requirement for this
type of index can be reduced without further compro-
mising the performance measured by number of dis-
tance evaluations. We also discuss experimental results
on the number of permutations found in the SISAP sam-
ple databases [7]. Formal proofs of the theoretical re-
sults are sketched or omitted in the interest of giving a
more detailed discussion and the experimental results.

1.1. Indexing with distance permutations

The query process must, explicitly or implicitly,
evaluate the distance from the query to each point in
the database to determine whether that database point
should be returned in the result. If we can find an excuse

First International Workshop on Similarity Search and Applications

0-7695-3101-6/08 $25.00 © 2008 IEEE
DOI 10.1109/SISAP.2008.15

69

First International Workshop on Similarity Search and Applications

0-7695-3101-6/08 $25.00 © 2008 IEEE
DOI 10.1109/SISAP.2008.15

69

to skip over a subset of points in the database without
computing their distances explicitly, that will speed up
the search. Many existing data structures for proximity
search, such as VP-trees and GH-trees, work that way.
In these trees, the search attempts to exclude subtrees
from examination [20, 21].

Another approach stores precomputed data for in-
dividual points, so that even though the points are con-
sidered one at a time, they can sometimes be excluded
without actually computing the distance. Because the
measure of cost is the number of distance function eval-
uations during the search, a technique that reduces those
can be valuable even if it still does a linear examination
of all points in the database. AESA is the prototype
for this kind of technique [16]. But storing index data
quadratic in the size of the database only seems appeal-
ing because it exploits our definition of cost, which con-
siders only search time: AESA pays a high cost in pre-
computation and storage instead. For this reason, pure
AESA is seldom used in practical applications. A prac-
tical data structure must be much smaller.

Micó, Oncina, and Vidal improve on AESA by
storing only part of the distance matrix: distances from
each database point to k chosen points instead of all the
n points in the database [13]. The resulting technique is
called LAESA. The space requirement becomes Θ(kn)
instead of Θ(n2); and with a suitably chosen k, which
can be significantly less than n, the resulting search al-
gorithm is almost as efficient for searching as AESA.

Chávez, Figueroa, and Navarro suggest a further
improvement [4]. Instead of storing the actual distances
from each database point to the k chosen points, which
we call the “sites” for consistency with the Voronoi di-
agram literature, they store only permutations of the
sites: which site is closest to each database point, which
one is second-closest, and so on. Their experimen-
tal results show that these permutations contain enough
information to do an efficient search, while consum-
ing much less storage space. They claim a reduction
in storage space requirement from O(nk logn) bits for
LAESA, to O(nk logk) [4]. The same authors with
Paredes extend the concept further to create an algo-
rithm called improved AESA (iAESA), in which dis-
tance permutations are also used to select pivot ele-
ments, providing a further improvement in search speed
over AESA [6].

A formal definition of distance permutations fol-
lows. Note that other authors refer to these objects as
proximity preserving orders; we call them distance per-
mutations to emphasize their connection with existing
work on permutation metrics, combinatorics of permu-
tations, and so on.

Definition 1. Given k points x1,x2, . . . ,xk, called the

sites, in some space with distance function d, the dis-
tance permutation of a point y, denoted by Πy, is
the unique permutation on {1,2, . . . ,k} such that if
i < j then d(xΠy(i),y) < d(xΠy(j),y) or d(xΠy(i),y) =
d(xΠy(j),y) and Πy(i) < Πy(j). That is, Πy is the per-
mutation that sorts the site indices into order of increas-
ing distance from y, using order of increasing index to
break ties.

In some spaces, the number of distance permuta-
tions that can actually occur may be significantly less
than the k! permutations of k sites; as a result, the dis-
tance permutation can be stored in fewer bits than an
unrestricted permutation, and the index can be made
even smaller without changing the search performance.
In particular, in the d-dimensional Euclidean case the
storage space requirement is reduced to Θ(nd logk),
an improvement on the previous best known theoret-
ical result. Smaller storage space is valuable in it-
self, but it also points to the limitations of distance
permutation-based algorithms like iAESA [6]. Because
only a few distance permutations are possible, that lim-
its how much benefit in reduced search time can ever
come from storing and using distance permutations.

1.2. Generalized Voronoi diagrams

The cells of Voronoi diagrams correspond to
classes of distance permutations. For instance, in
the conventional nearest-neighbour Voronoi diagram of
Fig. 1(a), the cell at left contains all the points closer to
A than to B, C, or D. Those are exactly the points whose
distance permutation begins with A. Many generaliza-
tions of Voronoi diagrams have been studied, including
higher-order diagrams in which the cells correspond to
the set of k nearest neighbours instead of just the one
very nearest neighbour [1]. An example for k = 2 is
shown in Fig. 1(b). Here the small cell in the middle
corresponds to distance permutations beginning with B
and D, in either order.

If we consider the entire distance permutation, and
consider order to be significant, we can divide the space
into a distinct cell for each permutation and get a dia-
gram like that in Fig. 2(a). All the cell boundaries of
the previous two diagrams are included in this one, be-
cause the division according to distance permutation is
a refinement of the division according to closest site, or
closest k sites. Also, the boundaries in Fig. 2(a) consist
exactly of the six (that is,

(4
2

)
) lines that bisect pairs of

sites. For each pair of sites, a point is closer to one or
the other depending on whether it falls on one side or
the other of the corresponding line; its position relative
to all six lines defines its distance permutation. Because
bisectors are useful in other spaces too, we give a gen-

7070

D

A

B

C

(a) First-order

{A,D}

A

{A,B}
B

{B,C}

C

{C,D}

D

{B,D}

(b) Second-order

Figure 1. Euclidean Voronoi diagrams

eral definition and notation for them:

Definition 2. The bisector of two points x and y, de-
noted by x|y, is the set of all points z such that d(x,z) =
d(y,z).

If points can be on either side of each of six bisec-
tors in Fig. 2(a), that suggests there should be 26 = 64
cells, evidently impossible when there are only 4! = 24
permutations of the four sites; and in fact, the diagram
only contains 18 cells, not even one for each permuta-
tion. The fact that these are bisectors in Euclidean space
and not arbitrary subsets of the plane limits the number
of cells.

Arrangements of hyperplanes, which include bi-
sector systems in Euclidean space, create combina-
torial objects called oriented matroids, and those are
well-studied [3]. Unfortunately, most of the relevant
results are inapplicable to bisectors in more general
spaces. Many authors including Grünbaum [8] and
Mandel [12] have applied oriented matroids to arrange-
ments of pseudolines and pseudospheres (respectively),
which describe intersections of generalized hyperplanes
that are not necessarily flat. Arrangements of pseu-
dolines as currently defined retain the restriction that
each pair of pseudolines must intersect in exactly one
point, using the projective plane if necessary to force
parallel lines to intersect; and arrangements of pseudo-
spheres have a similar, higher-dimensional requirement
for well-behaved intersections. The bisector system
shown in Fig. 2(b) does not have that property, and the
associated sign vectors do not form an oriented matroid.
Santos successfully generates a Delaunay oriented ma-
troid from a point arrangement in non-Euclidean space
by considering the triangulation of the points instead of

their bisectors, but his main result is specific to two di-
mensions, and the connection to our question about bi-
sectors is not clear [18].

Icking and others investigate the behaviour of bi-
sectors with convex distance functions in two and three
dimensions, and show a number of surprising results,
including that three spheres in general position in 3-
dimensional L4 space can intersect at four distinct
points [9], and that the combinatorial structure around
the one-dimensional bisector of three points can be dif-
ferent for different connected components of the bisec-
tor [10]. They survey other problematic results on bi-
sectors and comment on “the surprising, really abnor-
mal, structure of the bisectors which behave totally dif-
ferent[ly] from what is known for the Euclidean dis-
tance.” [10]

2. Tree metrics

Consider first a space with a tree metric. That is,
each point in the space is associated with a vertex in
a (possibly infinite) tree, and the distance between two
points is the number of edges in the path between them.
A natural extension is to place positive real weights on
the edges and let the metric be the sum of weights on
the path between two points. One simple tree metric is
the prefix metric between strings, which is the minimal
number of edits to transform one string into the other
where an edit consists of adding or removing a letter at
the right-hand end of the string. Tree metrics are com-
monly used in creating well-behaved approximations of
arbitrary metrics [2].

Theorem 1. For k sites in a space with a (possibly

7171

A

B

C

B|D

C|D

A|BA|C

D

B|C

A|D

(a) L2

B

A

A|D B|C

D

A|C

C|D

A|B

B|D

C

(b) L1

Figure 2. Bisectors of four points

weighted) tree metric, there can be at most
(k

2

)
+ 1 dis-

tinct distance permutations.

The proof is based on the fact that every edge in
a tree is a cut-edge. When we split up the tree into
distance permutations by cutting on all the bisectors,
the number of components increases by at most one
for each bisector. It is possible to design a tree metric
with extremely uneven edge weights, or no sufficiently
long paths, so that the bound of Thm. 1 is unachievable;
and in a finite space, k could be chosen large enough
that

(k
2

)
+ 1 is more than the number of points in the

space and thus could not possibly be achieved. How-
ever, those are exceptional cases. In general, for practi-
cal tree metrics such as the prefix metric, long paths are
plentiful and the bound of

(k
2

)
+1 is easily achieved.

3. Real vectors with Lp metrics

Euclidean spaces are familiar and widely used, so it
is natural to examine metric space questions there. We
also consider the other Minkowski Lp metrics, defined
for points x = 〈x1,x2, . . . ,xn〉 and y = 〈y1,y2, . . . ,yn〉 by
d(x,y) = (∑n

i=1 |xi− yi|p)1/p for real p ≥ 1 or d(x,y) =
maxn

i=1 |xi − yi| for p = ∞. These spaces are a simple
generalization of Euclidean space and share many of its
properties; in particular, the L2 metric is the Euclidean
metric. Let Nd,p(k) represent the maximum number of
distinct distance permutations generated by k sites in the
space of d-dimensional real vectors with the Lp metric.

First of all, it is possible to make all k! permutations
occur in sufficiently high dimension. The construction
places points with care at approximately unit distance

from the origin, one on each coordinate axis and an ad-
ditional one on the opposite side on the first axis. All
permutations are forced to occur inside a small sphere
centred on the origin, giving the following theorem.

Theorem 2. In d-dimensional real vector space with
any Lp metric, k sites can be chosen such that all k!
distinct distance permutations exist, for any k ≤ d + 1.
That is, Nd,p(k) = k! for d ≥ k−1 and any p ≥ 1.

A classical problem (often stated in terms of cut-
ting a cake, or a cheese) asks how many pieces can be
formed by cutting d-dimensional Euclidean space with
m hyperplanes of dimension d − 1 in general position.
Price shows that where Sd(m) represents the number of
pieces formed by m cuts in d-dimensional Euclidean
space, then Sd(0) = S0(m) = 1; and Sd(m) = Sd(m−
1)+ Sd−1(m− 1) for d,m > 0 [15]. His proof is an in-
duction that follows the structure of the recurrence re-
lation: when we add the m-th hyperplane to an arrange-
ment that already contains Sd(m− 1) pieces, then the
new hyperplane is itself a (d−1)-dimensional space cut
up by the m− 1 existing hyperplanes into Sd−1(m− 1)
pieces, and each of those partitions off a new piece
in the original d-dimensional space, proving the recur-
rence. It also follows easily that Sd(m) = Θ(md) [15].

The Euclidean cake-cutting problem provides a
starting point for counting the pieces formed by bisec-
tors in real vector spaces. Since there are

(k
2

)
bisectors

between k sites, if the bisectors were in general posi-
tion relative to each other then we would have the num-
ber of distance permutations in Euclidean space equal
to the number of pieces formed by

(k
2

)
hyperplanes, or

Nd,2(k) = Sd

((k
2

))
. Since the bisectors are not in gen-

7272

eral position, the actual number of distance permuta-
tions is less; but that remains as an upper bound, giv-
ing Nd,2(k) = O(k2d) because

(k
2

)
is Θ(k2) and Sd(m)

is Θ(md). That result will be extended to other met-
rics in Thm. 4, but first we give an exact result for the
Euclidean case.

Theorem 3. In d-dimensional Euclidean space,

N0,2(k) = Nd,2(k) = 1 (1)
Nd,2(k) = Nd,2(k−1)+(k−1)Nd−1,2(k−1) . (2)

Numerical results are shown in Tbl. 1. Note the fac-
torials that appear in the lower triangle, corresponding
to Thm. 2. For the one-dimensional case, the formula
reduces to

(k
2

)
+ 1, which is equal to the value for tree

metrics from Thm. 1. The proof of Thm. 3 takes the
same general approach used by Price [15]. The com-
plication is that because equality is transitive, some of
the intersections among bisectors must coincide. With
three sites A, B, and C, A|B∩B|C ⊆ A|C. Accounting
for those intersections and the resulting missing pieces
leads to Thm. 3. Bounds on Nd,2(k) then follow by in-
duction:

Corollary 1. The function Nd,2(k) satisfies:

Nd,2(k)≤ k2d (3)

Nd,2(k) =
k2d

2dd!
+o(k2d) . (4)

Therefore, the distance permutation in Euclidean space
can be stored in Θ(d logk) bits.

With other Lp metrics, the situation is more com-
plicated. Consider the two-dimensional L1 case shown
in Fig. 2(b). A bisector in this space generally consists
of an orthogonal line with a diagonal kink in the middle.
In the Euclidean plane, two bisectors either coincide, in-
tersect at exactly one point, or do not intersect at all; and
if they are in general position relative to each other, they
must intersect at exactly one point. But here, two bisec-
tors can be in general position relative to each other and
still fail to intersect, like A|D and B|C; or they can in-
tersect at exactly two points, like A|B and C|D. There
are also many degenerate cases possible, in which the
intersection might be for instance two disjoint rays, or
a ray with a line segment attached. Higher dimensions
are even worse. Because the intersections are not well-
behaved in non-Euclidean metrics, we cannot treat each
bisector as a space of the same type, subject to the over-
all result as part of an induction.

However, the difficult combinatoric issues come
from seeking an exact and general answer. In the two
special cases of L1 and L∞ spaces, which happen to be of

great practical interest, we can prove a new asymptotic
bound with elementary results. For p∈ {1,2,∞}, bisec-
tors are piecewise linear. That is, each bisector consists
of a union of subsets of hyperplanes; and the maximum
number of hyperplanes per bisector is a function of the
dimension. For instance, in two-dimensional L1 space
as seen in Fig. 2(b), each bisector is a union of subsets
of at most three lines. Then cutting up d-dimensional
Lp space with the bisectors of k points can yield no
more pieces than cutting up d-dimensional Euclidean
space with O(f (d)k2) hyperplanes in general position;
that gives the following result.

Theorem 4. The function Nd,p(k) satisfies:

Nd,1(k) = O(22d2
k2d) (5)

Nd,2(k) = O(k2d) (6)

Nd,∞(k) = O(22dd2dk2d) . (7)

All three of these are O
(
k2d

)
for constant d.

This result gives an asymptotic improvement in the
bound on storage space for distance permutations, be-
cause a general permutation of k sites would require
Θ(k logk) bits. The practical consequence is that adding
sites costs very little in index space requirement, once
the number of sites is significant compared to the num-
ber of dimensions. On the other hand, it also suggests
that once we have about twice as many sites as dimen-
sions, there is little value in adding more sites; the dis-
tance permutation contains little more information.

Experiments with interactive computer graphics
raise the question of whether non-Euclidean Lp metrics
ever actually give more permutations than the Euclidean
bound; it was not easy to find four sites to give 18 per-
mutations for Fig. 2(b), and we could not find any con-
figuration with more than 18. As the results in the next
section show, it is in fact possible for L1 vectors to ex-
ceed the limit for L2.

4. Experimental results

Because we are interested in worst-case storage
space of data structures, our theoretical results focus on
computing the maximum possible number of distance
permutations that could occur in any data set. That
is also the best case, in one sense, for permutation-
based similarity search algorithms like iAESA: having
as many distinct permutations in the index as possible
means that maximum information can be extracted from
the index without needing distances to be computed at
search time. However, in a real database which may not
fill the space uniformly, the number of distance permu-
tations actually occurring may be significantly less than

7373

k:
2 3 4 5 6 7 8 9 10 11 12

d: 1 2 4 7 11 16 22 29 37 46 56 67
2 2 6 18 46 101 197 351 583 916 1376 1992
3 2 6 24 96 326 932 2311 5119 10366 19526 34662
4 2 6 24 120 600 2556 9080 27568 73639 177299 392085
5 2 6 24 120 720 4320 22212 94852 342964 1079354 3029643
6 2 6 24 120 720 5040 35280 212976 1066644 4496284 16369178
7 2 6 24 120 720 5040 40320 322560 2239344 12905784 62364908
8 2 6 24 120 720 5040 40320 362880 3265920 25659360 167622984
9 2 6 24 120 720 5040 40320 362880 3628800 36288000 318540960

10 2 6 24 120 720 5040 40320 362880 3628800 39916800 439084800

Table 1. Number of distance permutations Nd,2(k)

the theoretical maximum. As seen in Fig. 2, some of
the cells in the generalized Voronoi diagram are much
smaller than others, and may not contain any objects in
a real database.

To examine these issues, we implemented dis-
tance permutations for the SISAP library of Figueroa,
Navarro, and Chávez [7], as a new index type called
distperm. Our distperm code is a minor modi-
fication of the library’s pivots index type. The li-
brary’s iaesa index type uses distance permutations
internally, but as part of a more sophisticated algo-
rithm, making it harder to modify for counting permuta-
tions. Our build-distperm-* programs write out
the permutations in ASCII as a side effect of index gen-
eration, so that the number of unique permutations can
easily be counted with sort | uniq | wc. Source
code (in C, with the same distribution terms as the orig-
inal library) is available.

We used our code to count the number of unique
distance permutations for a variety of metric spaces
including randomly-generated vectors and the sample
databases supplied with the library. Results on the sam-
ple databases are shown in Tbl. 2. We show results for
vectors (106 uniformly chosen from the unit cube) in
Tbl. 3. Because the result for vectors depends on the
random choice of sites, we ran each vector experiment
20 times, and show both the mean and maximum num-
ber of distance permutations observed, for selected val-
ues of k, the number of sites.

The most obvious feature of these results is that
the numbers are so small. For instance, with the
sample database long, which contains feature vec-
tors extracted from news articles, with 12 sites there
are only 261 distinct distance permutations, out of the
479001600 general permutations of 12 objects. To
some extent this can be explained by the small num-
ber of points in the database; but the other sample

databases also show small numbers of distance permu-
tations. These results suggest that an even greater space
saving is possible, but also that the distance permuta-
tions do not contain much information: the search al-
gorithm can only benefit to a limited degree from using
them.

By comparing numbers from Tbl. 2 with the theo-
retical values for Euclidean spaces in Tbl. 1, we see that
colors has a few more distance permutations than
would a Euclidean space with two dimensions. The
nasa database has a few more distance permutations
than a Euclidean space with three dimensions, ignor-
ing the values for k > 10 because there the permuta-
tions appear to be limited by the number of points in
the database. The dictionary databases vary, but seem
equivalent to Euclidean spaces with up to four dimen-
sions. And the listeria database, despite having
plenty of points, seems equivalent to a Euclidean space
with between one and two dimensions. In this way we
can characterize the dimensionality of a database in a
highly general way.

Comparison to the intrinsic dimensionality ρ , de-
fined by Chávez and Navarro as mean squared divded
by twice the variance of distance between two ran-
dom points [5], seems natural but may not be mean-
ingful. The intrinsic dimensionality depends heavily
on the probability distribution [19], whereas the num-
ber of distinct distance permutations depends only on
which points can exist at all. Thus, no firm relation-
ship between ρ and distance permutations can exist.
Nonetheless, we give experimental ρ values based on
the assumption of choosing points uniformly from the
databases. As the tables show, databases with larger ρ

tend to have more distance permutations.

A notable result not shown in Tbl. 3 is that in
three-dimensional L1 space, the experiment found a
database and choice of five sites giving 108 distinct dis-

7474

k:
database n ρ 3 4 5 6 7 8 9 10 11 12
Dutch 229328 7.159 6 24 119 577 2693 11566 34954 74954 116817 163129

English 69069 8.492 6 24 120 645 2211 7140 16212 28271 38289 45744
French 138257 10.510 6 24 118 475 2163 8118 19785 35903 58453 81006
German 75086 7.383 6 24 119 517 1639 4839 10154 19489 30347 43208

Italian 116879 10.436 6 24 120 653 3103 10872 27843 45754 71921 90316
Norwegian 85637 5.503 6 24 118 632 2530 7594 15147 25872 42992 57988
Spanish 86061 8.722 6 24 118 598 2048 5428 13357 23157 39443 54628
listeria 20660 0.894 4 11 19 29 49 85 206 510 952 1145

long 1265 2.603 5 10 22 47 51 98 114 163 252 261
short 25276 808.739 6 24 111 508 2104 6993 13792 20223 23102 23940
colors 112544 2.745 6 18 44 96 200 365 796 1563 2800 4408
nasa 40150 5.186 6 24 115 530 1820 3792 7577 13243 19066 24154

Table 2. Number of distance permutations for sample databases.

mean perms max perms
d ρ k = 4 8 12 k = 4 8 12

L1 1 1.00 7.00 29.00 67.00 7 29 67
2 2.00 14.65 268.45 1398.20 18 290 1532
3 3.00 20.85 1405.20 16143.70 24 1804 18239
4 4.00 23.95 4705.35 82253.85 24 5663 94537
5 5.00 24.00 10390.85 220231.20 24 13573 258874
6 6.00 24.00 16073.50 394466.85 24 20234 471375
7 7.00 24.00 20811.65 569807.35 24 27824 653015
8 8.00 24.00 26999.10 728040.20 24 33637 770929
9 9.00 24.00 30309.60 809393.30 24 37198 845181

10 10.00 24.00 30715.55 884013.40 24 35698 917237
L2 1 1.00 7.00 28.95 67.00 7 29 67

2 2.21 15.25 268.05 1440.15 18 298 1539
3 3.52 19.60 1332.75 14584.20 24 1568 15929
4 4.88 22.70 4214.20 67179.40 24 5079 75850
5 6.27 23.90 7515.05 182253.50 24 10471 208301
6 7.68 23.75 13824.25 348609.25 24 18693 402685
7 9.09 23.95 17349.30 502957.40 24 23944 613857
8 10.50 23.95 20244.80 657013.80 24 34866 796775
9 11.92 24.00 21936.45 730146.10 24 28635 851775

10 13.35 24.00 25562.25 815217.05 24 33097 905490
L∞ 1 1.00 7.00 29.00 67.00 7 29 67

2 2.23 13.15 233.15 1314.10 18 278 1485
3 3.59 18.05 1219.75 13152.25 24 1712 16162
4 5.05 23.50 3664.60 54838.10 24 4912 70354
5 6.58 22.80 6488.30 150360.55 24 12566 213951
6 8.17 23.35 11314.00 265706.25 24 17837 352150
7 9.80 23.70 14384.65 357331.00 24 23983 466484
8 11.47 24.00 15433.55 496952.75 24 26906 610841
9 13.17 24.00 18494.20 569572.75 24 27160 714881

10 14.90 24.00 22415.00 648613.15 24 34281 770769

Table 3. Number of distance permutations for random vectors.

7575

tance permutations, exceeding the limit of 96 for three-
dimensional Euclidean space. Therefore the hypothesis
that the Euclidean limit applies to all Lp spaces is false.
The exceptional sites are:

x1 = (0.205281,0.621547,0.332507)
x2 = (0.053421,0.344351,0.260859)
x3 = (0.418166,0.207143,0.119789)
x4 = (0.735218,0.653301,0.650154)
x5 = (0.527133,0.814207,0.704307) .

(8)

5. Conclusion and Open Problems

We have described the problem of counting how
many distance permutations are possible in a space, and
given exact solutions for tree metrics and Euclidean
spaces. For the L1 and L∞ metrics on real vectors, we
have given an asymptotic analysis, which is sufficient to
improve the best previous bound. We have also imple-
mented permutation counting in the SISAP library [7],
and given experimental results on the number of dis-
tance permutations found in the sample databases. The
experimental results suggest a novel way of estimating
the dimensionality of databases. The same questions in
other spaces remain open problems.

References

[1] F. Aurenhammer. Voronoi diagrams—a survey of a fun-
damental geometric data structure. ACM Computing
Surveys, Sept 1991, 23(3), 1991.

[2] Y. Bartal. Probabilistic approximations of metric spaces
and its algorithmic applications. In 37th Annual Sympo-
sium on Foundations of Computer Science (FOCS’96),
pages 184–193. IEEE, 1996.

[3] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and
G. M. Ziegler. Oriented Matroids. Cambridge Univer-
sity Press, second edition, 1999.

[4] E. Chávez, K. Figueroa, and G. Navarro. Proximity
searching in high dimensional spaces with a proximity
preserving order. In A. Gelbukh, Á. de Albornoz, and
H. Terashima-Marı́n, editors, 4th Mexican International
Conference on Artificial Intelligence (MICAI’05), pages
405–414. Springer, 2005.

[5] E. Chávez and G. Navarro. Measuring the dimensional-
ity of general metric spaces. Technical Report TR/DCC-
00-1, Department of Computer Science, University of
Chile, 2000.

[6] K. Figueroa, E. Chávez, G. Navarro, and R. Paredes.
On the least cost for proximity searching in metric
spaces. In C. Àlvarez and M. Serna, editors, Experimen-
tal and Efficient Algorithms: 5th International Work-
shop (WEA’06), pages 279–290. Springer, 2006.

[7] K. Figueroa, G. Navarro, and E. Chávez. Metric
Spaces Library. Online http://www.sisap.org/
?f=library. Accessed November 24, 2007.

[8] B. Grünbaum. Arrangements and Spreads. Number 10
in Conference Board of the Mathematical Sciences Re-
gional Conference Series in Mathematics. American
Mathematical Society, Providence, June 1971.

[9] C. Icking, R. Klein, N.-M. Lê, and L. Ma. Convex dis-
tance functions in 3-space are different. Fundamenta
Informaticae, 22(4):331–352, 1995.

[10] C. Icking, R. Klein, N.-M. Lê, L. Ma, and F. Santos.
On bisectors for convex distance functions in 3-space.
In 11th Canadian Conference on Computational Geom-
etry (CCCG’99), pages 119–123. University of British
Columbia, 1999.

[11] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer
Vision, 60(2):91–110, Nov. 2004.

[12] A. Mandel. Topology of Oriented Matroids. PhD thesis,
University of Waterloo, 1982.

[13] L. Micó, J. Oncina, and E. Vidal. A new version
of the nearest-neighbour approximating and eliminating
search algorithm (AESA) with linear preprocessing time
and memory requirements. Pattern Recognition Letters,
15(1):9–17, 1994.

[14] R. Paredes and E. Chávez. Using the k-nearest neigh-
bor graph for proximity searching in metric spaces. In
M. P. Consens and G. Navarro, editors, String Process-
ing and Information Retrieval, 12th International Con-
ference (SPIRE’05), pages 127–138. Springer, 2005.

[15] D. J. Price. Some unusual series occurring in n-
dimensional geometry. The Mathematical Gazette,
30:149–150, 1946.

[16] E. V. Ruiz. An algorithm for finding nearest neighbors
in (approximately) constant time. Pattern Recognition
Letters, 4:145–157, 1986.

[17] M. Sahlgren. The Word-Space Model. PhD thesis,
Stockholm University, 2006. Online http://www.
sics.se/∼mange/TheWordSpaceModel.pdf.

[18] F. Santos. On Delaunay oriented matroids for convex
distance functions. Discrete & Computational Geome-
try, 16(2):197–210, 1996.

[19] M. Skala. Measuring the difficulty of distance-based in-
dexing. In M. P. Consens and G. Navarro, editors, String
Processing and Information Retrieval: 12th Internatio
nal Conference (SPIRE’05), pages 103–114. Springer,
2005.

[20] J. K. Uhlmann. Satisfying general proximity/similarity
queries with metric trees. Information Processing Let-
ters, 40:175–179, Nov. 25, 1991.

[21] P. N. Yianilos. Data structures and algorithms for nearest
neighbor search in general metric spaces. In Fourth An-
nual ACM/SIGACT-SIAM Symposium on Discrete Algo-
rithms (SODA’93), pages 311–321. ACM/SIAM, 1993.

7676

