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In a traditional database system, the result of a query is a
set of values (those values that satisfy the query). In other

data servers, such as a system with queries baaed on image

content, or many text retrieval systems, the result of a query

is a sorted list. For example, in the case of a system with

queries based on image content, the query might aak for

objects that are a particular shade of red, and the result of

the query would be a sorted list of objects in the database,

sorted by how well the color of the object matches that

given in the query. A multimedia system must somehow

synthesize both types of queries (those whose result is a

set, and those whose result is a sorted list) in a consistent

manner. In this paper we discuss the solution adopted by

Garlic, a multimedia information system being developed at

the IBM Almaden Research Center. This solution is based

on “graded” (or “fuzzy”) sets.

Issues of efficient query evaluation in a multimedia system

are very different from those in a traditional databaae

system. Thk is because the multimedia system receives

answers to subqueries from various subsystems, which can

be accessed only in limited ways. For the important class of

queries that are conjunctions of atomic queries (where each

atomic query might be evaluated by a different subsystem),

the naive algorithm must retrieve a number of elements that

is linear in the databzse size. By contraat, here art algorithm

is given, which haa been implemented in Garlic, such that

if the conjuncts are independent, then with arbitrarily

high probability, the total number of elements retrieved in

evahtating the query is sublinear in the database size (in the

caae of two conjuncts, it is of the order of the square root

of the size of the database). It is also shown that for such

queries, the algorithm is optimal. The matching upper and

lower bounds are robust, in the sense that they hold under

almost any reasonable rule (including the standard min rule

of fuzzy logic) for evaluating the conjunction. Finally, we

find a query that is provably hard, in the sense that the

naive linear algorithm is essentially optimal.
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1 Introduction

Garlic [CHS+95, CHN+95] is a multimedia information

system being developed at the IBM Almaden Research

Center. It is designed to be capable of integrating

data that resides in different database systems as well

as a variety of non-database data servers. A single

Garlic query can access data in a number of different

subsystems. An example of a nontraditional subsystem

that Garlic will access is QBIC [NBE+93] (“Query

By Image Content”). QBIC can search for images by

various visual characteristics such as color, shape, and

texture.

In this paper, we discuss the semantics of Garlic

queries. This semantics resolves the mismatch that

occurs because the result of a QBIC query is a sorted list

(of items that match the query best), whereas the result

of a relational database query is a set. Our semantics

uses “graded” (or “fuzzy” ) sets [Za65]. Issues of efficient

query evaluation in such a system are very different

from those in a traditional database system. As a first

step in dealing with these fascinating new issues, an

optimaJ algorithm for evaluating an important class of

Garlic queries is presented. This algorithm has been

implemented in Garlic.l

In Section 2, we discuss the problem of the mismatch
in semantics in more det ail, and give our simple solution.

In Section 3, we consider various operators in the

literature for conjunction and disjunction, and focus on

those properties of interest to us for the conjunction,

namely “strictness” and “monotonicity”. In Section 4,

we present algorithms for evaluating the conjunction of
at omit queries. In Section 5, we define the performance

cost of algorithms, and give a result that says that

the performance cost of our algorithm is small (in

particular, sublinear), under natural assumptions. This

upper bound depends on conjunction being monotone.

In Section 6, we give a lower bound, which implies that

the cost of our algorithm is optimal up to a constant

factor. This lower bound depends on conjunction being

strict. In Section 7, we give an example of a query

lAfis~a pritcltarrj did the impknentation.
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that is hard (in the sense that every algorithm for this

query must retrieve a linear number of objects in the

database). In Section 8, we discuss the effect of various

assumptions on the existence of efficient algorithms. In

Section 9, we give our conclusions.

2 Semantics

In response to a query, QBIC returns a sorted list of the

top, say, 10, items in its database that match the query

the best, For example, if the query asks for red objects
(where “red” might be selected from a color wheel), then

the result would be a sorted list with the reddest object

first, the next reddest object second, etc.

By contrast, the result of a query to a relational

database is simply a set. This leads to a mismatch:

the result of some queries is a sorted list, and for other

queries, it is a set. How do we combine such queries in

Boolean combinations? As an example, let us consider

an application of a store that sells compact disks. A

typical traditional database query might ask for the

names of all albums where the artist is the Beatles.

The result is a set of names of albums. A multimedia

query might ask for all album covers with a particular

shade of red. Here the result is a sorted list of album

covers. We see the mismatch in this example: the

query Artist= ‘Beatles’ gives us a set, whereas the query

AlbumColor= ‘red’ gives us a sorted list.2 How do we

combine a traditional database query and a multimedia

query? For example, consider the query

(Artist= ’Beatles’) A (AlbumColor=’red~.

What is the result of this query? In this case, we

probably want a sorted list, that contains only albums

by the Beatles, where the list is sorted by goodness of

match in color. What about more complicated queries?

For example, what should the result be if we replaced

A by V in the previous query? Is the answer a set,

a sorted list, or some combination? How about if we

combine two multimedia queries? An example is given

by the query

(Sound= ’loud~ V (AlbumColor=’red~.

Our solution is in terms of graded sets. A graded

set is a set of pairs (z, g), where z is an object (such

as a tuple), and g (the grade) is a real number in the

interval [0, 1]. It is sometimes convenient to think of a

!ZWewe ~~ting the query in the form Album Color= ’~’ ‘or

simplicity. In redlty, it might be expressed by selecting a color
from a color wheel, or by selecting an image I (that might be
predominantly red) and eaklng for other images whose colors
are “close to” that of image 1. Systems such as QBIC have
sophisticated color-matching algorithms [NBE+93] that compute
the difference between the colors of two images. For example,
au image that contains a lot of red and a little green might be
considered moderately close in color to another image with a lot
of pink aud no green.

graded set as corresponding to a sorted list, where the

objects are sorted by their grades. Thus, a graded set

is a generalization of both a set and a sorted list.

Although our graded-set semantics is applicable very

generally, we shall make certain simplifying assumptions

for the rest of the paper. This will make the discussion

and the statement of the results easier. Furthermore,

these simplifying assumptions enable us to avoid messy

implementation-specific details (such as object-oriented

system versus relational database system, and the choice

of query language). It is easy to see that our semantics

is very robust, and does not depend on any of these

assumptions. On the other hand, our results, which we

view only M a first step, do depend on our assumptions.

We assume that all of the data in all of the subsystems

that we are considering (that are accessed by Garlic)

deal with the attributes of a specific set of objects of

some fixed type. In the running example involving

compact disks that we have been considering, each

query, such as Artist= ‘Beatles’ or AlbumColor=’red’,

deals with the attributes of compact disks. As in these

examples, we take atomic queries to be of the form X =

i!, where X is the name of an attribute, and tis a target.

Queries are Boolean combinations of atomic queries.

For each atomic query, a grade is assigned to each

object. The grade represents the extent to which that

object fulfills that atomic query, where the larger the

grade is, the better the match. In particular, a grade of

1 represents a perfect match. For traditional database

queries, such as Artist= ‘Beatles’, the grade for each

object is either O or 1, where O means that the query is

false about the object, and 1 means that the query is

true about the object. For other queries, such as a QBIC

query corresponding to Album Color= ‘red’, grades may

be intermediate values between O and 1.

There is now a question of how to assign grades

when the query is not necessarily atomic, but possibly

a Boolean combination of atomic queries. We consider

this issue in the next section.

3 Dealing with Boolean combinations

A number of different rules for evaluating Boolean

combinations of atomic formulas in fuzzy logic have

appeared in the literature. In particular, there are a

number of reasonable “scoring functions” that assign a

grade to a fuzzy conjunction, ax a function r,f the grades

assigned to the conjuncts.

We consider first the standard rules of fuzzy logic, as

defined by Zadeh [Za65]. These are the rules that are

currently adopted by Garlic. If z is an object and Q is

a query, let us denote by /LQ(x) the grade of x under the
query Q. If we assume that /JQ(z) is defined for each

atomic query Q and each object z, then it is possible

to extend to queries that are Boolean combination of

atomic queries via the following rules.
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Disjunction rule: ~~v~(Z)=m~{#A(X),~~(Z)}

Negation rule: P.A(%) = 1 – PA(Z)

Thus, the standard conjunction rule for fuzzy logic is

based on using min as the scoring function.

These rules are attractive for two reasons. First,

they are a conservative extension of the standard

propositional semantics. That is, if we restrict our

attention to situations where PQ(Z) is either O or 1

for each atomic query Q, then these rules reduce to

the standard rules of propositional logic. The second

reason is because of an important theorem of Bellman

and Giertz [BG73], and simplified by Yager [Ya$2] and

Dubois and Prade [DP84]. We now discuss the Bellman-

Giertz theorem.

The standard conjunction and disjunction rules of

fuzzy logic have the nice property that if Q1 and Qz are

logically equivalent queries involving only conjunction

and disjunction (not negation), then #Q1 (z) = LLQ2 (~)

for every object x. For example, /.tAAA(z) = /JA(Z).

This is desirable, since then an optimizer can replace a

query by a logically equivalent query, and be guaranteed

of getting the same answer.

Furthermore, the scoring function min for conjunction

is monotone, in the sense that if pA (z) < PA (2?), and

PB(Z) S PB(z’), then /JAAB(Z) < /-LAAB(z’). Similarly,
the scoring function max for disjunction is monotone.

Monotonicity is certainly a reasonable property to

demand, and models the user’s intuition. Intuitively, if

the grade of object Z1 under the query A (resp., under

the query B) is at least as big as that of object X2, the

grade of object xl under the query A A B is at least as

big as that of object Xz under the query A A B.

The next theorem, due to Yager [Ya82] and Dubois

and Prade [DP84], is a variation of the Bellman-

Giertz theorem that says that min and max are the

unique scoring functions for conjunction and disjunction

with these properties. (Bellman and Giertz’s original

theorem required more assumptions.)

Theorem 3.1: The unique scoring functions for

evaluating A and V that preserve logical equivalence and

that are monotone in their arguments are min and max.

Let us define an m-ary scoring j%nction to be

a function from [0, l]m to [0, 1]. For the sake of

generality, we will consider m-ary scoring functions for

evaluating conjunctions of m atomic queries, alt bough

in practice an m-ary conjunction is almost always

evaluated by using an associative 2-ary function that

is iterated. Analogously to the binary case, we
say that an m-ary scoring function t is monotone if

t(zl,. . . ,Zm)<t(z; ,....z~ )when Zz < a; for every i.
As discussed before, monotonicity is a reasonable

property to expect a scoring function to obey. Another

such property is strictness: an m-ary scoring function t

is strict if t(zl,...,zm) = 1 iff xi = 1 for every i.

Thus, a scoring function is strict if it takes on the

maximal value of 1 precisely if each argument takes

on this maximal value. Scoring functions considered
in the literature seem to be monotone and strict. In

particular, scoring functions derived from “triangular

norms” [SS63, DP80] are monotone and strict. Another

important class of scoring functions include various

weighted and unweighed arithmetic and geometric

means, which Thole, Zimmerman, and Zysno [TZZ79]

found to perform empirically quite well. These are also

monotone and strict.

We can define an m-ary query (such as the conjunc-

tion of m formulas) in terms of an m-ary scoring func-

tion. The semantics of an m-ary query F(A1,..., Am)

k given by defining ~F’(A1 ,...,Am ). For example, the stan-

dard fuzzy logic semantics of the conjunction Al A... A

Am is given by defining

for each object x. Let t be an m-ary scoring function.

We define the m-ary query Fi (AI,..., Am) by taking

PFt(A1,...,Am)(~) = 0.41( ~)j... ,/JAm(~))

For example, if t is rein, then Ft(A1, ..., Am) is

equivalent in the standard fuzzy semantics to Al A

. . . A Am. We call F~(AI ,..., Am) a strict (resp.,

monotone) query if t is strict (resp., monotone). The

only properties of a query that are required in this

paper for our theorems to hold are strictness and

monotonicity. We need strictness for our lower bound on

the efficiency of algorithms for evaluating queries under

certain assumptions, and monotonicity for our upper

bound.

4 Algorithms for query evaluation

A vital issue in any database management system is the

efficiency of processing queries. In this section, we give

an algorithm for evaluating monotone queries. Later,

we show that under certain assumptions the algorithm

is optimally efficient up to a constant factor.

Probably the most important queries are those that
are conjunctions of atomic queries. For the sake of

the current discussion, let us assume for now that

conjunctions are being evaluated by the standard min

rule. An example of a conjunction of atomic queries is

the query

(Artist= ‘Beatles ~ A (Album Color= ’red~,

that we have discussed in our running example. In

this example, the first conjunct Artist= ‘Beatles’ is a

traditional database query, and the second conjunct



Album Color= ‘red’ would be addressed to a subsystem

such as QBIC. Thus, two different subsystems (in this

case, perhaps a relational database management system

to deal with the first conjunct, along with QBIC to

deal with the second conjunct) would be involved in

answering the query. Garlic has to piece together
information from both subsystems in order to answer

the query. Under the reasonable assumption that there

are not many objects that satisfy the first conjunct

Artist= ‘Beatles’, a reasonable way to evaluate this

query would be to first determine all objects that satisfy

the first conjunct (call this set of objects S), and then

to obtain grades from QBIC for the second conjunct for

all objects in S.3 We can thereby obtain a grade for all

objects for the full query. If the artist is not the Beatles,

then the grade for the object is O (since the minimum

of O and any grade is O). If the artist is the Beatles,

then the grade for the object is the grade obtained

from QBIC in evaluating the second conjunct (since the

minimum of 1 and any grade g is g). Note that, as we

would expect, the result oft he full query is a graded set

where (a) the only objects whose grade is nonzero have

the artist as the Beatles, and (b) among objects where

the artist is the Beatles, those whose album cover are

closest to red have the highest grades.

Let us now consider a more challenging example of

a conjunction of atomic queries, where more than one

conjunct is “nontraditional”. An example would be the
query

(Color= ’red~ A (Shape= ’round’).

For the sake of this example, we assume that one

subsystem deals wit h colors, and a completely different

subsystem deals wit h shapes. Let Al denote the

subquery Color= ‘red’, and let A2 denote the subquery

Shape= ‘round’. The grade of an object x under the

query above is the minimum of the grade of z under

the subquery Al from one subsystem and the grade

of x under the subquery A2 from the second subsystem.

Therefore, Garlic must again combine results from two

different subsystems. Assume that we are interested

in obtaining the top k answers (such as k = 10). This

means that we want to obtain k objects with the highest

grades on this query (along with their grades). If there

are ties, then we want to arbitrarily obtain k objects and

their grades such that for each y among these k objects

and each z not among these k objects, /.4Q(y) ~ #Q(z)

for this query Q. There is an obvious naive algorithm:

1. Have the subsystem dealing with color to output

explicitly the graded set consisting of all pairs

(z, P& (z)) for every object z.

2. Have the subsystem dealing with shape to output

3we are ~~umjng that QBIC can do such “random ~cesses”

(which, in fact, it can). We return to this issue shortly.

explicitly the graded set consisting of all pairs

(~, PA, (z)) fOr every object z.

3. Use this information to compute pA1AA2 (z) =

min {PAI (z), PAZ(z)} for every object z. For the k
objects z with the top grades pA, AAZ(z), output the

object along with its grade.

Can we do any better? On the face of it, it is not clear

how we can efficiently obtain the desired k answers (or

even what “efficient” means!)

What can we assume about the interface between

Garlic and a subsystem such as QBIC? In response to a

subquery, such as Color= ‘red’, we can assume that the

subsystem will output the graded set consisting of all

objects, one by one, along with their grades under the

subquery, in sorted order based on grade, until Garlic

tells the subsystem to stop. Then Garlic could later

tell the subsystem to resume outputting the graded set

where it left off. Alternatively, Garlic could ask the

subsystem for, say, the top 10 objects in sorted order,

along with their grades, then request the next 10, etc.

We refer to such types of access as “sorted access”.

There is another way that we could expect Garlic

to interact with the subsystem. Garlic could ask the

subsystem the grade (with respect to a query) of any

given object. We refer to this as “random access”.

Shortly, we shall give an algorithm that evaluates

conjunctions of atomic queries, and returns the top k

answers. In fact, the algorithm applies to any monotone

query. We note, however, that in the case of max,

which is certainly monotone, and which standard fuzzy

disjunction is defined in terms of, there is a much more

efficient algorithm, as we shall discuss at the end of

this section. Finally, as is discussed in another paper

[FW95], this algorithm applies also when the user can

weight the relative importance of the conjuncts (for

example, where the user decides that color is twice

as important to him as shape), since such “weighted

conjunctions” are also monotone.

We now give a proposition that is the key as to why

our algorithm is correct. Let us say that a set X of

objects is upwards closed with respect to a query Q

if whenever x and y are objects with x c X and

PQ (v) > PQ (x), then Y ~ X. Thus, -X is upwards closed
with respect to Q if every object with a grade under Q

that is strictly greater than that of a member of X is

also in X.

Proposition 4.1: Assume that Xi is upwards closed

with respect to query Ai, for 1 < i < m. Assume

that Ft(Al, ..., Am) is a monotone query, that x and

z are objects with x ~ niXi, and /.LF,fA,,,,,AmJ(Z) >
/.LFt(A1,,Am)($). Then z E UaXi.

Proof: For ease in notation, let us write Ft(A1, . . . . Am)

as Q. If it were the case that PA, (x) ~ PA, (z) for



every j, then by monotonicit y of t, we would have that

t(&A1 (~),... , ~A~(~)) > @A, (~) ,... ,PAm(Z)), that iS,

PQ(~) 2 PQ (z), which contradicts our assumption that

W(z) > ,PQ(~). SO PAj (~) < PAj (z) fOr some j. NOW
z c fliX’ ~ X~. Therefore, since X~ is upwards closed

with respect to Aj, it follows that z E X~ ~ UiXi, as

desired. n

We now give an algorithm (called algorithm &)

that returns the top k answers for a monotone query

F~(AI, . . . , Am), which we denote by Q. (We assume
that there are at least k objects, so that “the top k

answers” makes sense.) Assume that subsystem i

evaluates the subquery Ai. Our algorithm is based on

Proposition 4.1. The idea is that each subsystem i will

generate a set Xi that is upwards closed with respect

to Ai, such that nixi contains at least k objects. It

then follows (as we will show) from Proposition 4.1

that k objects with the highest grades must be in UiXi.

The algorithm consists of three phases: sorted access,

random access, and computation.

1. For each i, give subsystem i the query Ai under

sorted access. Thus, subsystem i begins to output,

one by one in sorted order based on grade, the

graded set consisting of all pairs (z, PA,(z)), where

2.

3.

ss before z is an object and PAi (z) is the grade of

m under query A{. Wait until there are at least k

“matches”, that is, wait until there is a set L of at

least k objects such that each subsystem has output

all of the members of L. More formally, for each ~,

denote by G: the graded set consisting of the first ~

pairs (z, PA, (z)) in the output of subsystem i. Let

X: = {z I (z, PA,(z)) E G;}, the projection of G$

onto the first component. Thus, X; consists of the

first ~ objects in the output of subsystem i. Wait

until there are at least k matches, that is, find T

such that L = n~l X$ contains at least k members.

For each object z that has been seen, that is, for each

% E U&Xi, do random access to each subsystem j

to find pAj (z). of course, if x G Xi, then PAJ (Z)

has already been determined, so random access is

not needed for this object x in this subsystem j.

Compute the grade ~Q(Z) = t(/.4& (3),..., pA~ (z))

for each object x that has been seen. Let Y be a set

containing the k objects that have been seen with

highest grades (ties are broken arbitrarily). The

output is then the graded set {(z, p~(~)) I z E Y}.

We now prove correctness of this algorithm.

Theorem 4.2% For every monotone query Ft(A1,..., Am),

algorithm & correctly returns the top k answers.

Proofi For ease in notation, let us write Ft(A1,. . . . Am)

as Q. Let N be the total number of objects z.
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Therefore, Xi contains all N objects for each i. Hence,

n&X~ contains all N objects. Now by assumption,

k S N. Therefore, n~l X~ contains at least k objects.

So T is well-defined in the sorted access phase of the

algorithm (as the least ~ such that n~lx~ contains at

least k objects).

By definition, Y has k members. Under our definition

of “the top k answers” , we need only show that if z is

an arbitrary object not in Y, then for every ~ 6 Y
we have /4Q(y) ~ #Q(z). Assume that z # Y, and

ILQ (v) < PQ(Z) for some v ~ Y; we shall derive a
contradiction. Since (a) L is a subset of U~l Xi wit h

at least k members, (b) Y consists of the k members

of U&X$ with the highest grades, and (c) y G Y, it

follows that for some x G L, we have pQ(Z) ~ pQ(y).

Hence, ~Q(Z) < /.4Q(z). Clearly, X$ is upwards closed

with respect to Ai, for 1 s i < m. Since also z c L =

flaX$, itfollows from Proposition 4.1 that z c U&X$.

But then, since PQ(y) < ~Q(z) for some y C Y, it

follows by definition of Y that z E Y. But this is a

cent radiction. 1

Note that the algorithm has the nice feature that after

finding the top k answers, in order to find the next k

best answers we can “continue where we left off”.

There are various minor improvements we can make

to algorithm .40 to improve its performance slightly.

(The performance of an algorithm is formally defined

in Section 5.) For example, instead of using a uniform

value of T, we might find T1 s T for each i such that

n~l Xii cent ains k members. We could then replace

all occurrences of U&X$ in algorithm do by U~=l X$i,

which could lead to fewer random accesses.

For particular scoring functions t, we can modify

algorithm & even further to improve its performance.

For example, consider the important special case of

the standard fuzzy conjunction Al A . . . A Am, where

t is min. In this case, we can give a strengthening of

Proposition 4.1, which, as we shall see, leads to a slightly

more efficient algorithm.

Proposition 4.3: Assume that Xi is upwards closed

with respect to query Ai, for 1< i ~ m. Assume that t

is min. Let X. be an object and Z. a subsystem such that

/JAio (ZO) = mhZ6ng1xt mini PAi (z). Assume that x

and z are objects with z ~ fl~Xi, and /.4~t(A1,...,A~J(Z) >

PF, (A,,..., A,,tJ(z). ~he~ z c xi”.

Proof: For ease in notation, let us write F’t (Al,..., Am)

as Q. Since t is rein, the fact that /.4Q(z) > /JQ(Z) says

min {JUA, (Z) ,... ,/4Am(Z)} > Inh{14A1(Z),... ,/.JAm(*)}.

By definition of X. and io, it follows that

min {PA, (~), . . . ,/&l~(~)} ~ pA,O(~O)-

So IIIh {PA, (Z),... , PA~ (Z)} > PA,, (zo), and hence

/JAiO (~) > I-JA,O (zo ). Since XiO is upwards closed, it

follows that z E Xi”, as desired. H



We can use Proposition 4.3 to give a more efficient

algorithm than Algorithm &, when t is min. The idea

is as follows. Let Q denote the query Ft (A1,.. ., Am ),

when t is the min. Let Z. and iO be as in Proposition 4.3.

Let go = pQ(xo). Intuitively, Z. is a subsystem that

has shown the smallest grade go in the sorted access

phase of algorithm do, and ZO is an object with this
smallest grade go in subsystem Z.. By the min rule,

Z. has overall grade go. Define the candidates to be
the objects z c X; with ~AiO (z) > go. We use the

word “candidates”, since these turn out to be the only

candidates we need to consider for the set of objects with

the top k answers. Define algorithm ~ to be the result

of replacing all occurrences of U~l X$ in algorithm &

by the set of candidates. Thus, algorithm ~ is defined

by taking the sorted access phase to be the same as

the sorted access phase of algorithm &, and taking the

remaining two phases as follows:

2.

3.

Let Z. be an object in L whose grade PQ(~O ) is the

least of any member of L. Let i. be a subsystem

such that PAiO (zo) = p~(zo). Let go = ~~ (z. ).

The candidates are defined to be the objects x E X$’

with /.LAiO(x) ~ go. For each candidate x, do random

access to each subsystem j # i. to find pAj (z).

Compute the grade PQ(Z) = min {lJA, (z),..., /.bAm (Z)}

for each candidate x. ‘Let Y be a-set-containing the

k candidates with the highest grades (ties are bro-

ken arbitrarily). The output is then the graded set

{(~,~Q(~)) I z E Y}.

Intuitively, algorithm ~ has better performance than

&, since we do random access only for the candidates,

each of which is a member of XiO, rather than doing

random access for all of U&X;. The next theorem
shows that algorithm ~ gives the correct answer when

t is min.

Theorem 4.4: In the case of standard fuzzg conjunc-

tion (where the scoring function t is rnin), algorithm&

correctl~ returns the top k answers.

Proof: Let Q be the standard fuzzy conjunction

AI A... AAW. The proof is exactly the same aa the

proof of Theorem 4.2, except that instead of applying
Proposition 4.1 to conclude that z c u&X.$, we

instead apply Proposition 4.3 to conclude the stronger
fact that z c X$. u

For certain monotone scoring functions t, we can

define an algorithm that performs substantially better

than algorithm &. As an obvious example, let t

be a constant function: then an arbitrary set of k
objects (with their grades) can be taken to be the

top k answers. Let us consider a more interesting and

important example, where t is max, which corresponds

to the standard fuzzy disjunction Al v . . . v Am. We

will use this as an example later when we consider the

limitations of our lower-bound results.

We now give an algorithm (called algorithm I?o)

that returns the top k answers for the standard fuzzy

disjunction Al V . . . v Am of atomic queries Al,. .,, Am.

1. For each i, use sorted access to subsystem i to find

the set X; containing the top k answers to the

query Ai.

2. For each z G U&X~, let

h(z) = m,~ {pA, (Z) I z E Xi} .

Let Y be a set containing the k members x of

U&X~ with the highest values of h(z) (ties are

broken arbitrarily). The output is then the graded

set {(x, h(z)) I x G Y}.

The next theorem is straightforward.

Theorem 4.!5 In the case of standard fuzzg disjunction

(where the scoring function t is max), algorithm f30

correctly wturns the top k answers.

As we shall discuss later (in particular, after we define

“performance cost” ), the algorithm I?. has substantially

better performance than algorithm ~.

5 Performance cost

In this section, we consider the performance cost of

algorithms for evaluating queries. In particular, we

focus on the cost of algorithm ~ when the scoring

function is monotone.

Our measure of cost corresponds intuitively to the

amount of information that an algorithm obtains from

the database. The sorted access cost is the the total

number of objects obtained from the database under

sorted access. For example, if there are only two

lists (corresponding, in the case of conjunction, to a

query with two conjunct), and some algorithm requests

altogether the top 100 objects from the first list and

the top 20 objects from the second list, then the sorted

access cost for this algorithm is 120. Similarly, the

random access cost is the the total number of objects
obtained from the database under random access. The

database access cost is the sum of the sorted access cost

and the random access cost.

Using our notion of the database access cost as a cost

measure is somewhat controversial. After all, a single

sorted access is probably much more expensive than a

single random access. However, our results are fairly

robust with respect to a choice of cost measure. For

example, let us consider the case of greatest interest in

this paper, where the scoring function is monotone and

strict. It follows from our lower bounds that except
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for algorithms with an extremely large random access

cost (at least equal to the number of objects in the

database), no algorithm can have sorted access cost less

than a constant times the database access cost of our

algorithm &. This shows that the cost performance

of & is optimal up to a constant factor even under

arbitrary cost measures where we charge more for each

sorted access than for each random access. Note that

under such cost measures, the database access cost of

algorithm & is the same up to a constant factor as

that under our original cost measure, and in particular

is sublinear.

Of course, there are situations (such as in the case

of a query optimizer) where we want a more realistic

cost measure than our definition of the databsse access

cost. The important point is that our lower and upper

bounds are sufficiently robust that they probably apply

even with this more realistic cost measure.

We will make probabilistic statements about the

performance cost of algorithms, and so we will need

to define a probabilistic model. Let N be the number

of objects in the database. Our results say that if

the atomic queries Al, . . . . Am are independent, then

with arbitrarily high probability, the cost of algorithm

& for evaluating F~(Al,..., Am) is O(lJtm-lJlmkl/m),

which is sublinear (in contrast to the naive algorithm

we described near the beginning of Section 4, which

is linear). In particular, if m = 2 (so that there are

exactly two atomic queries Al and A2 ), then the cost

of algorithm & is of the order of the square root of the

database size. We now define our terms, to make these

statements more precise.

Let us assume that the database contains N objects,

which, for ease in notation, we call 1, . . . . N. Let ai

be the sorted list generated by subsystem i in response

to the subquery At, for i = 1,.. ., m. Thus, al is a

permutation of 1,..., N. We write a~(j) to represent

the jth member of ai. Define a primitive statement to

be a sentence of the form a,(j) = a,, (j’), where i # i’.

We may refer to this primitive statement as a primitive

{i, i’}-si!atement, where we explicitly mention the two

subsystems (i and it) that are involved.

We now define what it means when we say that “the

atomic queries are independent”. There are two condi-

tions. The first condition says intuitively that there

is no interaction between primitive {i, i’}-statements

and primitive {t?, /’}-statements unless {i, i’} = {.4, .?}.

For each choice of i, i’ where i < i’, let ~{i,i~} be a

(standard propositional) conjunction of primitive {i, i’}-

statements. Thus, p{a,at } is of the form

(a,(jl) = ai(j~)) A . . . A (at(jr) = a,, (j~)).

The first condition (where Pr[.] represents the proba-

bility) is:

That is, the probability of the conjunction is the product

of the probabilities.

The second condition says that the probabilities do

not depend on the names of the objects. It says that

for each permutation n of 1,..., N, we have:

Pr[(a,(jl) = al, (j[)) A .0. A (a,(j~) = ai~(j~))]

= Pr[(a,(r(jl)) = aal(~(j~))) A . . .

A(ai(~(jr)) = %’(fl(~j)))].

It is straightforward to verify that taken together, our

two conditions that define the notion of “the atomic

queries are independent” are equivalent to saying that

the probabilities of conjunctions of primitive statements

behave as if each sorted list ai contains the objects in

random order, independent of the other lists, such that

within each a,, each permutation of 1, ..., N has equal

probability.

Before we can prove a theorem on the cost of

algorithm &, we need a lemma. In this lemma, when

we say that B2 is a random set of /2 members of

{l,..., N}, we mean that all subsets of {1,..., N} of

cardinality 12 are selected with equal probability. Before

we state the lemma, let us explain how it will be used. In

the sorted access phase of algorithm &, sorted access

to each subsystem takes place until there are at least

k matches. That is, the sorted access phase continues

until each subsystem has output T values under sorted

access where T has the property that n~lX+ contains

at least k members. Therefore, in our analysis we are

interested in determining, as a function of N, r

1. the expected size M of fl~lX~, and

2. the probability that the size of n&X$ is much

smaller than this expected size M (in particular, is

at most M/2).

We compute these quantities in an inductive fashion,

by determining, for each j with 1 < j < m, the

expected size of (7j=1 X$, and the probability that the

size of n;=l X: is at most half of the expected size. In

order to carry out this induction, we must know, as a

function of N, 41,12, the expected size of the intersection

of tl members of {1, . . . . N} with !2 randomly selected

members of {l,. . ., N}, and the probability that the

size of this intersection is at most half of the expected

size. That is what the following lemma does, under the

assumption that 11 is not too big (in the lemma, for

convenience we simply assume that 11/N s 1/10). We

denote the size of 1? by IBI.

2.22



Lemma 5.1: Let B1 be a set of /1 members of

{1 ,..., N}, and let B2 be a random set of /?2 members

Of {l,..., N). Let M = .f112/N. The expected size of

B = B1 n B2 is ill. Assume that &?l/N ~ 1/10, Then

Pr[lB[ s A4/2] < e-~ilO.

The proof of Lemma 5.1 is given in the full paper [Fa95].

The next theorem discusses the cost of algorithm &

in evaluating F~(Al,. ... Am). The theorem says that if

the atomic queries Al,. ... Am are independent, then

with arbitrarily high probability the database access

cost for algorithm 4 is O(NI~–lJ/~kltm), where N

is the database size. We have to make sense of what we

mean by the “probability” and what we mean by “with

arbitrarily high probability”. We consider the following

formal framework.

We are considering a scenario where there are m

atomic queries Al, ..., Am over a database with N

objects, which we are takhg to be 1,.. ., N. For the

purposes of this paper, it is convenient to focus on

the graded sets associated with each atomic query.

Therefore, we define a scoring database to be a function

associating with each i (for i = 1, ..., m) a graded set,

where the objects being graded are 1, ..., N. Intuitively,

the ith graded set in the scoring database is the

graded set corresponding to the result of applying

atomic query Ai to the original database. We may

speak of random access (resp., sorted access) to the ith

graded set in the scoring database, which corresponds

to random access (resp., sorted access) to the original

database under atomic query Ai. We define a skeleton

(on N objects) to be a function associating with each i

(fori= l,..., m) a permutation of 1, ..., N. A scoring

database D is consistent with skeleton S if for each i, the

ith permutation in S gives a sorting of the ith graded set

of D (in descending order of grade). A scoring database

can be consistent with more than one skeleton if there

are ties, that is, if for some i two distinct objects have

the same grade in the ith graded set.

We are interested in the database access cost of algo-

rithms that find the top k answers for Ft(A1, ..., A*).

For simplicity, we shall consider algorithms as being

run against the scoring database (as opposed to be-

ing run against the original database), since the scoring

database captures all that is relevant. Our algorithms

are allowed only to do sorted access and random ac-

cess to the scoring database. Because of ties, the sorted

access cost might depend on which skeleton was used

during the course of the algorithm. That is, if objects

z and y have the same grade in list i, then it is pos-

sible that either z or y appears first during a sorted

access to list Z. If A is an algorithm, D is a scoring
database, and S is a skeleton such that ‘D is consis-

tent with S, we define cost(d, D, S) to be the database

access cost (the total number of sorted accesses and ran-

dom accesses) of algorithm A when applied to scoring

database 2) provided sorted access goes according to

skeleton S. We define cost(d, S) to be the maximum

of cost(A, 22, S) over all scoring databases D that are

consistent with S.4 Thus, the cost of an algorithm over

a skeleton is the worst-case cost of the algorithm over

all scoring databases consistent with the skeleton. Simi-

larly, we define sortedcost (A, S), where we consider only

the cost of sorted access. Note that if a scoring database

D is consistent with more than one skeleton, then the

specification of algorithm A says that d gives the top k

answers with input D no matter which of these skeletons

the algorithm “sees”, that is, no matter which skeleton

is used when the algorithm is run (although conceivably

the database access cost might be different for different

skeletons), The answers could also be different if there

are ties, since in this case “the top k answers” could be

one of several possibilities.

We now explain how we formalize the meaning of the

statement that “if the atomic queries are independent,

then with arbitrarily high probability the database

access cost for algorithm do is O(N(m–l)fmkl/m)”. For

a given N (database size) and m (number of lists),

there are only a finite number of possible skeletons,

and under an algorithm A, each such skeleton S

has database access cost cost(d, S) as defined above.

When we consider probabilities of database access

costs, we are taking each such skeleton to have equal

probability. (This corresponds to our assumption that

atomic queries are independent.) When we say that for

our algorithm &, “with arbitrarily high probability the

database access cost is O(N(m–l)tmkltm)”, we mean

that for every e >0, there is a constant c such that for

every N,

~[cost(Ao, S) > cN(m–l)lmklim] < E.

We write S under Pr[.] to make it clear that the

probability is taken over possible skeletons S.

For the sake of making explicit the dependence of the

cost on k (where the algorithm is obtaining the top k

answers), we are thinking of k as a function of N, even

though we suspect that users are most interested in the

case where k is a small constant (like 10). Note also that

the database access cost O(N(m-l)imkljm) is sublinear

if k = o(N), and in particular if k is a constant, which
is the case of most interest. Note that when k is a

constant and when m = 2 (which corresponds to two

atomic queries), the database access cost is O(m).

A few comments are in order about the extreme

case where k = N. In this case, we certainly know a

priori the top k objects (the k objects with the highest

4An algorithm A might behave differently over over two

databases D and D’ with the same skeleton S. This is because

the action of the algorithm might depend on the specific grades it

sees. For example, an slgorithm might take some special action

when it sees a grade of O.



grades): this is simply the set of all N objects. But

to find the grades of the objects (which is required in

our specification of finding “the top k values”), it is

clearly necessary in general to access every entry in the

database. Note that in this extreme case, the database

access cost O(Ntm–lJlmklJm) as claimed in the theorem

below is simply O(N), as we would expect.

In the next theorem, we determine the database

access cost for algorithm dO. In this theorem, we do

not need to assume that Ft(A1,. ... Am) is monotone.

Monotonicity arises in correctness, not performance:

the algorithm & is guaranteed to be correct only when

Ft(A1,..., Am) is monotone (Theorem 4.2).

Theorem 5.2: Assume that the m atomic queries are

independent. The database access cost for algorithm &

is O(N(m–l)/mkl/m), with arbitrarily high probability.

The proof of Theorem 5.2, which is based on Lemma 5.1,

is given in the full paper [Fa95].

6 Lower bounds

Theorem 5.2 says that if the m atomic queries are inde-

pendent, then the database access cost for algorithm

& is O(N(m-ll/mkl/m), with arbitrarily high prob-

ability. Since algorithm AO is correct for monotone

queries (by Theorem 4.2), this gives an upper bound

of O(N(m-l)/mkl/m) for monotone queries. In this sec-

tion, we give a matching lower bound in the case of strict

queries. Thus, we show that in the case of strict queries,

no correct algorithm ,4 that finds the top k answers can

do better. Our results say that for such an algorithm A

and for each N and each 8 ~ O,

l#cost(A, S) ~ f?N(m-l)/mkl/m] < 19m.

Hence, there is no function f with f = o(N(m-l)/mkl/m)

such that if the atomic queries are independent, then

with arbitrarily high probability the database access

cost for algorithm A is 0(f). So the database access

cost O(N(m–l)/mkl/m) of algorithm do is optimal.

To prove our lower bound, we need to assume that

the scoring function t is strict. Note that max is not

strict. In fact, in the case of max, the lower bound does

not hold. Algorithm 230 of Theorem 4.5 has database

access cost only mk, independent of the size N of the

database!

The next lemma, which we use in the proof of our

lower bounds, says that if t is strict, then except in an

extreme situation where the database access cost is at

Iesst N (the number of objects in the database), the
sorted access cost is closely related to the size of the

intersection of the top objects in each list.

Lemma 6.1: Assume that t is strict, Let S be a skele-

ton on N objects, and let A be an arbitrary algorithm

that finds the top k answers to Ff(A1,. . . . Am). Assume

that cost(d, S) < N, and T ~ sortedcost (d, S). Let X$

denote the top T objects in list i according to skeleton

S. Then fl~lX$ contains at least k members.

The proof of Lemma 6.1 is given in the full paper [Fa95],

along with a discussion as to why we must consider

cost(A, S) and sortedcost(d, S) in Lemma 6.1 rather

than cost(d, D, S) and sortedcost(d, D, S).

We now give our lower bound, which says intuitively

that every correct algorithm has database access cost at

least a constant times that of our algorithm &.

Theorem 6.2: Let N be given. Assume that t is

strict. Let .4 be an arbitray algorithm that finds the

top k answers to Ft(Al,... ,Am). If Al,... ,Am are

independent, then

I%[cost(A, S) s ON(m–l)/mkl/m] s em,

for every 6>0.

The proof of Theorem 6.2, which is based on Lemma 6.1,

is given in the full paper [Fa95].

The next theorem puts our results together to obtain

a mat thing upper and lower bound. It says that if t

is monotone and strict, then the database access cost

for finding the top k answers to Ft(A1,. . . . Am), where

Al,..., Am are independent, is @( Nfm-l)/mkl/m), with

arbitrarily high probability. As usual, @ means that

there is a matching lower and upper bound (up to a

constant factor). In this case, it means that

1.

2.

There is an algorithm & for finding the top k

answers to F~(Al, . . . , Am), such that for every ~ >

0, there is a constant c1 such that for every N,

~[cost(&, S) > clN(m–l)/mkl/m] < e.

For every algorithm A for finding the top k answers

to Ft(Al,. ... Am) and for ever~ e > O; there is a

constant C2 such that for every N,

PJcost(A, S) < c2N(m-1)/mkl/m] < t.

Theorem 6.3: The database access cost for find-

ing the top k answers to a monotone, strict query

Ft(Al,... , Am), where Al ,..., Am are independent, is
@(N(m-1)/rnkl/m ), with arbitrarily high probability.

Proof: This follows in a straightforward way from

Theorems 4.2, 5.2 and 6.2.1

Intuitively, Theorem 6.3 tells us that we have match-

ing upper and lower bounds for any natural notion of

conjunction.

We close this section by giving a variation of The-

orem 6.2 that focuses on the sorted access cost, and

discuss how this shows the robustness of our definition

of database access cost.
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Theorem 6.4: Let N be given. Assume that t is

stm”ct. Let d be an arbitray algon”thm that jinds the

top k answers to Ft(A1 ,..., A~), with database access

cost less than N, for evey database with N objects. If

Al,,.., Am are independent, then

.l#sortedcost(A, S) < @N(m–lJ/mkl/m] s dm,

for every e 20.

Again, the proof is omitted.

Let us assume that t is monotone and strict. The-

orem 6.4 tells us that except for algorithms with an

extremely large random access cost (at least equal to

the number of objects in the database), no correct algo-

rithm can have a sorted access cost less than a constant

times that of our algorithm ~. Since the random ac-

cess cost of our algorithm & is at most a constant times

the sorted access cost, this tells us that except for algo-

rithms with an extremely large random access cost, no

correct algorithm can have a sorted access cost less than

a constant times the database access cost of our algo-

rithm &. As we noted in Section 5, this shows that the

cost performance of& is optimal up to a constant fac-

tor even under arbitrary cost measures where we charge

more for each sorted access than for each random access.

7 A provably hard query

We have given an algorithm for evaluating the conjunc-

tion of atomic queries that is efficient when the con-

juncts are independent. What if the conjuncts are not

independent ?

As we see from both our algorithm& (upper bound)

and from our lower bound machinery (in particular,

Lemma 6.1), in order to obtain the top k answers

it is necessary to retrieve roughly T objects from

the database, where T is the least value such that

n~lX$ contains at least k members. Therefore, if the

conjuncts are positively correlated, this can only help

the efficiency. What if the conjuncts are negatively

correlated?

In this section, we consider the extreme case of

negative correlation between queries, by considering

queries Q A =Q, for Q an atomic query. In standard

propositional logic, such a query is unsatisfiable. But

the situation is different if Q is “fully fuzzy” (that is,

can take on any value in [0, 1], not just O and 1).

Let us consider only the standard fuzzy semantics,

where conjunction is evaluated by the rein, and negation

is evaluated by letting PaA(~) = 1 – /.LA(cc). Then

P~A+(~) = 1/2 when pQ(z) = 1/2. Furthermore, it is
easy to see that 1/2 is the maximal possible value under

Q A =Q.

For convenience, we restrict our attention in this

SeCtiOn to scoring databases where /.LQ(z) # PQ(~)

whenever x and y are distinct objects. This way, there

are no ties.

We now give a theorem that says that the database

access cost for finding the top answer to QA-TQ is @(N).

In this case (where, unlike before, no probabilities are

involved), this means that

1.

2.

There is an algorithm A for finding the top answer

to Q A ?Q, and a constant c1, such that for every

skeleton S and every N,

cost(d, S) ~ cIN.

(This is trivial, since we can take A to be the naive

algorithm described near the beginning of Section 4.)

For every algorithm A for finding the top answer to

Q A 7Q, there is a constant cz such that for every

skeleton S and every N,

COSt(A, S) ~ c2N.

Theorem 7.1: The database access cost for jinding the

top answer to the standard fuzzy conjunction Q A IQ,

where Q is fully fuzzy, is @(N).

The proof of Theorem 7.1 is given in the full paper

[Fa95].

Theorem 7.1 gives us a provably hard query: the

query requires linear database access cost, the same cost

aa that incurred by the naive algorithm in evaluating the

query.

8 Exploiting other information

We have discussed an algorithm & that works well

in evaluating a monotone query Ft (A I,..., Am) when

the atomic queries Al,.. ., Am are independent. Under

additional assumptions, another algorithm may perform

better. We now present an example, due to Jeff

Unman (personal communication). Assume that we

are evaluating the standard fuzzy conjunction Al A AZ
(where t is rein). We now give an algorithm that finds

the top answer (it is easy to see how to modify this

algorithm to obtain the top k answers).

1.

2.

3.

4.

Give subsystem 2 the query A.z under sorted access.

Thus, subsystem 2 begins to output, one by one

in sorted order based on grade, the graded set

consisting of all pairs (z, pA2 (3)).

As each pair (x, pA2 (z)) is output from subsystem 2,

do random access to subsystem 1 to obtain PA,(z).

Stop as soon aa an object z is found such that

P.4, (~) ~ %(~).

For all of the objects z that have been seen, let

zo be the object with the highest overall grade

90 = min {~AI (ZO)I k42 (ZO )}. ‘he ‘Utput’s ‘hen

($0,90).
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Correctness is easy to verify, since it is straightfor-

ward to see that no object that has not been seen can

have overall grade greater than gO. Assume that not

only are the atomic queries Al, AZ independent, but also

the grades of the objects under the query Al are uni-

formly distributed in [0, 1], and the maximum value ~

of the grades of the objects under the query AZ is less

than 1 (note that we can find out the value of -y with

one sorted access). Then the expected time to stop is

after at most 1/(1 – ~) objects have been seen, indepen-

dent of the number N of objects in the database, since

pdPAi (s) 2 v] = 1 – T for each object x.
Clearly other assumptions will lead us to consider

other algorithms. It is an important problem to find

other natural assumptions that lead to other efficient

algorithms in cases of interest.

9 Conclusions

We have presented a semantics for Garlic, that allows

us to combine information from different subsystems

in a natural way. Furthermore, we have presented

an algorithm that works efficiently on probably the

most important class of queries, and given results that

say that its performance cost is optimal. Both the

upper bound and lower bound are quite robust, and

hold for almost any reasonable rule for evaluating the

conjunction.
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