
Towards an MPEG-7 Query Language

Mario Döller1, Harald Kosch1, Ingo Wolf2, and Matthias Gruhne3

1 Department of Distributed Information Technology, University Passau
{Mario.Doeller,Harald.Kosch}@uni-passau.de

2 Department Platforms for Media Broadband, T-Systems Enterprise Services GmbH
WolfI@t-systems.com

3 Institut Digitale Medientechnologie (IDMT), Fraunhofer Illmenau
ghe@idmt.fraunhofer.de

Abstract. Due to the growing amount of digital media an increasing need to au-
tomatically categorize media such as music or pictures has been emerged. One
of the metadata standards that has been established to search and retrieve me-
dia is MPEG-7. But it does not yet exist a query format that enables the user to
query multimedia metadata databases. Therefore the MPEG committee decided
to instantiate a call for proposal (N8220) for an MPEG-7 query format (MP7QF)
framework and specified a set of requirements (N8219). This paper introduces a
MP7QF framework and describes its main components and associated MP7QF
XML schema types. The framework makes use of the MPEG-21 digital item dec-
laration language (DIDL) for exchanging MP7QF Items along various MP7QF
frameworks and client applications. An MP7QF Item acts as container for the
input query format and output query format of a user query request.

This paper concentrates on components of the framework such as session man-
agement, service retrieval and its usability and excludes consciously definitions
and explanations of the input and output query format.

1 Introduction

Stimulated by the ever-growing availability of digital audiovisual material to the user
via new media and content distribution methods an increasing need to automatically cat-
egorize digital media has emerged. Descriptive information about digital media which is
delivered together with the actual content represents one way to facilitate this search im-
mensely. The aims of so-called metadata (”data about data”) are to e.g. detect the genre
of a video, specify photo similarity or perform a segmentation on a song, or simply
recognize a song by scanning a database for similar metadata. A standard that has been
established to specify metadata on audio-visual data is MPEG-7 and has been developed
by MPEG. This organization committee also developed the successful standards known
as MPEG-1 (1992), MPEG-2 (1994) and MPEG-4 (version 2 in 1999). MPEG-7 had a
broad impact to experts of various domains of multimedia research. For instance, there
are several proposals for storing MPEG-7 descriptions in multimedia databases (e.g.,
MPEG-7 MMDB [6]). As MPEG-7 bases on XML Schema, one distinguishes research
in native XML databases (e.g., Tamino [15]) and on mapping strategies for (object)-
relational databases (e.g., Oracle [12]). Then, there are several multimedia applications
supporting and using MPEG-7. To mention only a few: VideoAnn [18], Caliph and

E. Damiani et al. (Eds.): SITIS 2006, LNCS 4879, pp. 10–21, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Towards an MPEG-7 Query Language 11

Emir [10] etc. Finally, many document query languages such as [SDQL 96], [XML-QL
99], [Lorel 00], [YATL 98], [XQL 98], recent W3C [XQuery], etc., have been proposed
for XML or MPEG-7 document retrieval. However, these languages cannot adequately
support MPEG-7 description queries mainly due to two reasons. Either, they do not
support query types which are specific for retrieving multimedia content such as query
by example, query based on spatial-temporal relationships, etc. Or, there is no stan-
dardized interface defined and each query language or MPEG-7 database offers its own
query interface, which prevents clients experiencing aggregated services from various
MPEG-7 databases.

At the 77th MPEG meeting in July 2006, the MPEG committee decided to instan-
tiate a call for proposal (N8220 1) for a MPEG-7 query format (MP7QF) framework
and specified a set of requirements (N8219). The objective of the MP7QF framework
is to provide a standardized interface to MPEG-7 databases allowing the multimedia
retrieval by users and client applications, based on a set of precise input parameters for
describing the search criteria and a set of output parameters for describing the result
sets.

In this context, we briefly analyze currently available query languages and approaches
for multimedia and XML data in consideration of the introduced MP7QF requirements
and propose a new architecture for a MP7QF framework. This paper concentrates on
components of the framework and its usability and excludes consciously definitions and
explanations of the input and output query format. The query format will be introduced
in a separate paper.

The remainder of this paper is organized as follows: Section 2 specifies requirements
for an MP7QF framework. Then, Section 3 deals with related work to MPEG-7 query
languages and databases. The MP7QF framework is described in Section 4 which is
divided in 4 subsections namely, subsection 4.1 describing a multimedia retrieval sce-
nario using the proposed framework, subsection 4.2 presenting the architecture and its
components, subsection 4.3 specifying the MP7QF Item and subsection 4.4 dealing
with the retrieval of MP7QF-Interpreter. The MP7QF-Interpreter deals as adaptor for
MPEG-7 databases and is responsible for transforming MP7QF queries into queries
of the query language of the respective database. Finally, this paper is summarized in
Section 5.

2 Requirements for an MP7QF Framework

In general, one can distinguish between two main types of requirements: requirements
for the framework and requirements for the query language. In the following, selected
requirements are explained in more detail. A complete list is given in MPEGs require-
ment paper (N8219).

2.1 Requirements for the Framework

1.) Allowing simultaneous search in multiple databases: The framework should sup-
port the distribution of a single query to multiple search engines.

1 see http://www.chiariglione.org/mpeg/working_documents/
explorations/mp7_qf/mp7_qf_reqs.zip

petra
Highlight

petra
Highlight

Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.

http://www.chiariglione.org/mpeg/working_documents/explorations/mp7_qf/mp7_qf_reqs.zip
http://www.chiariglione.org/mpeg/working_documents/explorations/mp7_qf/mp7_qf_reqs.zip

12 M. Döller et al.

2.) Querying database capabilities: The framework should allow the retrieval of
database capabilities such as supported media formats, supported MPEG-7 descrip-
tors/ descriptor schemes, supported search criteria, etc.

2.2 Requirements for the Query Language

1.) Query Types
a.) Query by description: Here, the query language should provide means for the

retrieval based on textual descriptions (e.g., names) as well as the retrieval
based on desired MPEG-7 descriptions and/or description schemes.

b.) Query by example: The query language should support the retrieval based on
representative examples of the desired content.

c.) Multimodal query: The query language should provied means for combining
the retrieval based on different media types.

d.) Spatial-temporal query: The query language should support retrieval based on
spatial and/or temporal relationships (e.g., Search for images where a red fer-
rari is in front of a white house.)

2.) Specifying the result set: The query language should provide means for specifying
the structure as well as the content in the sense of desired data types.

3.) Querying based on user preferences and usage history: The query language should
consider user preferences and usage history for retrieval.

4.) Specifying the amount and representation of the result set: The query language
should provide means for limiting the size as well as supporting paging of the result
set.

3 Related Work to MPEG-7 Query Languages and Databases

A very good overview of the usability of XML databases for MPEG-7 is provided by
Westermann and Klas in [20]. The authors investigated among others the following main
criteria: representation of media descriptions and access to media descriptions. To sum-
marize their findings, neither native XML databases (e.g., Tamino [15], Xindice [16])
nor XML database extensions (e.g., Oracle XML DB [12], Monet XML [14], etc.) pro-
vide full support for managing MPEG-7 descriptions with respect to their given re-
quirements. Based on their various limitations (e.g., supported indexing facilities for
high-dimensional data), the retrieval capabilities for multimedia data are restrictive.L

In the following, we will have a closer look to the used query languages in various
approaches and evaluate them on the requirements presented in Section 2.

XPath [2] (XML Path Language) is a recommendation of the W3C consortium that
enables the access to individual parts of data elements in the XML document. In gen-
eral, an XPATH expression consists of a path (where the main difference to filenames or
URIs is that each step selects a set of nodes and not a single node) and a possible condi-
tion that restricts the solution set. The main disadvantage of XPATH expression is their
limited usability in querying XML documents. For instance, it does not provide means
for grouping or joins. In addition, XPath on its own provides no means for querying
multimedia data in MPEG-7 descriptions based on the presented criteria.

petra
Highlight

Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.

petra
Highlight

petra
Highlight

petra
Highlight

petra
Highlight

petra
Highlight

petra
Highlight

petra
Highlight

Towards an MPEG-7 Query Language 13

XQuery [19] is a declarative query language and consists of the following primary
areas: The main areas find their counterparts in SQL. For instance, the for/let clauses
represent the SQL SELECT and SET statements and are used for defining variables
respectively iterating over a sequence of values. The where clause complies to the SQL
WHERE statement by filtering the selection of the for clause. The order-by finds their
analogous in the SQL SORT BY statement and provides an ordering over a sequence
of values. The return clause respectively SQL RETURN uses a custom formatting lan-
guage for creating output. A main part of XQuery is the integration of XPath 2.0 and
their functions and axis model which enables the navigation over XML structures. Ad-
ditional parts provide the ability to define own functions analogous to SQL stored pro-
cedures and the handling of namespaces. With regard to our requirements, XQuery does
not provide means for querying multiple databases in one request and does not support
multimodal or spatial/temporal queries.

SQL/XML [3] is an extension of SQL and was developed by an informal group of
companies, called SQLX2, including among others IBM, Oracle, Sybase and Microsoft.
A final draft has been standardized as SQL part 14 (SQL/XML) by ANSI/ISO in 2003.
Its main functionality is the creation of XML by querying relational data. For this pur-
pose, SQL/XML proposes three different parts. The first part provides a set of functions
for mapping the data of (object-) relational tables to an XML document. The second part
specifies an XML data type and appropriate functions in SQL for storing XML docu-
ments or fragments of them within a (object-) relational model. The third part describes
mapping strategies of SQL data types to XML Schema data types. SQL/XML supports
the requirement for specifying the representation and content of the result set but on
its own (based on its alliance to SQL) there are no means for supporting multimedia
retrieval in combination with MPEG-7 descriptions.

The authors in [9] propose an XML query language with multimedia query con-
structs called MMDOC-QL. MMDOC-QL bases on a logical formalism path predicate
calculus [8] which supports multimedia content retrieval based on described spatial,
temporal and visual data types and relationships. The query language defines four main
clauses: OPERATION (e.g.: generate, insert, etc.) which is used to describe logic con-
clusions. The PATTERN clause describes domain constraints (e.g., address, etc.). Fi-
nally, there exist a FROM and CONTEXT clause which are paired together and can
occur multiple times. The FROM clause specifies the MPEG-7 document and the CON-
TEXT is used to describe logic assertions about MPEG-7 descriptions in path predicate
calculus. Of all presented query languages, MMDOC-QL fulfills best the presented re-
quirements. Nevertheless, there are several drawbacks such as simultaneous searches in
multiple databases or the integration of user preferences and usage history which are
not considered in MMDOC-QL.

XIRQL [4] is a query language for information retrieval in XML documents and
bases on XQL [13]. The query language integrates new features that are missing in
XQL such as weighting and ranking, relevance-oriented search, data types and vague
predicates and semantic relativism. A similar weighting and relevance approach has
been introduced in [17].

2 http://www.sqlx.org

petra
Highlight

petra
Highlight

petra
Highlight

petra
Highlight

petra
Highlight

petra
Highlight

Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.

petra
Highlight

petra
Highlight

petra
Highlight

petra
Highlight

petra
Highlight

petra
Highlight

petra
Highlight

http://www.sqlx.org

14 M. Döller et al.

Besides, there exist several query languages explicitly for multimedia data such as
SQL/MM [11], MOQL [7], POQLMM [5] etc. which are out of scope of this paper
based on its limitation in handling XML data.

4 Approach

4.1 Scenario

The following scenario describes a simple interaction process of a user (or client appli-
cation) with our MP7QF framework during a content-based multimedia retrieval.

Scenario: Query by example with one database. This scenario deals with a query by
example request where one image database is included. The query considers the follow-
ing two low level feature descriptors ScalableColorDescriptor and DominantColorDe-
scritpor for retrieval. In the following, the separate steps are explained in detail:

1. Connection to the MP7QF Framework: During the connection process of a user
to the MP7QF framework, a new session is established. A session administrates a
session id, the connected MP7QF-Interpreter, user preferences and user history. In
this context, the user can set its user preferences (as MPEG-7 description) for the
established session.

2. Database selection: The next step is the selection of desired MP7QF-Interpreter
which the framework should consider for retrieval. In this scenario, the user selects
the database by its own (see service retrieval scenario presented in Figure 3(a)).
Several different connection approaches are described in Section 4.4.

3. Formulate the query: This can be realized in combination with a graphical editor
(maybe selecting desired descriptors from a tree) or by a command shell. The out-
come of this step is an XML instance document based on the input query format
(IQF) XML Schema.

4. Formulate Result Set: Formulate how the result set should look like (structure and
content). The basis for this process is the output query format (OQF) XML Schema.

5. Transmit Query: Transmit the query (IQF and OQF instance document) to the
MP7QF-Interpreter which is responsible for the transformation of the input query
format to the respective target database query language.

6. Receive Result: The MP7QF-Interpreter returns the result based on the OQF to the
MP7QF framework where its validity is checked. Then the result is forwarded to
the user. In this stage, the MP7QF framework extracts user history information and
stores the result in the users session information.

4.2 Proposed Architecture

The proposed MP7QF Architecture presented in Figure 1 comprises the main compo-
nents for fulfilling most of the requirements described in MPEGs requirement paper
(N8219) and enables the demonstrated scenario in a standardized way. In the following,
the components are described in detail whereas the authors concentrate on components
of the framework and its usability and excludes consciously definitions and explana-
tions of the input and output query format. The query format will be introduced in a
separate paper.

petra
Highlight

petra
Highlight

Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.

Towards an MPEG-7 Query Language 15

– Session Management: The session management provides means for the storage of
user information such as user preferences and user history. In addition, the session
management stores the query result for allowing relevance feedback (requirement
4.4.3 of N8219) and the search within the result set of previous searches (require-
ment 4.4.4 of N8219). For this purpose, our MP7QF proposal introduces a Session-
Type (see Appendix A) which contains the following elements:

1.) ActiveConnection: The active connection element stores all currently active
connections of type ConnectionType. The connections are manipulated (added,
deleted) by the use of the Service Management tool. Whenever a retrieval op-
eration is initiated (by calling the Search method), the distributor tool forwards
the query to all active connections.

2.) QueryResultCache: The query result cache element stores the result (in form
of an OQF type) of the last successful executed retrieval operation. This cache
will be used to allow relevance feedback and the search within the result set of
previous searches.

3.) UserDescription: The user description complies with the MPEG-7 UserDe-
scription type and manages user data, their preferences and their history. The
user preferences and history can be used during the retrieval process to person-
alize the query (e.g., adding some specific filter operations, etc.).

An instance of the SessionType is established and maintained for every active user
by the session management tool. For this purpose, the session management tool
provides the following methods:

• SessionID createSession (UserDescription): This method allows the establish-
ment of a new session for a user. The input parameter contains available user
description and corresponds to the MPEG-7 UserDescription descriptor. We
suggest that at least the user element is filled. After a successful execution of
the operation the created session ID is responded. This session ID applies dur-
ing the retrieval process for identifying the participating session.

• UserDescription closeSession (SessionID): This method closes an active ses-
sion which is identified through the given session ID. In addition, the user
description is returned which may contain updated history data.

• UserDescription closeSession (UserDescription): Same as before, this method
closes an active session. The session is identified through the user description
type and here especially by the user element. The main difference to the pre-
vious method is, that in this case all open sessions of the respective user are
closed.

• OQF mp7Search (SessionID, MP7QF Item): The search method initiates the
retrieval process and takes as input parameter the responsible session and the
query formulated by IQF and OQF stored in a MP7QF item (see Section 4.3).
After completion, the method returns the result as XML document based on
the given OQF.

– Service Management: This component manages two parts. First, it provides meth-
ods for connecting MP7QF-Interpreter to active user sessions. Second, the service
management gathers all active MP7QF-Interpreter their ServiceCapabilityDescrip-
tors. For this purpose, every MP7QF-Interpreter must provide such a possibility,

petra
Highlight

petra
Highlight

petra
Highlight

petra
Highlight

Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.

16 M. Döller et al.

e.g., ServiceDescriptor getServiceDescription (). The management of connections
can be realized by using one of the following methods:
• connectService (SessionID, <vector> ServiceDescriptor): This method corre-

sponds to the described service retrieval scenario in Figure 3(b)and adds all given
MP7QF-Interpreter to an internal list hold at the session management. The Ser-
viceDescriptor contains basic service information such as Host ID, connection
information, etc. (see Section 4.4 and Appendix A for a detailed description).

• <vector> ServiceDescriptor searchService (ServiceCapabilityDescriptor,
Boolean): This method filters the list of registered MP7QF-Interpreter based on
a given ServiceCapabilityDescriptor. The ServiceCapabilityDescriptor is de-
scribed in more detail in Section 4.4. The second parameter specifies a Boolean
value which determines whether the filter process should be restrictive meaning
that the result set only contains MP7QF-Interpreters which match the retrieval
criteria to 100 percent. Otherwise the result set would also contain MP7QF-
Interpreters which do not match the criteria for 100 percent (e.g., a specific low
level descriptor is missing, a specific IQF operation is not supported, etc.).

• releaseService (SessionID, <vector> ServiceDescriptor): This method
releases the connected MP7QF-Interpreter from the defined session.

– Aggregator: The aggregator is used for combining the result sets of different
databases.

– Distributor: The distributor splits the user request into calls specific to a certain
database. Note: The aggregator and the distributor are only necessary when more
than one database is involved in a query.

– Input Query Format: The Input Query Format (IQF) specifies the syntax and
structure of an MP7 query.

– Output Query Format: The Output Query Format (OQF) specifies the syntax and
structure of the MP7 query result set.

– Query Composer: The Query Composer defines an overall syntax and structure
which combines IQF and OQF elements to one request. This request is described
and transmitted with the MP7QF Item to respective MP7QF-Interpreter. The Query
Composer is also used to assemble the OQF response .

– Query Interpreter: The MP7QF Items are transformed into specific bindings (e.g.,
XQuery, SQL, etc.) of the target databases. The result set is handled by the Query
Composer to produce the OQF response.

4.3 MP7QF Item

The MPEG-7 Query Format Item (MP7QF Item) is used for the exchange of MP7
query information between MP7 management tools on different machines and can also
be used by the client for interacting with the MP7QF framework. The description of the
MP7QF Item bases on the MPEG-21 digital item declaration language (DIDL) stan-
dard [1]. The architecture of the MP7QF Item (see Figure 2) consists of the following
elements:

– MP7QF ConnDescriptor: This descriptor represents the connection information/
session object information.

petra
Highlight

Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.

Towards an MPEG-7 Query Language 17

Fig. 1. MPEG-7 Query Format Framework Architecture

– Query Input Item: The Item contains a set of Descriptors, including MPEG-7 De-
scriptionUnits, the actual query and optionally on or more components (in case of
query by example).

– Query Output Item: The Item contains a Result set Item and optionally an Item
carrying presentation information, e.g. an XSLT

An MP7QF Input Item and corresponding output item is stored in a container.

4.4 MP7QF-Interpreter Retrieval

In order to query MPEG-7 databases, we have to introduce an MP7QF-Interpreter which
serves as adaptor of the MP7QF framework to available MPEG-7 databases. Here we
have to note, that every MPEG-7 database type (e.g., native XML-database, or OR SQL-
database, etc.) must provide such an interpreter. During query execution, the MP7QF-
Interpreter is responsible for transforming the MP7QF Item into database specific calls.
One possible binding of the MP7QF-Interpreter would be the use of Web-Service tech-
nology which is explicitly mentioned by the MPEG requirements.

The MP7QF framework supports two different MP7QF-Interpreter retrieval scenar-
ios. First, as displayed in Figure 3(a), the user has the possibility to connect to any

18 M. Döller et al.

Fig. 2. MPEG-7 Query Format Item

desired database. Second, as shown in Figure 3(b), one can select several databases
based on its stored media type (e.g., audio) and by their provided MPEG-7 Profile, IQF
query types and operations.

In the following, the different steps of both scenarios are explained in detail:

– Manual Service Retrieval
1. In a first step, the service management component connects to the MP7QF-

Interpreter based on a fixed URL given by the user. This is realized by calling
the connectService method of the service management component.

2. During this step, the MP7QF-Interpreter transmits its supported service capa-
bilities and connection information in form of the ServiceDescription type to
the service management tool. This information is stored for the currently active
session (SessionType) in the session management.

– Automatic Service Retrieval
1. First, every participating media database has to register at an exclusive server

(UDDI Service 3 in case of Web-Service binding). During this registration all
MP7QF-Interpreters send their ServiceDescriptions.

3 Universal Description, Discovery and Integration (UDDI) see http://www.uddi.org/

http://www.uddi.org/

Towards an MPEG-7 Query Language 19

(a) Manual Service Re-
trieval

(b) Automatic Service Retrieval

Fig. 3. Service Retrieval Approaches

2. Then, the service management component of the MP7QF framework queries
the UDDI Service based on the user needs. This query can contain requests
based on supported MPEG-7 Profiles or IQF query types and operations and is
represented by an instance of service capability type.

3. The UDDI Service responds a list of databases fitting the required constraints.
4. The MP7QF framework connects to the proposed databases and receives their

capabilities

ServiceDescriptorType. The ServiceDescriptor type combines all information about
one MP7-Interpreter and its database. In detail, it includes the connection interface de-
scribed by the ConnectionType, and the supported capability of the MP7QF-Interpreter
and its database in form of the ServiceCapability type. The type is used as either in-
put or output parameter of the following methods: connectService, searchService and
releaseService.

ServiceCapabilityType. The ServiceCapability Type describes information of a MP7QF-
Interpreter concerning its supported query types and the underlying MPEG-7 profile. A
MP7QF-Interpreter represents the interface to an MPEG-7 database and is responsible
for transforming incoming MP7QF Items containing IQF and OQF requests to the re-
spective query language of the target database (e.g., XQuery). Due to the diversity of the
MPEG-7 standard it is very likely that an MPEG-7 database only supports a subset of
available MPEG-7 descriptors. In series, this is true for the IQF data types and operators.
For this purpose, the ServiceCapability Descriptor defines the following elements:

– SupportedProfile: This element specifies the MPEG-7 profile the target database
provides.

20 M. Döller et al.

– SupportedIQFTypes: This element contains a list of supported input query format
types the target database is able to process.

– SupportedIQFOperations: This element provides a list of supported input query
format operations the target database is able to evaluate.

– UsageCondition: This element contains a set of predefined usage conditions such
as free of charge, authentication required, payed service etc.

The ServiceCapability Type is used during a service retrieval process in two differ-
ent cases: First, it describes the capabilities of an MP7QF-Interpreter and the database.
Second, a user can formulate its desired requirements an MP7QF-Interpreter must sup-
port.

5 Summarization

This paper introduced an MPEG-7 query format (MP7QF) framework based on the de-
fined requirements in the 77th MPEG meeting in July 2006. The framework provides
means for session and service management which have been described in detail. In addi-
tion, parts of our MP7QF XML Schema have been introduced such as ServiceDescrip-
tion, ServiceCapabilityDescriptor, SessionType, etc. Nevertheless, it has to be noted
that this paper concentrated on components of the framework such as session manage-
ment and service retrieval and its usability and excludes consciously definitions and
explanations of the input and output query format.

References

1. Bormans, J., Hill, K.: Overview of the MPEG-21 standard. ISO/IEC JTC1/SC29/
WG11/N5231 (October 2002)

2. Clark, J., DeRose, S.: XML Path Language (XPath). W3C Recommendation (1999),
http://www.w3.org/TR/xpath

3. Eisenberg, A., Melton, J.: SQL/XML is Making Good Progress. ACM SIGMOD
Record 31(2), 101–108 (2002)

4. Furh, N., Grossjohann, K.: XIRQL: A Query Language for Information Retrieval in XML
Documents. In: Proceedings of the 24th ACM-SIGIR Conference on Research and Develop-
ment in Information Retrieval, New Orleans, Louisiana, USA, pp. 172–180 (2001)

5. Henrich, A., Robbert, G.: POQLMM : A Query Language for Structured Multimedia Docu-
ments. In: Proceedings 1st International Workshop on Multimedia Data and Document En-
gineering (MDDE 2001), pp. 17–26 (July 2001)

6. Kosch, H., Döller, M.: The MPEG-7 Multimedia Database System (MPEG-7 MMDB). Jour-
nal of Systems and Software (accepted for publication) (in Press by Elsevier) (to appear in
spring 2007)

7. Li, J.Z., Özsu, M.T., Szafron, D., Oria, V.: MOQL: A Multimedia Object Query Language.
In: Proceedings of the third International Workshop on Multimedia Information Systems,
Como Italy, pp. 19–28 (1997)

8. Lui, P., Charkraborty, A., Hsu, L.H.: Path Predicate Calculus: Towards a Logic Formalism
for Multimedia XML Query Language. In: Proceedings of the Extreme Markup Languages,
Montreal, Canada (2000)

http://www.w3.org/TR/xpath

Towards an MPEG-7 Query Language 21

9. Lui, P., Charkraborty, A., Hsu, L.H.: A Logic Approach for MPEG-7 XML Document
Queries. In: Proceedings of the Extreme Markup Languages, Montreal, Canada (2001)

10. Lux, M., Klieber, W., Granitzer, M.: Caliph & Emir: Semantics in Multimedia Retrieval
and Annotation. In: Proceedings of the 19th International CODATA Conference 2004: The
Information Society: New Horizons for Science, Berlin, Germany, pp. 64–75 (2004)

11. Melton, J., Eisenberg, A.: SQL Multimedia Application packages (SQL/MM). ACM SIG-
MOD Record 30(4), 97–102 (2001)

12. Murthy, R., Banerjee, S.: XML Schemas in Oracle XML DB. In: Proceedings of the 29th
VLDB Conference, Berlin, Germany, pp. 1009–1018. Morgan Kaufmann, San Francisco
(2003)

13. Robie, J.: XQL (XML Query Language) (1999), http://www.ibiblio.org/xql/
xql-proposal.html

14. Schmidt, A., Kersten, M.L., Windhouwer, M., Waas, F.: Efficient relational storage and re-
trieval of XML documents. In: Suciu, D., Vossen, G. (eds.) WebDB 2000. LNCS, vol. 1997,
p. 137. Springer, Heidelberg (2001)

15. Schning, H.: Tamino - a DBMS designed for XML. In: Proceedings of the 17th International
Conference on Data Engineering (ICDE), pp. 149–154 (April 2001)

16. Staken, K.: Xindice Developers Guide 0.7. The Apache Foundation (December 2002),
http://www.apache.org

17. Theobald, A., Weikum, G.: Adding Relevance to XML. In: Suciu, D., Vossen, G. (eds.)
WebDB 2000. LNCS, vol. 1997, pp. 35–40. Springer, Heidelberg (2001)

18. Tseng, B.L., Lin, C.-Y., Smith, J.R.: Video Personalization and Summarization System. In:
Proceedings of the SPIE Photonics East 2002 - Internet Multimedia Management Systems,
Boston, USA (2002)

19. W3C. XML Query (XQuery). W3C (2006), http://www.w3.org/TR/xquery/
20. Westermann, U., Klas, W.: An Analysis of XML Database Solutions for the Management of

MPEG-7 Media Descriptions. ACM Computing Surveys 35(4), 331–373 (2003)

http://www.ibiblio.org/xql/xql-proposal.html
http://www.ibiblio.org/xql/xql-proposal.html
http://www.apache.org
http://www.w3.org/TR/xquery/

	Towards an MPEG-7 Query Language
	Introduction
	Requirements for an MP7QF Framework
	Requirements for the Framework
	Requirements for the Query Language

	Related Work to MPEG-7 Query Languages and Databases
	Approach
	Scenario
	Proposed Architecture
	MP7QF Item
	MP7QF-Interpreter Retrieval

	Summarization

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

