
A Multi-Similarity Algebra *

S. Adab P. Bonatti and M.L. Sapino

Rensselaer Polytechnic Institute Universita di Torino

sibel@cs.rpi.edu {bonatti,mlsapino}@di.unito.it

V.S. Subrahmanian

University of Maryland

vs@cs.umd.edu

Abstract

The need to automatically extract and classify the contents
of multimedia data archives such as images, video, and text
documents has led to significant work on similarity based re-
trieval of data. To date, most work in this area has focused on
t,he creation of index structures for similarity based retrieval.
There is very little work on developing formalisms for querying
multimedia databases that support similarity based computa-
t,ions and optimizing such queries, even though it is well known
that feature extraction and identification algorithms in media
data are very expensive. We introduce a similarity algebra
i,hat brings together relational operators and results of mul-
i,iple similarity implementations in a uniform language. The
algebra can be used to specify complex queries that combine
different interpretations of similarity values and multiple al-
gorithms for computing these values. We prove equivalence
and containment relationships between similarity algebra ex-
pressions and develop query rewriting methods based on these
results. We then provide a generic cost model for evaluating
cost of query plans in the similarity algebra and query opti-
mization methods based on this model. We supplement the
paper with experimental results that illustrate the use of the
algebra and the effectiveness of query optimization methods
using the Integrated Search Engine (I.SEE) as the testbed.

1 Introduction

The need to automatically extract and classify the con-
tents of multimedia data archives such as images, video,
and text documents has led to significant work on simi-
larity based retrieval of data. To date, most work on sim-
ilarity based retrieval has focused on the creation of index
structures for similarity based retrieval [9, 4, 151, with the
exception of a very general theory of similarity developed

*Supported by AR.0 grants DAAff-04-95-10174, DAAH-04-S&
10297, and DAAH04-96-l-0398, by ARL contract DAALOl-97.
K0135, and by NSF grant IHI-93.57756.

Permission to msks digital or hard copies of all or part of this work for
personal or classroom usa is granted without fee provided that
copies are not made or distributed for profit or commercial sdvan-

taga and that copies bear this notice and the full citation on the first page.

To copy otherwise. to republish, to post on servers or to
redistribute to lists, requires prior spacific permission and/or a fee.
SIGMOD ‘98 Seattle. WA, USA
63 1996 ACM o-69791.996.6/96/006...55.00

in [12]. However, to date, there has been no work on
developing an algebra (similar to the relational algebra)
for similarity based retrieval. Given the fact that most
feature extraction and identification algorithms in media
data arc very expensive, the need for query optimization
to such databases is critical - yet, it is impossible to cre-
ate principled query optimization algorithms without an
initial underlying algebra within which similarity based
retrieval operations are executed.

Our approach in this paper is to start with an arbitrary
multimedia database MDB that has been organized ac-
cording to any arbitrary, but fixed set of index structures
and algorithms for retrieval using these index structures.
Note that such a database may access a variety of spc-
cialized data structures each organized to facilitate one or
more operations. Starting from this point, we define (Sec-
tion 2) a Multi-Similarity Algebra, MSA. Unlike previous
works, MSA may be used to access not just one notion
of similarity, but multiple similarity measures, encoded,
by different algorithms, and to combine them in almost
any way that the user wants. We then establish (Sec-
tion 3) a set of equivalence, as well as containment, results
for MSA which provide the basis for query optimization
techniques for processing similarity based queries given in
Section 4. Before proceeding any further, we present two
simple motivating examples from two different domains.

Example 1 (Face Recognition) Consider a set of im-
ages depicting faces of individuals. We might have two
databases of such faces - a black and white image database
BW-DB that comes accompanied by similarity based re-
trieval algorithms based on a holistic approach to face
recognition (e.g. Chellappa’s work at UMD), and a color
image database COL-DB that uses eigenface based face
retrieval algorithms (e.g. Pentland’s work at MIT). While
COL-DB can be used to retrieve images in BW-DB, the
converse is not true. Furthermore, using COL-DB to re-
trieve images from BW-DB is less accurate than using
BW-DB. Suppose now a user has a query image imQ,
and she wants to find images in BW-DB and COL-DB
that are “similar” to imQ. For this purpose, the user may
specify the following types of queries:

1. Find the R “closest matches” to imQ in BWDB
that match img.

2. Find the rr “closest matches” to imQ in BW-DB U
COL-DB where the distance between an image im

402

in BW-DB from img is the aver ge of the dis-
r tances between im, imQ reported by BW-DB and

COL-DB respectively.
3. Find the n “closest matches” to imQ in BW-DB U

COL -DB under the same condition. as before, tak-
ing into account, only texture prope 4 ties.

4. Find the IL “closest matches” to imglin BW-DB U

COL-DB under the same conditions as

1

before, tak-
ing into account, images snapped a er January 1,
1997.

Example 2 (Integrating multiple we search en-
gines) Internet search engines manage k yword indexes
of text documents. Given a queries, they eturn a set of
documents together with an associated sim’larity “match”.
These similarity measures reflect the perce tage of matched
terms with associated weights that depe d on the fre-
quency of occurrence of each term in the do .ument. Search
engines such as HotBot a.nd Excite support ull text search
whercxas Infoseek supports searching wit in a different
part of document such as the title,

j
abst act, URL and

etc. Suppose we are conducting an inves igation into a
suspected plagiarized research paper d,. pe ask for all
documents that contain keywords similar t

{

the keywords
of d, in all of the four above search engin s. We want to
find all documents d such that:

d is returned by either HotBot or Excith with at least
65% percent similarity, and I
- d is returned by AltaVista within the
ments, and B

rst 100 docu-

- d is returned by Infoscek in the docu
the words in the title of d, with at least
We can refine this query further by j
ments returned by Infoseek for the ti
bot for the full text with at least
choose those documents returned by
one other search engine.

2 Heterogeneous Architecture for Simi

Figure 1 shows our proposed similarity
architecture. The main features of our ar ecture are as
follows:

Autonomous/Legacy Implemen
architecture, we assume the existence
implementations of similarity whose AP
functions. This is certainly realistic --. to
larity based retrieval algorithms have be
ing special purpose techniques that var

Section 2.3. As there is often a mismatch between indi-
vidual similarity implementations and the

”

S.4, similar-
ity implementations need a “wrapper” th t can be used
to present a homogeneous interface betwee the similarity

User

Figure 1: Architecture of Multi-Similarity Index Struc-
ture

implementations and the MSA. Similarity abstractions
are defined in Section 2.4.

Relational Multi-Similarity Algebra (rMSd):
provides a relational interface through which the user may
query a set of similarity implementations. In effect, the
rMSA “hides” implementation details from the user. It
also gives him the ability to express complex queries and
complex similarity strategies based upon his knowledge
of the domain he is searching and his knowledge of the
similarity engines (e.g. he may choose to disregard some
of the similarity engines). The relational multi-similarity
algebra is introduced in Section 2.6.

Query Optimization: We will develop techniques to
optimize queries expressed both in MSA and in rMSd.
In particular, Section 3 describes various query equiva-
lences, and how these equivalences may be used to create
query plans. Using the rMSd, the user may create views
which may then be used for further query optimization.
Section 4.2 defines similarity views, and shows how we
may use a cost model (defined in section 4) for re-using
views to optimize queries.

2.1 Preliminaries on Objects

In this section, we will introduce the notion of objects.
Intuitively, an object is any abstract data type with asso-
ciated properties. Objects can be images, text documents,
video segments, etc. Properties model the attributes that
similarity implementations can search on. As objects can
have many different attributes, we will assume that any
similarity measure is defined with respect to a subset of
these properties. For this reason, we will introduce the
notion of a type as an identifier for an object with respect
to a different similarity measure. Below, we formalize
these notions.

Definition 2.1 A property is a pair (PropId, VSet) , where
PropId is the property identifier and V/Set is the set of
possible values for that property. We will use PropId to
identify the property. PropId.VSet denotes the second
component of the property. A type is a finite set of prop-
erty identifiers.

For example, suppose keyword-list is a propert,y and
VSet contains the power-set of all words in a document
archive. Similarly, in the case of thumbnail images, prop-
erties might include avg-R, avg-G, avg-B, avg-texture,
each having the set of reals as the associated VSet, spec-
ifying the average red-green-blue values and texture, re-
spectively. Now, given a database of thumbnail images,

403

we may only want to consider the avg-R, avg-G, avg-B,
avg-texture properties as significant values. Then the set
of these four properties (namely {avg-R, avg-G, avg-B ,
avg-texture}) is a t,ype.

Definition 2.2 An ob,ject of type 7 = { pl, , p, } is a
pair consisting of an object template, and a set {pl =
‘“1:. ,p7% = vn }, where u, C p,.VSet.

Returning to our thumbnail sketch domain, an exam-
ple object with oid = 01 may have the values avg-R=
[0.2,0.3], avg-B= [0, 01, avg-G= [0.7,0.9] and avg-texture
= 1. In some cases, templates correspond to the ac-
tual attributes of objects stored in a database. In cases
when the user does not have access to the actual at-
tributes, properties may denote a region in the similarity
search space. III search engines, an object template can
be a list of keywords or a conjunction of query attributes
as in the I.SEE system (Integrated Search Engine [I]).
An example template can be a list of keywords such as
“PostModern Culture Netzine”. A document matching
such a template may have properties such as URL, title,
abstract. This is consistent with image retrieval imple-
mentations that, retrieve pictures that are similar to a
sketch input by the user. In this paper, we do not differ-
entiate between these two types of templates.

2.2 Similarity implementations

Suppose MDB is any set of media objects (the “multi-
media database”), organized according to some indexing
structure. Most existing similarity based retrieval imple-
mentations on these objects provide functionalities of sim-
ilar nature. We group these functionalities into two cat-
egories. In the first category, similarity implementations
may allow the similarity measures that they compute to
be queried directly. In some cases, such measures may
not be visible or even available to an external source. In
t,he second category, we will consider the similarity im-
plementations that will retrieve documents in decreasing
order of similarity. These implementations will allow dif-
ferent ranges in the ranking with respect to similarity to
be retrieved. The two abstract functions below model the
behavior of these two different similarity queries.

Definition 2.3 (Similarity Implementation) Let Obj
be a given set of objects. A similarity implementation
(SIMP for short) for Obj is a nonempty set of functions
of the following types:

p : 20bJ x Obj x N -+ 20bJXRk ,

K : Obj x Obj + R”

where card(p(MDB, 0, k)) < k. If t 5 1 then
card(p(MDB, 0, k)) 5 card(p(MDB, 0,1)). Moreover,
if (0’, m) E p(MDB, 0, n), then 0’ E MDB.

Intuitively, IE takes objects 0,O’ E MDB and returns
a vector of real numbers r = (~1,. . . , Vk). USUdy, T

contains only one value, such as a “distance” between 0
and 0’ ~- the smaller the distance, the more “similar”
t,hese ob,jects are considered to be.

Likewise, the function p takes a database of objects,
a search object Obj and a number N as input. It re-
turns as output the first N objects in similarity ranking
with respect to Obj from the input database. Note that a
similarity implementation may contain several functions
however, the signatures (input-output types) of these func-
tions must fall into one of the two categories above.

Example 3 Recall the example about the Internet Search
Engines. We assume that there exists a similarity im-
plementation p-X for each search engine X. Each im-
plementation takes as value the proprietary database of
the search engine, a search query containing keywords,
connectives and other attributes and a number denot-
ing the number of documents requested in the answer.
The description of the generic query language for Inter-
net, search engines and query specification in this generic
language can be found in [I]. An expression of the form
p-E(EDB, Ql, 10) requests the first 10 documents that
are most similar to the description Ql in the database
for Excite. Excite returns a vector of two values asso-
ciated with each answer to this query, the first number
corresponds to the rank of the document and the sec-
ond to the similarity measure expressed as a percentage
value. Each object returned by this similarity implemen-
tation will have the properties title, URL, abstract and
last modification date.

We assume that all similarity implementations use a
special constant all. A call of the form pE(EDB, Ql, all)
is requests all tuples from the database EDB in decreas-
ing order of similarity w.r.t. Ql. Technically, all de-
notes the number corresponding to the size of the input
database for any similarity implementation.

2.3 Similarity Measures

Similarity measures refine similarity implementations as
follows. First, we will allow a similarity measure to not
just take two objects, but also a type as input. Intuitively,
this measures the similarity of two objects with respect
to a specific type. (Later, the similarities between 0,O’
w.r.t. different types may be merged). Second, we will as-
sume that the answer returned is not a single value - but
a bag of values. This approach not only generalizes the
point based approach as a special case, it also provides
a declarative definition language for expressing similarity
computations that manipulate multiple similarity imple-
mentations and various interpretations of the similarity
values returned by them. Finally, for the sake of conve-
nience (this will make later definitions easier to read), we
will represent similarity measures by sets of tuples (the
reader will readily believe that all functions can be repre-
sented as relations, e.g. f(x) = y can be represented as a
relation with the tuple f(~, y)).

Definition 2.4 (Similarity Measure) A similarity mea-
sure m is a set of tuples of the form (0, 0’, ‘T, v) , where
0,O’ are objects, 7- is a type and 21 is a bag of real
numbers. A similarity measure m should be such that
(0, O’, r, v) E m and (0, 0’) T, v’) E m imply v = v’, i.e.
identical bags.

404

Example 4 ml and m2 below are two similarity mea-
sures.

2.4 Similarity Abstractions

The concept of a similarity abstraction ties together the
concept of similarity implement,ations and similarity mea-
sures by mapping the values obtained from an implemen-
tation to the appropriate bag representation.

Definition 2.5 (Similarity Abstraction) A similarity
abstraction of a similarity implementation SI w.r.t. r and
f : 72” -+ R, is a set of functions contained in {p:,f, rc:,f 17
is a type and f is a function from vectors of reals of arity
k to reals }, corresponding to the functions of SI, defined
as follows:
1. If p E SI and p(DB, 0, n) = { (01, vi), , (O,, ZJ,) },
then P:,~(DB, 0, n) =

{(O,Ol,T, {f(Ul))),“‘,(o,o,,T,{f(wn.) 1)).
2. IfKESI,then

C,,(O, 0’) = { (0, 0’3 T, { f(40,O’)) 1) 1.

The type associated by an abstraction may be the iden-
tifier of an implementation allowing us to combine sim-
ilarity measures depending on which source they came
from. Other type information may include different fields
considered by an implementation, or the significant prop-
erties of objects for which an implementation gives better
results. It is also possible to write relevant algebraic op-
erations that focus on similarity values associated with a
specific type.

Example 5 In this example we consider the similarity
implementations for search engines introduced in Exam-
ple 3. Suppose now for each similarity implementation
pX for a given search engine X, we introduce a new type
X corresponding to the similarity values returned by this
engine. Hence, a simple query of the form
pHi,),8,10,,(HDB, “Postmodern Culture Netzine”,20)
returns the first 20 documents that contain the keywords
“Postmodern Culture Netzine” The function y/100 changes
percentages to values between 0 and 1.

2.5 Similarity Algebra

We have come to the second level of abstraction in our
multi-similarity algebra. Recall that in the first level, we
abstracted similarity operations with respect to a given
type to similarity measures. In this section, we intro-
duce a set of algebraic operations on similarity measures
that allow formulation of different methodologies for com-
bining multiple similarity computations in a declarative
language. This will make it possible to develop query re-
formulation and optimization methods on top of similarity
computations. In the following let .F be a family of com-
putable functions over sets of reals, i.e. each f E F takes
as input, a set of real numbers, and returns as output, a
single real number.

Definition 2.6 (Collect Function) Let mr and ‘mZ dc-
note similarity measures, f E F’, and 0 E { U. n, - }.
Then the collect function computes bags of bags as de-
fined below:

Coll,(m~~ m2,0,0’, r) =

Example 6 R.ecall the similarity measures given in Ex-
ample 4. The following is returned by the Co& function:

ColZu(ml, m2,01,02~ 71 U ~2) = { { 0.4,0.6,0.5,0.7} }

Definition 2.7 (Similarity Algebra Operations) Sup-
pose P is a computable predicate over types and hags of
reals, and f E FT. Then, the similarity algebra operat,ions
are defined as shown in Figure 2.

Example 7 Recall the similarity measures ml and m2
given in Example 4. The followmg are examples of the
results of the basic similarity algebraic operations on these
two similarity measures.

mlwu rn2 = {(o~,0~,~1,{0.4,0.6,0.8,0.9}),
(01,02,n U rz,{0.4,0.5,0.6,0.7}),
(01,03,~1,{0.2,0.5,0.6,0.9}),
(01,0:3,71 u r2, { 0.2,0.4,0.5,0.9 }),
(02,03%71 u~~,{0.1,0.2,0.5,0.8})}.

ml W- rn.2 = {(o~,o2,~,{0.4,0.6,0.8,0.9}),
(01,oz.r~ -~1,{0.4,0.5,0.6,0.7}),
(o1,03:0,{0.2,0.5,0.6,0.9}),
(01,03:71 -T2,{0.2,0.4,0.5,0.9}),
(02~03~~2 -~~,{0.1,0.2,0.5,0.8})}.

ml ~3~2 = {(o~,0~,r~,{0.4,0.6,0.8,0.9}),
(o~,02,r2,{0.5,0.7}),(o1,o3,~~,{0.2,0.9,0.6,0.5));
(02,03:T~,{0.5,0.8}),(01,03,~~,{ 0.4,0.5 }),
(02,03,~1,{0.1,0.2})}.

ml \ 7n2 = 0

Definition 2.8 (Similarity Algebra) Suppose we have
some arbitrary, hut fixed set of similarity implementa-
tions S1. MSA consists of (1) the space of all possihle
similarity measures, and (2) the set of all similarity ab-
stractions P:,~ and FG:,~ (associated with the similarit,y
implementations SI being considered). hi expression in
the similarity algebra is inductively defined as follows:

. d,f(DB, 0, n) > is an expression in the similarity
algebra where DB is a set of objects, 0 is an object,
(not necessarily in DB) and n is an integer;

0 K:,~(O, 0’)) is a n expression in the similarity alge-
bra where 0 and 0’ are objects;

l op(ee,..., e,) , is an expression in the similarity al-
gebra where op is one of the similarity algebraic op-
erators and er , . . . , en are expressions of the similar-
ity algebra.

Some simple examples involving the database BW-DB
introduced at the beginning of this paper are as follows.

The query “Zexture,+ (imQ, im) first determines the sim-
ilarity of imQ and im based on texture, using the simi-
larity implementation provided by BW-DB. The result-
ing set is then combined by merely adding the values in

405

Operation Name Notation Definition
Sim-Union Join ml wu m2 {(O,O’,r,w) IV= JCollu(ml,mz,0,0’,7))
Sim-Intersection Join ml wn rn2 t(o,o’,T,~)l~= Coll~(mi,mz,O,0’,r)}
Sim-Difference Join ml w- rn2 { (O,~‘,T,ZJ) 1 u = JColl-(ml,mz,O,O’,7)}
Sim-Merge ml em2

Sim-Subtract ml m2

(I;~~‘~:,;)IV= Jt~‘l(0,0’,~,u’)~mlumz}}
{) 1 (O,O’,t,2,) Eml, P(O,O’,7’,d) Em21

Sim-Select UP m { (O,O’,T:~J) 1 (O,O’,T,W) 6 m and P(O,O’,7,w’) = true}
Sim-Map mwf (ml I/ I ,\,I, I \ l\O,O 7,f\v)l I iO,O ,T,VI Em, ’ (fE7)

Figure 2: Similarity Algebra Operations

the set and this is the output. The query p *texture,+
(BW-DB, imQ, 5) on the other hand, returns the five
closest matches to imQ using the above criterion.

2.6 Relational Multi-Similarity Algebra rMSA

In this section, we will augment the algebra MSA so that
it presents a relational interface to the user, even though
it manipulates non-relational structures underneath. We
will add two new operators to the standard relational al-
gebra. The relational similarity operator RSO will give
a relational view over the similarity measures computed
by the similarity algebra. The Best operator which is the
relational analog of the p operator in MSA will make it
possible to ask rank related queries over multiple similar-
ity abstractions.

Definition 2.9 (Relational Similarity Operator) Let
f be a function from bags of reals to reals. Then the re-
lational similarity operator RSO is defined as follows:

RSOf(m,T) ={(O,o’,.f(o)) I (o,o’,~,u) EmI.

Example 8 For example, consider the similarity mea-
sure ml in Example 4. Then
RSOmin(ml,T1) = {(01,02,O.8),(0~,~~,0.2)}.

Definition 2.10 (Best n operator) The best n oper-
ator Best : N x Table x N -+ Table selects tuples from
a given table. The expression Best(n,T,c) returns the
table containing the maximal n tuples of T, w.r.t. the
value of the cth column of T. If there exist two tuples
(ti ,..., tk) and (t; ,..., tk) with t, = tb, then the two
tuples are ordered according to lexicographic ordering.

Example 9 Returning to the example of Example 8, we
notice that Best(1, RSO,,,(ml, ri), 3) yields the single
tuple (oi,o2,0.8).

Definition 2.11 (Relational Multi-Similarity Alge-
bra) The relational multi-similarity algebra consists of
the space of possible relational tables, together with the
relational similarity operator RSO, the standard rela-
tional operators, and the aggregate operator Best. An
expression in the similarity relational algebra is induc-
t,ively defined as follows:

l RSOf (se, r), is an expression where se is a similar-
ity algebraic expression;

l e, is an expression where e denotes a relational table,

op(el, , e,) , is an expression where op is one of
the standard nary relational algebraic operators and
ei , , e, are expressions of the similarity relational
algebra.

Best(n,T,c), is an expression where n and c are
natural numbers, and T is an expression of the sim-
ilarity relational algebra.

Example 10 In this example, we consider several rMSA
expressions involving the Internet search engines. We as-
sume that we have access to three engines, namely Ex-
cite, HotBot and Infoseek with corresponding similarity
abstractions p-E*, pH*, p-I* as introduced in Example 5.
Then, we write the following queries in the MSA algebra:

The first query asks for the first 5 documents with respect
to the average similarity measure computed by both Ex-
cite and Infoseek and all the documents should appear in
the first 60 documents for Excite. The second query re-
turns all documents that have 0.8 similarity with respect
to both Excite and Infoseek. The last query merges the
first 20 answers from Excite and HotBot. The similarity
is averaged if the document appears in first 20 of the both
engines, otherwise it is divided by half.

3 Equivalences/Containments in MSA and rMSA

In the previous sections, we introduced a new algebra
that allowed us to relate various similarity implemen-
tations with relational tables and relational operations.
In this section, we will investigate the conditions under
which expressions in the similarity relational algebra can
be rewritten to equivalent or more restrictive (through
containment) expressions. The results of this section will
be used to develop query optimization techniques to lower

406

the cost of query processing by pushing selections down
and reordering costly joins. We will also use these results
to find alternate ways of evaluating queries by reusing the
results of cached items and by accessing pre-defined views
over the sources.

When considering equivalences, it is particularly im-
portant to note that an algebraic expression of the form
p* (MDB, o, all) says “find the top all matches for ob-
ject o from MDB”, which of course causes all objects
in MDB to be returned in the appropriate order. In
general, similarity implementations are the most costly
operations in the MSA. Hence the size of the input to
these implementations must be reduced by either rcduc-
ing the database MDB by pushing selections down or
by putting additional bounds on the number of objects
(all) requested whenever possible. It will turn out that
selections over objects, values and types have different
properties and we examine them separately. Let PO, Pv
and Pt be predicates over the objects 0, 0’, values u and
t,ypes r respectively of the members (0, 0’, T, II) of the
similarity measures. PO(O) denotes the unary predicate
obtained by letting the first argument of PO be 0.

3.1 Pushing Selection into Similarity Implementations

The following theorem tells us that selection is commu-
tative. Furthermore, it tells us that when we consider
selection conditions on values, then selections cannot be
pushed inside the p operator. However, when selections
are made using predicates on objects this is possible and
sometimes, the selection can even be eliminated altogether.
In addition, when selections are performed on types, then
the selection can always be eliminated.

Theorem 1 Consider a multimedia database, MDB.
1. UpUQm = ugffpm for any similarity measure m.
2. a~>, (P~,~(DB, 0, n)) does not change since upV cannot
be “pushed inside” P:,~, (no values in DB, 0, n).
3.

UP~(P:J(DB, 0, n)) =
$.f(DB, 0, n)

,o;,f(opo~o~(DB),O) 1”: ,n iii

u~tb:,f(DB, 0, n)) = ;:,f(DB, 0, n) if Pt(T) hold
otherwise.

where the above conditions are (i) if PO depends only
on 0 and Po(0) holds, (ii) if PO depends only on 0
and ~Po(0) holds, (iii) if PO depends on both 0 and
0’ and 7~ = all. Also note that p: (upo(o)(DB), 0, n) =
P:,~(~P~(o)(DB)>O, I ~~o(oS'B)~i~

3.2 Pushing Object Selections

It turns out that selections based on objects can always
be pushed through all our MSd operations as well as the
RSO operations.

Theorem 2 Selections can be pushed through all opera-
tions of the rMSd algebra, i.e.

u~,(RS0f(m, T)) = RSOf(up,m, r)

up,(ml f3 mz) =
uh(mapf (m)) =

uh(ml \ m2) =

(uhml) @ (up,mz)
mwf (oh m)

(u~,ml) \m2

(u~~ml)\(~~, mz).

This result has a significant impact on the evaluation of
MSA and rMSd queries, as is apparent from the fol-
lowing example.

Example 11 Suppose we have a database DB of pic-
tures which, among their attributes, have the photogra-
pher’s name. We want to rank the pictures by Hamilton
according to their similarity to a given query picture 0.
Moreover, suppose that we can use two similarity imple-
mentations pA and pB, that return similarity evalua-
tions with respect to attributes a and b, respectively. We
want to combine these measures by taking their average
values. In the similarity algebra the combined measure
can be expressed as follows:

m = map,U,(pA{,),idDB, 0, all) wu pBit,),;d(DB, 0, all)).

If DB contains n pictures by Hamilton, thanks to the
above equivalences and Theorem 1, the above expression
can be rewritten as

m’ = mapalig(pAi,),id(uauthor=Hamtlton(DB), 0, n) wu
~B?b),id(‘~,,thor=~nmilton(DB), 0, n)).

Note that, by anticipating the selection, we are able to re-
strict the search space of the similarity implementations.

3.3 Type Selections

In contrast to the case of value selections and object selec-
tions, type selections are less amenable to being “pushed.”
They can be pushed only under certain strong conditions.
The following result shows that type selections can be
pushed through the operator @ that merges similarity
measures, and the operator mapf that combines results
of different similarity implementations.

Theorem 3 Suppose ml, m2 are similarity, P(T) is a
type selection, and f is a computable map in 7. Then:

ur>t(ml CD mz) = (uptml) @ (uPtm2)

upt(mapf(m)) = mapf(upt)m.

In general, selection over types cannot be pushed through
a join, i.e. the equality,

upt(ml WU m2) = (flptml) MU (uPtm2)

does not generally hold, as is shown by the following ex-
ample.

Example 12 Suppose that ml and mz are similarity mea-
sures containing only tuples with type { a }, and { b } re-
spectively. Secondly, suppose that ml wu m2 # 0. We
have u,={,J, I(ml wu mz) = ml wu m2, but
(a,={,,bjnal) WU (ar{a,b))m2 = 0 WU 0 = 0.

Nevertheless, the following theorem shows that under ap-
nronriate conditions. the result does hold. uh(ml wop m,2) = (uhml) wp (uhm2) 1~ ~1

407

Theorem 4 (Behavior of Type Selection w.r.t. wu)
Suppose we consider the case where similarity measures
ml and m2 have the same type r. Then:

upt(m1 Mu m2) = (omm1) wu (OPmt2)

The above result is very useful when we deal with similar-
ity implementations that consider only one property (e.g.
average RGB values of pixels). Dual results exist when
we consider the behavior of type selection w.r.t. wn - we
state these below for the sake of completeness.

Theorem 5 (Behavior of Type Selection w.r.t. MI,-,)
If all tuples in the similarity measures ml and m2 have
the same type r then

or+(ml wn 77~2) = (uptml) wn (uPtm2).

We finally consider type selection w.r.t. W-. Here again,
similar equivalence results exist.

Theorem 6 (Behavior of Type Selection w.r.t. W-)

The following are the equivalence results for pushing type
selections down the sim-difference operator:

1. If, for all 7, r’, P(T - 7’) - P(T) A P(,‘), then

upt(m1 W- 7n2) = (uptml) w- (uptm2).

2. If the type components in the similarity measures ml
and m2 are disjoint, then

uPt(ml w- m2) = (uptml) w- m2.

3.4 Value Selection

In this section, we study the behavior of the similarity-
selection operator when value conditions are evaluated.
The following result shows that selection over values may
be pushed inside the relational similarity operator, RSO.

Theorem 7 Let CTJ>~ f be the composition of CYP, and
f (i.e. (opV f)(u) = cpv(f(u))). Suppose f E F and m
is any similarity measure. Then:

upv(RSOf(m,r)) = RSOf(up, fm,r).

oh (mapf(m)) = mwf (oh f m) .

3.5 The Best Match Operator

Recall that the operator Best(n,T, c) finds the best R
matches in T w.r.t. the c’th column of T. Usually, T is a
relational view of a non-relational source - for example,
T may be RSO,i, (ml, 71) where ml, ri are as defined in
Example 4. In this section, we will study various equiva-
lences associated with this operator. In particular, what
we would like to ensure - when later doing query opti-
mization - is that the similarity implementations (which
are usually slow) do as little work as possible. Our study
of equivalences involving Best will be motivated by this
need. The operator Best has good properties with re-
spect to standard selections, projections, and unions and
differences, as illustrated by the following result.

Theorem 8 (Interaction between Best and Projec-
tion,Union, Difference) For any c E 7, it is the case
that:
Best(n,&T,c) = II,(Best(n,T,c’)) where c’ is the col-
umn of T corresponding to column c of l&T.
Best(n,TlUTz,c) = Best(n,Best(n,T~,c)UBest(n,T~,c),c).
Best(n,Tl - Tz,c) = Best(n, Best(n+) T2 [,TI,c) -
T2,c).

Best(n, RSO,(m, T), c) = RSO,(Be&,m).

We observe that Best(n, T, c) belongs to the relational al-
gebra; when it is pushed inside similarity expressions its
parameters must be changed. In particular, there is no
clear ordering function between bags of real values. We
use the notation Best9 7L,Tm to denote the operator that se-
lects the n best matches (w.r.t. similarity measure m and
type r) after executing function g on the bags of values of
similarity measures. This will be the same function that
is used to perform relational similarity operations. Given
bags 11, w of real numbers, we say that

‘u 5s w - 9(v) 5 9(w).

Suppose now that T is a relational table. The follow-
ing result presents some containment/equivalence results.
The first says that pushing Best inside a selection yields
a subset of the original query. The second result says
that when Best and selection interact and the selection
condition is a true type-selection, then the selection may
be eliminated or set to the empty set (hence, this is a
highly desirable optimization). On the other hand, when
performing object selections and Best together, we have
a containment result in part (1) below. Pushing Best
inside a cpO(m) query yields a subset of the answer to
the original. Thus, if we had previously stored the view
Best$,,(up,(m)), and we now want to execute the query
cm(Besti,, m), then we can execute this selection on the
materialized view Best9 n,r(ap,(m)), thus avoiding recom-
putations. This will be explained in further detail in Sec-
tion 4.2. Finally, the fourth part of the theorem says that
the same property holds for value-selections.

Theorem 9 (Interaction of Best and Selections)

Best(n, upT, c) > up(Best(n, T, c)).

BestZ,,(uA,.ptm) =
Bestz,,m if Pt(T) holds,
Q) otherwise

Best:,, (uhm) 2 uh(BestZ,,m)

Best:,, (up,m) 2 up,(Best$,,m).

However, things become rapidly more complex when
we consider the interactions between Best and the op-
erations p*. These interactions describe the conditions
under which we may “push” the global “best” operation
to p* which applies to a single similarity implementation
at a time. Before proceeding to define the interactions
between Best and p*, we define two generic conditions
that we will use.

(Cl) & preserves the ordering of real numbers over sin-
gletons, i.e., 2 5 y * {z} Is { y };

408

Example 13 All monotonic functions of min/max sat-
isfy the above conditions. For example, g can be c, max(v),

max(u)+min(v) min(zl), c max(v)
,c , etc., where c is a positive

constant.

Example 15

The first part. of the following result tells us that under
some easy to check conditions, the computation of Best
is redundant and can be eliminated. The second result
tells us that if both conditions (Cl) and (C2) hold, then
doing a Best computation on a merged pair of similarity
measures is equivalent to performing the Best operation
on each, and then taking the Best again. Which of these
two execution orders is preferable will be studied through
experiments in Section 5. The last result sa,ys that com-
bining sets of rankings through function f E F can be
either done before executing Best or after.

Be.St;:$&d?;b >(DB, 0, au)))

Be&“;,,b j (Best;‘;, j (PA; a l (DB, 0, d)) MU

fkt;yb l (p-Byb) (DB, 0, ~zz)))

BeSt;:;“,,b j (PA; a 1 (DB, 0,5) Wu p”; b } (DB, 0,5))

4 Cost Model for MSA

Theorem 10 (Interaction of Best, p* and Similarity
Measures)

Z d,f(DB, 0, k) if n 2 k
= /I:,~(DB, 0, n) if n < k and (Cl) holds.

BestY,,,(pZ~,f (DB,O,Ic))=@ifr#r’
Bestz,,(ml &i mz) =

Best$,,(BestZ,,(ml) 69 BestiT,,(
if both (Cl) and (C2) hold,

Best~,,(mapyrn) = mapf(Besti;:m)

The use of the above theorems for query optimization
is illustrated by the following example.

In this section, we will consider a cost model for query
processing using MS&. In this model, we make the fol-
lowing assumptions. First, we assume that all similarity
implementations are linked to the query processor as for-
eign functions. On the average, the cost of executing sim-
ilarity implementations is an order of magnitude higher
than the cost of joining tables in the similarity algebra.
In general, the number of similarity implementations exe-
cuted per query is a negligible number in comparison with
the number of objects. Hence, we will ignore the cardi-
nality of the set of similarity values in similarity imple-
mentations for cost estimation purposes. This is certainly
a reasonable assumption ~ for example, when considering
Internet scar& engines as in I.SEE, the number of search
engines is negligible when compared to the number of ob-
jects (web pages) accessible through the search engines.

Example 1.4

Bc:st(n, RSO,ax(u,={ a } (ml)~(T,={b}(m2),{a}),3) =

= RSO,,a,(Best~‘,~, l (BestE,i;“‘, 1 (oT=(a 1 (ml)) cT~

Bestz’,ya 1 (a,={b}(m2)),ta))

= RSO,,,(Best:,?, j (Best:,% }(ml) @ 01, {a 1)
= RSO,,,,(Best~,aix,~(Best~,~,~(ml)), {a})

Note that the calls to the similarity implementations
in mz and one of the selections have been removed.

The following result specifies the relationship between
Best and the different types of join. It says that under
certain conditions, performing Best after doing a similar-
ity join is the same as performing Best first on each of the
similarity measures being joined, then joining the results,
and then repeating the Best operation.

4.1 Cost Estimation in the Similarity Algebra

First, we will estimate the cost of execution for similarity
algebra operations. We recognize that the cost of simi-
larity implementations is the bottleneck of the operations
performed in the similarity algebra. For example, in the
face recognition example, the face recognition software is
the one that is a bottleneck - similarly, in the case of the
Internet search engine, most computation time consumed
is in the access and execution by the Internet search en-
gine - this includes both the connect time and the execu-
tion time. We will model their cost with respect to the
similarity abstractions computed on top of them.

Theorem 11 (Interaction of Best with Similarity
Joins) Suppose f is monotone w.r.t. Is and (Cl) and
(C2) hold. Then:

Definition 4.1 (Cost Estimate) Suppose m is a sirni-
larity measure. A cost estimate of the tuples in m of the
form (0, O’, 7, s) is a triple (card, T, g) where card is a
set of pairs of the form (r,~) (denoted by card,), such
that ZI is the expected cardinality of the pairs of type T,
T is the expected time cost of computing all the tuples in
m, and (T is the expected number of different objects 0’.

Best$i,,(ml w,,mz) =
Givenacostestimate({(71,,~~I),...,(~~,’Uk)},T,~)ofa
similarity measure, the expected cardinality is given by

- Best&,(@T= -
= Best$,,(@ =

71 OP ‘2 Be%,, (ml) MOP BestR,,,(mz)). the following expression c:=,v,.

r T1 OP ?2 Be&,(Be.%,,, (ml) wop
Be%,,,(m))).

The following example shows some uses of these results
in optimizing some simple queries.

409

Supposn ‘ml is t,he similarity measure given above and
(((71 j 2): (~1,3)}, 20, 2) is a cost estimate for 7121. Accord-
ing to this estimate, we expect at most 2 objects of type ~1
and 3 ol)jccts of typcl r~. The expected number CT = 2 indi-
cates that, there are at most, two different, objects, possibl,v
corresponding to thr sum of objects ret,rirved by similar-
ity irrlplf:mt~ntations. Finally, the expected tirne is T = 20
assuming 5 t,inie units for t1ac.h tuple in lr61 - note that all
four tuplrs in ml are considered when deriving 20 here
because each of them must be taken into account when
retrieving ohjccts asso(‘i;lt cd with tvpc ~1 The cxpc~~tcti
cardinality of t,his cost c&mate is 2 + 3 = 5.
The cost estimate of a similarit,y abstraction P:,~(DH, 0; 7~)
is given by the csxprcssion:

({ (T, tnir1(n, IDSI)) }, f,(T,7rri7?(rr. lDOl)), n)

for sornc’ f’unct,ion f,, that is monotonic.atly lion-(Iccrc~asing
in its sccw1tl argument,. R.ecall t,hat, P:,~(DB, 0. 7~) is a rc-
quest saying “Find t,hc t,op 11 matches for object 0 in the
database DU, using 7 and S to define the concept, of a best
match (as described earlic>r in the paper).” Only a single
type is returned by t.hc> similarity abstraction and the ex-
pectctd number of objects 0’ is rrG71(72, IDBl). Sirnilarly,
cost parameters for a similarity abstraction K:,~(O, 0’)
are given by t,he triple: ({ (T, 1) }, cX, 1). The explana-
t.ion for this is that wr merely want to see how closely
objects 0, 0’ are matched, and this can be done in COII-
st,ant time, for some constant, c,.

We now examint! thtl cost of sirnilarity algebra opera-
t,ions. Let, rr~, and 1~2 ?)e similarity measures with asso-
ciated cost vectors (cl, Tl, ff~i) and (~‘2, Tz, (~2). Suppose
(5-I, lil) E cl represents a tuple in cl and (72, wz) E ~2 rep-
resc,nts a tuplc in (‘2. The following table shows how we
can estimate thf: cardinalit,ics and select,ivities of algebraic
operations applied t,o ‘trill , ‘rnz. Due to space constraints,
we will not go into their det,ailed derivations.

4.2 Query Optimization in rMSA

III this section, we discuss the basics steps involved in
optimizing queries in rMSA. We first define the concept
of a query tree, and then provide various operations that
transform query trees int,o equivalent,; simpler query trees.

4.2.1 Query Tree

Given a query formulated in t,he correct algebraic form,
we construct a query tree for this expression. An rMSA
query t,ree is very similar to a relational query trcle, but,
it also includes t,hc similarity algebraic operators.

Definition 4.2 (Query Tree) A query tree associated
with an ,rMSA query & is a labeled directed acyclic graph

GQ = (V, L, E) with a unique root where V, L, E are set
of vertices, labels and labeled edges respectively. Edges
are denoted by (nl 4 nz) for some 721, n2 E V and e E L.

A11 admissible query trrc‘ GQ satisfies the f(,ltowing
conditions. (1) All leaves correspond either t,o a data.basr
table or a similarity abstraction. (2) All labels in GQ con-
tain rxpressions involving selection, projection, plus sim-
ilarity abstraction, Sim-Set&, Sim-Map, Best and RSO
operators. Labels may also be equal to X which indicat,es
no selcct,ion operation to be pc‘rformcd at that labc~l. (3) If
‘~1 is a node with both incoming and out,going edges (“intc-
rior node”), then u corresponds to tither a sirnila.rity op-
crater (with the exception of Sim-Select, and Sim-Map).
a rc~lat,ionaI join operation or a special operator called a
sirnilarit,y view (denoted by SV). Intuitively, a similarit,y
view is a similarity algebra query that has been previously
c.omput,ed and stored. T(U) denotes the set of edges con-
tainctl in the suhtrer root.rJd at vertex u in a query graph
G. Hence. an odge (T!, -% ,I,,) E T(a) if vertex 01 is rea.ch-
able from vertex II. If ~1 is rcachablc from ‘u and if t,here
is an f>figc from 01 to vz, then t,his edge is in the subt,rcc
rooted at II.

The construct,ion of an initial query tree from a given
yucry is straightforward. However, in gem‘ral this tree
must be reorganized to lower the cost of query process-
ing. To this end, we will introduce tree manipulation
operators. Due to the high execution cost of sirnilarit,y
implementations, WC want to make use of corr~111011 subox-
pressions as much as possible. This requires identifying
common equivalent subexpressions in a query, treating
those common equivalent suhcxpressions as views, and
materializing them to avoid redundant computation. The
t,ree compaction operator introduced below handles this
case.

Definition 4.3 (Tree Compaction) Let G = (V, L, E)

be a query t,ree and let the edges (n, 4 no), (7~: s 7~;) be
elements of G such that n2 is not a leaf node. The relation
1~ 5 n; holds whenever the query corresponding to the
subqucry of na is equivalent to the query corresponding to
the subquery of 71;. The t,ree compaction operator TCO,
returns the following graph whenever 71% c n,;:

TCO,(E, (711 i nz), (n; 5 76;)) =

(E U X) - T(nL) - ({ (7L; 5 7&),(7L1 i m)}).

s = ((711 4 SV),(’

I

x
n; % SV), (SC’ + na) } if e # e’

{ (7~1 1 SV), (71: 1 SV), (SV 4 nz) } if e = 6’.

Intuitively, the above tree compaction operator looks at

t,wo edges, (nl 5 ~LZ) and (n’, 5 r&) in the graph where
7~2 and 71; are equivalent. We have already provided a
comprchcnsivc list of equivalent queries in earlier parts
of this paper. The TCO operator then treats nz as a
similarity view SV that is computed only once. It then
reconstructs the tree by appropriately replacing explicit
calls to ‘n2, n; by SV and ensuring that the view itself is
computed in the tree once (and only once).

The significance of the tree compaction operator is the
detection of common subexpressions that can he cached

410

ad re-used for query processing. A similar tree com-
pact.ion operator can also be defined for the subsumption
relation (C) that does not guarantee equality. The TCOc
operator can be used in conjunction with the containmen?
preserving query rewriting methods to reduce the cost of
retrieving first set of tuples. In either case, we need to use
query rewriting methods that depend on syntactic or se-
mantic description of query contents. Such methods were
discussed in the literature for different applications [2, 161.
Extending these m&hods to the similarity algebraic op-
erations is beyond the scope of t,his paper.

In addition to the tree compaction operator, we use
the traditional selection push operators below join oper-
at,ions. The intended gain in pushing selections is the
reduction of the number of tuples processed. The lrgal
selection operations were discussed in Section 3. The im-
portant point to note is that a selection is pushed down a
node n if n has a single incoming edge. If two nodes are
pointing to the same common subexpression T(n) when
a selection operation was pushed down, then T(n) must
1,~ duplicated and the expression must be pushed only for
the appropriat,e node. Hence, pushing selections have the
obvious effect of reducing t,hc number of mmmo~~ subex-

pressions.

4.2.2 Computing with Similarity Abstractions

In this section, we discuss possible optimizn.tions for the
execution of similarity abstractions. We assume that for
large numbers n, all answers to an expression of the form
/I:,~(DB, 0, ‘/I,) will be rd,urned in a nontrivial time inter-
val. As similarity computations are usually very costly,
the rest of the selection operations can be interleaved with
the retrieval of similarity attributes. In this model, the
query processor should st,op the execution of a similarity
implernelltat.ion when the necessary conditions have been
met to evaluate t,he rest of the query. We first define the
notion of a similarity abstraction filter.

Definition 4.4 (Similarity Abstraction Filter) Let
0 be a select,ion operation involving sim-map, sim-select,
and Best,,, i\ similarity abstraction filter associated
with c is a function of the form Z(V) > lh where Zb is a
constant and Z(V) preserves ordering of real numbers with
respect to singleton sets such that whenever Z(U) 2 Zh is
false for a set of values 71, then the selection condition o
evaluates to false for U.

Similarity abstraction filters need not always exist.
For them to be calculated, o should involve selections
over values. As we will XC in the implementation sec-
tion, the existcncr of query filters introduce great savings
in query response time. suppose cost(]DB(, n) character-
izcs the execution cost of P~,~(DB, 0, n), costconv(]DB])
is the cost of creating index structures necessary for exe-
cuting p and the cost of 0 is ci. Pushing selections into
similarity abstraction offers four possibilities:

1. Push selection if possible to create an int,ermediate
table, execut,e p on this table. o(~:,~(DB, 0, n)) =
P;,~(u(DB),O, 7~). E xecii ion cost of p:,?(a(DB), 0, n) , t’
is ci + cOstcono (Ia(D 0, 71) + fmst(u(~DBI), 7x).
2. Push selection if possible into p to create a modified

similarity implementation execution. In this case, the se-
lection is performed at the database that is computing the
u function, hence the query is optimized for execution as
a whole. o(p*((DB, 0, n)) = P:,~(~(DB), 0, n). Execu-
tion cost of p:,f(a(DB), 0, n) is cost(a(]DB]), 7~).

3. No push is possible since the database DB does not
support selections and all the objects are retrieved from
DB via similarity implementations. The: execution cost
of a na.ivc implernentation is then u(~:,~(DB,O, 7~) =

cost(lDBI,n) + cl.
4. Supposc selection cannot be pushed down, but there
exists a similarit,y abstraction filt,er Z(U) > Ib associated
wit,h cr. If f is an order preserving function, then p* is
comput,ed until ~(1)) > Zb becomes false. We denote this
operation with (T([z, Zb](p:,f(DB, 0, n)) The worst case
cost of this execution is the same as the previous case.
Experimental results are provided to show the average
behaviour of the filter operation.
Suppose now we are computing the following join exprcs-
sion +T,.fl Mop ~;,,f~) Two new optimizations for this
operation are introduced below:

Join Cardinality Filter: Suppose (T = Be&$,, such
that 9 is an order preserving function over bags of two
real numbers. In other words, whenever ~1 < *UZ and
PJQ 1. 7~4, then g({ ~i,r~ }) _< g({ va, ‘~4 }). Then,%’ both fi
and fz are order preserving relations, replace the above
join with the following filter join:

The join cardinality filter is executed as follows. The ex-
ecution of similarity operations are performed in stages,
where in each stage, the join is performed and the best
elements are chosen after g is executed. R.ecall that g is a
function that operates on bags of reals and returns a real
as output. Suppose z is the nth highest value found so far
in the join with respect to function 9, {hi} is the highest
element in p:, ,f, that did not contribute to joined tuple,
and (11) is the lowest element in the bags computed by
/I:, ,f,. The same is true for {J&z} and (12) as well. The
cardinality join filter will request the next set of similarity
abstractions if either g({lLi, 22)) 2 z or y({hz,li}) 2 x is
true. At the end of every step, the high and low values
will be updated.

Join Value Filter: Suppose there exists a relation of the
form y(vi, ~2) 2 lb where Zb is a constant and y is an order
preserving function over bags containing two real numbers
such that whenever this relation evaluates to false, u is
not satisfied. Then, if both fi and fi are order preserving
relations, replace the above with the following filter join:

The join value filter is executed similar to the join cardi-
nality filter, where the execution of similarity abstractions
is stopped when both y({hi}, (12)) > 10 and y({hz}, {Ii}) >
Zb evaluate to false.

Intuitively, both of the filters take advantage of the
fact that similarity implementations return the answers
in the descending order of similarity for the metric that

411

they are using. The cardinality filter checks if it is pos-
sible to obtain a better answer in the join from the un-
matched elements in the set. The join value filter checks
if the joining tuples will no longer satisfy the selection
condition. This is the important motivation for pushing
selections down as much as possible. In general, it is very
hard to generate filters for arbitrary functions. However,
we assume that functions that are not combinations of the
average, min and max functions are complex operations
that need to be implemented and linked to the algebraic
query processor. It is also possible for filters to be defined
for these functions in a declarative way. The query pro-
cessor can then choose these filter definitions and derive
combination filters when necessary.

As in any algebraic system, the query optimization
process consists of rewriting queries using the available
operators such that the query with the lowest estimated
cost can be found and executed. As the space of all pos-
sible rewritings can be prohibitively large, certain heuris-
tics can be developed to explore and prune the search
space. Even though pushing selections down as much
as possible is almost always desirable, this operation re-
duces the amount of common subexpressions that can
be combined into one. However, checking equivalence
and containment between subgraphs of a graph is a very
costly operation. Involved containment checks are more
suitable for fixed queries that are optimized at compile
time. In general, query optimization can be solved by
any directed generate-and-search algorithm with a pre-
determined heuristic benefit function.

5 Implementation and Experiments

In this section, we will describe the current implementa-
tion of the similarity algebra on top of the ISEE (Inte-
grated SEarch Engine) system that is being built at Rens-
selaer Polytechnic Institute. I.SEE provides a common
interface to query interfaces of multiple search engines.
Detailed search queries are posed in a generic language
with the help of explicit menu items. These queries are
in turn rewritten by relaxation to match the capabilities
of the underlying search engines. In addition, ISEE exe-
cutes all the translated search queries in parallel and then
merges the results with respect to the relevant similarity
algebra expression. More detailed information on I.SEE
can be found at www.cs.rpi.edu/research/isee/.

The implementation supports all similarity algebra op-
erations, as well as Best, RSO and relational selection
operators. Only functions allowed in mapf and RSO
operators are min, max and average. All the similar-
ity abstractions are assumed to contain order preserving
operations. The optimization heuristic performs query
compaction only on the individual similarity abstractions.
The selections are pushed as much as possible and joins
are replaced by filter joins whenever it is possible. Fig-
ure 3 shows an example query session from ISEE. The
query posed in this example is the first query given in
Example 10.

Below, we give experimental results showing the util-
ity of query optimization in similarity algebra operations.
The results corresponds to the three queries given in Ex-
ample 10. Each query is shown executed for the string,

Figure 3: Query 1 in ISEE

“Alexandria Library”. For each query string, two query
plans are considered. The first is the results of naive query
evaluation without any optimization. The second evalua-
tion is a query plan that makes use of filter joins. For each
query, the rewriting is given below. Note that no filtering
is possible for qa since there is no selection condition on it.
However, in this case it is possible to reduce the common
subexpressions. We now give the experimental results
corresponding to the execution of these two queries.

41 = ~51,s3(RSOavg(Best~~~~~,I l P{ E },x/loo (* (EDB, 0, all)
(av9>lnl)

wu Pi 1 >,,,u&DB, 0, GO)), { E> I}), 3)).
qz = ~Iol,$3(RSOmin(cr$m4>0.8i~(pi ,tz l,z+oo(EDB, 0, all)

[min,0.6]

NJ Pi,~,~,loo(lDB,O,all)),{E,I})))

q3 = J&l,s3(RS0,,,((SK wu SK), { E, H})U
RSO&(SK \ S%), { E}) u RS0,/2((% \ SK), {H}))
SK = P; E l,x,loo(~DB, 0,201
Sv2 = P;H >,,,loo(EDB, 0,201.

Network # Tuples Execution
Query String Connections Processed Time
“Alexandria Library”
Querv 1. Naive 106 63000 2.54.7s

. 1

Query 1, Rewritten 47 30240 107.8s
Query 2, Naive 106 63000 252.8s
Query 2, Rewritten 40 8303 83.2s
Query 3, Naive 12 1118 7.3s
Query 3, Rewritten 4 1118 7.2s

The table above illustrates the following points: First,
using our query rewriting strategies, the number of re-
quested network connections decreases substantially, as
does the number of tuples processed. The total time re-
quired to process our queries does decrease substantially
as a result of query rewriting. However, query rewriting
is not always effective. For example, in the case of query
43, the similarity union-join wU was empty, leaving little
room for optimization. In general, we have noticed that
the expected number of objects after a join operation was

412

a significant factor in optimization. This figure was also
very hard to estimate for arbitrary query strings, such as
“Postmodern Culture Netzine”. Nevertheless, we could
cut the time required to process queries in half using our
query optimization methods in most cases.

6 Conclusions and Related Work

Most existing similarity retrieval algorithms assume that
the notion of similarity is fixed, and that user queries are
processed against this fixed similarity metric. In prac-
tice, however, there are many applications of similarity
based retrieval (e.g.document retrieval through Internet
search engines are the best known example) where there
are many different indexes and algorithms for similarity
based retrieval. This is also true (to a slightly lesser ex-
tent) in image retrieval domains where multiple image
processing algorithms often retrieve data in multiple ways
according to multiple notions of similarity. Our aim in
this paper was two-fold. First, to provide an algebraic
framework within which users can access not just one, but
several similarity implementations, and “mix and match”
the results of such accesses within a single algebra. To
date, there has been little work on developing a version of
the relational algebra for images/text. Our architecture
applies to not just one, but many such implementations
and so does our algebra. In addition, our algebra extends
the relational algebra rather than start from scratch, thus
making it present a relational interface to non-relational
structures - thus, it is consistent with prevailing trends
in industry to add “datablades”, “extenders”, and “car-
tridges” to relational DBMS systems to extend their capa-
bilities. Our second goal was to develop ways of optimiz-
ing queries over such similarity based retrieval engines.
We accomplished this by proving a set of equivalences be-
tween queries (which in turn lead to query rewrite rules)
in the rMSA. Later we defined query trees and showed
how query trees may be transformed through specialized
operators such as the tree compaction operator, similar-
ity abstraction filter based optimizations, join cardinality
filters, and join value filters. By transforming query trees
using these operations, we may rewrite a query tree into
an equivalent one and use our cost model to choose the
best. Last, but not least, we have developed a prototype
application of our algebra to develop an Integrated Web
Search Engine (I.SEE) based upon which we have vali-
dated the experimental benefits of our approach.

Most existing research on similarity based retrieval
to date falls into three classes. The first class aims at
defining what constitutes similarity, and has been stud-
ied by many researchers in the context of text/document
data [6, 17, 1, 11, image data [3, 9, 11, 141, and audio
data [5]. Santini and Jain [15] provide a good overview
of different, approaches to similarity. The second class
of work involves ways to index media data to support
similarity-based retrieval - these include data structures
such as those in [4, 9, 131. The third class includes pro-
viding abstract models of similarity as elegantly devel-
oped by Jagadish et. al. [12]. Chaudhuri and Gravano [8]
were the first to suggest ways of optimizing multimedia
queries using a cost, based model of such queries. Carey
and Kossmann [7] introduced an SQL operator analogous

to “Best” named “stop after” for relational queries that
aims to reduce the cardinality of input streams. Our work,
in contrast, provides an algebra for multiple similarity en-
gines to be integrated ([lo] also makes a proposal for this
in the context of Internet Search Engines, but provides
no algebra or equivalence results) and provides provably
correct query rewriting methods, and query optimization
techniques.

References

[I] S. Adah, C. Bufi and Y. Temtanapat. “Integrated Search

PI

PI

[41

[51

PI

[71

PI

PI

[a

1111

Engine”, to appear in the Proc. of 1997 IEEE Knowledge
and Data Engineering Exchange Workshop, KDEX’97.
S. Adah, K.S. Candan, Y. Papakonstantiuou and V.S.
Subrahmanian. “Query Caching and Optimization in Dis-
tributed Mediator Systems”, Proc. of the 1996 Sigmod
Conference on Management of Data, pp. 137 - 148.
M. Arya, W. Cody, C. Faloutsos, J. Richardson and A.
Toga. (1995) “Design and Implementation of QBISM, a
3D Medical Image Database System”, in: (VS. Snbrah-
manian and S. Jajodia, eds.) “Multimedia Database Sys-
tems: Issues and Research Directions”, Springer 1995.
S. Berchtold, D. A. Keim, and Hans-Peter Kriegel. (1996)
“The X-tree : An Index Structure for High-Dimensional
Data”, Proc. 1996 Intl. Conf. ou Very Large Databases,
Bombay, India, pps 28-39.
T. Blum, D. Keislar, J. Wheaton and E. Wold. (1995)
“Audio Databases with Content-based Retrieval”, Proc.
1995 IJCAI workshop on Intelligent Multimedia Informa-
tion Retrieval, Montreal, Canada.
E.W. Brown, J.P. Callan and W. B. Crof. (1994) “Fast
Incremental Indexing for Full-Text Information retrieval”,
Proc. 1994 Intl. Conf. on Very Large databases, Santiago,
Chile, pps, 192-202.
M. J. Carey and D. Kossmann (1997) “On Saying
“Enough Already!” in SQL.” Proceedings of the 1997 Sig-
mod Conference on Management of Data, pp. 219-230.
S. Chaudhuri and L. Gravano. (1996) “Optimizing
Queries over Multimedia Repositories”, Proc. 1996 ACM
SIGMOD Conf. on Management of Data, pps 91-102.
C. Faloutsos. (1996) “Searching Multimedia Databases by
Content”, Kluwer Academic Publishers.
L. Gravano, C. Chang, H. Garcia-Molina and A.
Paepcke. “STARTS: Stanford Proposal for Internet Meta-
Searching”, SIGMOD 1997, pp. 207~218.
V.N. Gudivada and V.V. Raghavan. (1993) “Design and
Evaluation of Algorithms for Image Retrieval by Spatial
Similarity”, ACM Transactions on Information Systems,
13.1. nns 115-144.

[121

f131

u41

1151

[I61

I I I .

H. V. Jagadish, A. Mendelzon and T. Milo. “Similarity-
Based Queries”, Proc. of ACM PODS 1995, pp. 36-45.
K.-I. Lin, H.V. Jagadish and C. Faloutsos. (1994) “The
TV-Tree: An Index Structure for High-dimensional
Data”, VLDB Journal, 3, pps 517-542.
W. Niblack, et. al. (1993) “The QBIC Project: Query-
ing Images by Content Using Color, Texture and Shape”,
IBM Research Report, Feb. 1993.
S. Santini and R. Jain. (1996) “Similarity Matching”, to
appear in: IEEE Transactions on Pattern Analysis and
Machine Intelligence.
X. Qian. “Query folding.” In Proceedings of the Twelfth
International Conference on Data Enginnering, 1996.

[17] A. Tomasic, H. Garcia-Molina and K. Shoens. (1994) “In-
cremental Updates of Inverted Lists for Text Retrieval”,
Proc. 1994 ACM SIGMOD Conf. on Management of
Data, Minneapolis, pps 2899300.

413

