
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 26, 393-407 (2010)

393

A Hierarchical Bitmap Indexing Method for Similarity
Search in High-Dimensional Multimedia Databases*

JONGHO NANG, JOOHYOUN PARK, JIHOON YANG AND SAEJOON KIM

Department of Computer Science and Engineering
Sogang University

Seoul 121-742, Korea

This paper proposes an efficient indexing mechanism for similarity search in high-

dimensional multimedia database that quickly filter-outs the irrelevant objects using a
novel indexing structure, called HBI (Hierarchical Bitmap Index). In this bitmap index,
the feature (or attribute) value of object at each dimension is represented with a set of
two bits each of which indicates whether it is relatively high (‘11’), low (‘00’), or neither
(‘01’) compared to the feature values of other objects at a hierarchical organized interval.
This approximation helps to reduce the CPU time of filtering process because many ir-
relevant objects could be simply excluded by just XORing the bitmaps of two objects.
Upon experimental results, we find that there is an optimal number of bitmaps that keeps
the filtering rate as high as possible while keeping the search time as short as possible.
Furthermore, we also find that the similarity search using the proposed indexing mecha-
nism is about 2-3 times faster than VA-File while guaranteeing the exact solutions.

Keywords: multimedia retrieval, similarity search, high dimensional indexing, hierarchi-
cal bitmap indexing, curse of dimensionality

1. INTRODUCTION

The similarity in CBMR (Content Based Multimedia Retrieval) is often measured
by the Lp-distance between the feature vectors extracted from multimedia objects such as
images or videos. Since they are usually represented in a very high dimensional space
and the measuring Lp-distance in this space incurs a high cost for a large data set, it is
essential to use an efficient indexing method to develop a practical CBMR system. The
various indexing methods for similarity search in multimedia retrieval have been widely
research- ed. Some conventional data partitioning approaches such as R-tree [1], R*-tree
[2], X-tree [3], VP-tree [4] or M-tree [5] can be used for solving this problem. However,
their performances are known to drastically degrade as the number of dimensions in-
creases because of the problem called “curse of dimensionality [6]”. Recently, some new
researches (for example, the VA-file [7] and the LPC-file [8]) have been proposed to re-
solve this problem. They are called filtering approach because they first filter-out many
irrelevant objects by scanning the compact approximations of objects and secondly com-
pute the exact distances between the query and remaining relevant objects to find out the
similar objects. Similarly, Signature File [11, 12] method has been often used in docu-
ment retrieval area. This method makes a compact abstraction of documents to provide a
quick test, which discards many of the non-qualifying documents. In the view of Signa-

Received June 19, 2008; revised September 18, 2008; accepted March 19, 2009.
Communicated by Suh-Ying Lee.
* This is an extended version of paper, titled “An Efficient Indexing Structure for Content Based Multimedia

Retrieval with Relevance Feedback” in Proceedings of ACM Symposium on Applied Computing, Vol. 1,
2007, pp. 517-524.

JONGHO NANG, JOOHYOUN PARK, JIHOON YANG AND SAEJOON KIM

394

ture File, VA-File and LPC-File suggest the way of hashing vector sets and calculating
the approximation of the distance between them. Although this approach could eliminate
the I/O time for reading the feature vectors of irrelevant objects in the second phase so
that the total search time could be reduced, it still requires a lot of CPU time because it
should calculate the Lp-distances (a costly computation) between the query and all objects
in the database with their compact approximations in the filtering process. Some works
[13, 14] introduced the improved data partitioning approach combined with the filtering
approach. A-tree [13] is motivated by SR-tree and VA-File. The basic idea of A-tree is the
introduction of virtual bounding rectangles (VBRs), which contain and approximate mini-
mum bounding rectangles (MBRs) or data objects. xS-tree [14] is also based on R-tree but
uses a lossy compression of bounding regions to guarantee a reasonable minimum fan-out
within the allocated storage space for each node. These indexing methods show good
performance compared SR-tree and R-tree. However, it can not be free from “curse of
dimensionality” problem because they are basically based on the data partitioning approach.

This paper proposes a new indexing scheme, called HBI (Hierarchical Bitmap In-
dex), which significantly improves the speed of filtering process. In the proposed indexing
mechanism, a high dimensional object is represented as a bitmap of size 2 ⋅ d ⋅ l bits,
where d is the number of dimensions of object’s feature vector and l is the number of
bitmaps. In the proposed bitmap, the attribute (or feature) value of an object at each di-
mension is approximated with two bits that indicate whether it is relatively high, low, or
neither compared to the feature values of other objects, and represented as ‘11’, ‘00’, and
‘01’, respectively. If the approximated values of two objects at the same dimension are
‘00’ (low) and ‘11’ (high), the feature values of two objects at that dimension might be
very different. This dimension is called a discriminative dimension between two objects,
and could be identified by simply XORing their bitmaps. Furthermore, the minimum dis-
tances between two objects at the discriminative dimension is easily computed by meas-
uring the difference between two thresholds that divide the feature values into relatively
high and low. This mechanism (i.e., XORing two bitmaps and counting the number of
‘11’ in the resulting bitmap) is used to filter-out the irrelevant objects in the proposed
indexing mechanism, rather than the filtering based on the direct Lp-distances as in VA-
File. Since the XORing is much simpler than Lp-distance calculation, the filtering process
itself could be sped-up dramatically. Of course, since the two-bits approximation is too
simple to represent the feature values of object at some dimensions, the filtering power
of the indexing mechanism would be poor if only one bitmap is used for indexing. This
problem is resolved by introducing the multiple bitmaps each of which hierarchically
represents the relative positions of the feature values at a certain range. That is, the adja-
cent high and neither regions, or low and neither regions of parent bitmap are merged
and further hierarchically divided into another three regions and indexed with one or two
additional child bitmaps. If l bitmaps are used for approximating the feature vector of the
object, only l XOR operations and l summation operations are required to check whether
two objects are irrelevant or not. To show the superiority of the proposed method, we
implemented this algorithm and compared it with the VA-file and a native sequential
search. Upon experimental results with three real image sets and three synthetic data sets
with different statistical distributions, we found that there was an optimal number of
bitmaps that minimized the total elapsed search time, and the proposed HBI was about
2~3 times faster than VA-file while guaranteeing to find the exact solutions.

HIERARCHICAL BITMAP INDEXING FOR MULTIMEDIA RETRIEVAL

395

2. HIERARCHICAL BITMAP INDEXING METHOD

In order to speed-up the filtering process, the indexing structure should be as com-
pact and simple as possible so that the distance calculation using approximated values
could be processed efficiently, while keeping the filtering rate as high as possible. These
two requirements for indexing structure, a simple representation and a high filtering rate,
are usually contrary to each other, and it is very important to find an indexing structure
that satisfies both of these requirements as much as possible. In the proposed indexing
structure, since each attribute value of object is represented with only a set of two bits and
the distance calculation between two objects is a simple XORing operation, it is efficient
enough. A hierarchical structure is also introduced to improve the filtering power of the
proposed indexing structure. Let us present how to represent a high dimensional object
with a set of bitmaps, and how to calculate the approximate distance between two objects
using their bitmaps.

2.1 Hierarchical Interval Partitioning Tree

Consider a multimedia database Λ (Λ = {oi|1 ≤ i ≤ n}, where oi is the ith object.)
consisting of n multimedia objects. For simplicity, let the space of high dimensional ob-
jects be a d-dimensional hypercube space Ωd under the Lp-norm, where Ω = [0, m] and
m is the maximum value at that space. That is, ith object, oi, in Ωd is defined as, <oi

1, oi
2,

…, oi
j , …, oi

d>, where oi
j is the attribute value of oi at jth dimension (oi

j ∈ Ω), and its

length ||oi|| in Ωd is
1/

1 .
ppd j

ij o
=

⎛ ⎞
⎜ ⎟
⎝ ⎠∑ Furthermore, let Lp(a, b) be the Lp-distance between

the objects a and b in Ωd and computed with Lp(a, b) =

1/

1 ,
ppd j j

j a b
=

⎛ ⎞−⎜ ⎟
⎝ ⎠∑ where aj and

bj are the feature values of objects a and b at jth dimension, respectively.
The main idea of proposed indexing mechanism is inspired from the characteristics

of Lp-distance that the dominant components of Lp-distance are the feature values at the
dimensions on which the points are the farthest apart. That is, if the difference of feature
values of two objects at jth dimension, |o j

p − o j
q |

p, is large enough, the Lp-distance between
op and oq, Lp(op, oq), is heavily dependent on the distance at that dimension. It leads us to
divide the space Ω into three intervals, [vmin, vlow], (vlow, vhigh), and [vhigh, vmax], which are
denoted by Ilow, Imiddle, and Ihigh, respectively, as shown in Fig. 1 (a), where vmin ≤ vlow <
vhigh ≤ vmax ∈ Ω. This partition of the space is applied to all dimensions of Ωd with the
same threshold values vlow and vhigh as shown in Fig. 1 (b) that is an example of space
partition when d = 2. These intervals are used to approximate the distance between two
objects. That is, if o j

p ∈ Ilow and o j
q ∈ Ihigh, the dimension j is called a discriminative dimen-

sion between op and oq, and the contribution of that dimension to Lp-distance between
these two objects is approximated as |vhigh − vlow| p. By counting the number of discrimi-
native dimensions between two objects (say C), we can estimate the Lp-distance between
these two objects as

1/() .
p p

high lowC v v⋅ − For example, the estimated value of L2-distance
between the objects ‘a’ and ‘c’ in Fig. 1 (b) is

2 1/2(1) ,high lowv v⋅ − whereas the one be-
tween the objects ‘a’ and ‘b’ is

2 1/2(2)high lowv v⋅ − as depicted with a dotted line.
The problem of the proposed simple bitmap indexing scheme is that if there are few

dimensions that satisfy the above condition (i.e., C ≈ 0), the approximated distance would

JONGHO NANG, JOOHYOUN PARK, JIHOON YANG AND SAEJOON KIM

396

m

m

1
a

b

c

lowI middleI highI

lowv highv
highv

highv

lowv

lowv
minv maxv

approximated distance
between ‘a’ and ‘b’

(a) Partitioning of the sapace Ω1 into three intervals. (b) Partitioning of the space Ω2 into nine regions.

Fig. 1. Partitioning the hypercube space Ωd into 3d subspaces.

be zero and could not be used to filter-out the irrelevant objects. In order to overcome
this drawback, the adjacent two intervals are merged and further hierarchically partitioned
into another three intervals and encoded with a separated bitmap. Let us explain this
partitioning scheme in more detail. Let o j

p and o j
q be the attribute values of two objects at

jth dimension that we want to compute the distance, I1 be the initial interval (I1 = Ω).
Then, there are six cases that o j

p and o j
q could be placed in I1 as follow;

Case 1: o j

p ∈ 1
lowI and o j

q ∈ 1
lowI Case 2: o j

p ∈ 1
lowI and o j

q ∈ 1
middleI

Case 3: o j
p ∈ 1

lowI and o j
q ∈ 1

highI Case 4: o j
p ∈ 1

middleI and o j
q ∈ 1

middleI

Case 5: o j
p ∈ 1

middleI and o j
q ∈ 1

highI Case 6: o j
p ∈ 1

highI and o j
q ∈ 1

highI

Among these cases, if o j
p and o j

q are in Case 3, the estimated distance at jth dimension
could be computed with I1 easily because the jth dimension is a discriminative one in I1.
In other cases, we could not compute the estimated distance with I1 because they do not
satisfy the basic condition of bitmap indexing that one is relative high and the other is
relative low. In order to handle Case 1, 2, and 4, I 1

low ∨ I 1
middle is hierarchically form a new

interval I2 and it is partitioned into three intervals, I 2
low, I 2

middle, and I 2
high. The interval

I 1
middle ∨ I 1

high is also partitioned into three intervals, I 3
low, I 3

middle, and I 3
high to handle the

Cases 5 and 61. This basic interval partitioning scheme is shown in Fig. 2 (a). In this parti-
tioning scheme, by restricting I 1

low = I 2
low and I 1

high = I 3
high, the interval I3 does not need to

have the left child interval for handling

3 3
low middleI I∨ (i.e., in the case of o j

p, o
j
q ∈ I 3

low ∨ I 3
middle)

because (I 3
low ∨ I 3

middle) ⊂ I 2 so that it would be handled by I2 or its descendants. It is true
for all intervals that are the right child of an interval. In Case 4, since I 1

middle ⊂ I2 and
I 1

middle ⊂ I3, one may think that |o j
p − o j

q |p is computed and accumulated twice by I2 and I3
or their descendants when o j

p , o j
q ∈ I 1

middle. However, it is always not true because o j
p or

o j
q could not be belonging to I 3

high by the restriction that I 1
high = I 3

high. It means that they
could not contribute to the total distance by I3 or its descendants. On the other hand, they
could be belonging to the high or low intervals in the right descendants of I2 (i.e., I5 or I 9)
so that they could eventually contribute to the total distance. An example of hierarchical
interval partitioning tree more than one level with this restriction is shown in Fig. 2 (b), in
which the intervals that have the same ranges are filled with the same patterns. For ex-

1 Note that I1 ∨ I 2 means the interval that merges two adjacent intervals I1 and I 2. For example, if I 1 is [1, 5] and

I 2 is [5, 10], then I1∨ I2 is [1, 10].

HIERARCHICAL BITMAP INDEXING FOR MULTIMEDIA RETRIEVAL

397

1
lowI 1

middleI 1
highI

2
lowI 2

middleI 2
highI 3

lowI 3
middleI 3

highI

3I2I

1I

1
lowI 1

middleI 1
highI

1I

2I 3I

4I 5I 6I

7I 8I 9I 10I

Level 1

Level 2

Level 3

Level 4

(a) A basic interval partitioning scheme. (b) A hierarchical interval partitioning tree.
Fig. 2. Hierarchical interval partitioning scheme.

ample, the ranges and lengths of I 1

low, I 2
low, I 4

low and I 7
low are the same.

Let us formalize this interval partitioning scheme in more detail. Let I k be the kth
interval and be divided into three intervals, I k

low, I k
middle, and I k

high, and level(k) be the level
of I k in the interval partitioning binary tree. Then, Ik has one or two child intervals as
follows:

1. If k = 1, Ik has Ik+1 as the left child, Ik+2 as the right child, and level(k) = 1.
2. If Ik is the left child of an interval, it has Ik+level(k) as the left child and I k+level(k)+1 as the

right child.
3. Otherwise, it has I k+level(k)+1 as the right child (without the left child),

where I k+level(k) = I k

low ∨ I k
middle and I k+level(k)+1 = I k

middle ∨ I k
high with the restrictions that

()k level k
lowI + = I k

low and () 1 .k level k k
highhighI I+ + =

The proposed interval partitioning scheme is used to approximate the distance
between the attribute values of two objects. That is, if o j

p ∈ I k
low and o j

q ∈ I k
high, then the

estimated distance of the objects op and oq at jth dimension in Ik is |vk
high − vk

low|p, where
vk

low and vk
high are the thresholds that partition the interval Ik into I k

low, I k
middle, and I k

high. In
order to be |vk

high − vk
low|p ≈ |o j

p − o j
q |p, these thresholds should be selected based on the

distribution of the attribute values of all objects at jth dimension. However, if we use a
different set of thresholds for each dimension, we should compute the estimated distance
for each dimension separately. It will require a lot of computations to estimate the
Lp-distance. It forces us to use a set of thresholds that is determined by the distributions of
attribute values of all objects at all dimensions, and use it to partition the intervals at all

 dimensions. These thresholds are selected to maximize
,j j k

p q

p
k k
high low

o o I

v v
∈

−∑ that is the

expected (estimated) distance between two attribute values in Ik of all objects at all dimen-
sions. However it can lead to a problem when the distribution of objects is biased or when
the number of objects is too small to reflect the characteristics of a feature. The proposed
interval partitioning algorithm could divide partitions that over-fit the given set of objects
and could not be used in dynamic database which is prone to deletion and insertion.
However, we can avoid this over-fitting problem if the amount of objects is sufficient to

JONGHO NANG, JOOHYOUN PARK, JIHOON YANG AND SAEJOON KIM

398

represent the characteristics of a feature. According to [15], the Lp-distances shows a
specific distribution irrespective of the number of dimensions. It implies that we can get
the characteristics of the feature through the analysis of fewer vectors in high dimensional
case. Actually, we could get reasonable intervals even if a sub-group of full set is used to
divide intervals in our experiments. That is why HBI shows a good perfor-mance in
dynamic environments where insertion and deletion operations are frequent.

2.2 Hierarchical Bitmap Encoding Algorithm

In order to easily count the number of discriminative dimensions, the attribute value
of object is basically encoded with two bits and an XOR operation is used in the pro-
posed indexing mechanism. That is, if o j

i belongs to Ilow, Imiddle, and Ihigh, it is encoded as
‘00’, ‘01’, and ‘11’, respectively. By encoding the attribute values at all dimensions with
this encoding scheme and concatenating them into a bit string, we can build a bitmap of
the object that simply indicates the intervals to which the attribute values at each dimen-
sion are belonging. Then we can get the number of the discriminative dimensions from
counting “11”s in the XORing result between two bitmaps. ‘11’ in the XORing result
implies that the values of two objects at the same dimension are ‘00’ and ‘11’. That is,
the difference of the feature values at that dimension is at least more than the size of
Imiddle. Now, let us formally present a bitmap encoding method using the hierarchical in-
terval partitioning tree proposed in the previous section. In the proposed HBI, the bitmap
of object oi(1 ≤ i ≤ n) at kth bitmap is denoted by Bk(oi) and generated as follows, where
I k

high, I k
low, I k

middle are three intervals in Ik.

Bk(oi) = bk(oi
1) bk(oi

2) … bk(oi
d),

where

00, if

() 11, if .

01, otherwise (or)

j k
i low

k j j k
i i high

j k j k
i middle i

 o I

b o o I

 o I o I

⎧ ∈
⎪⎪= ∈⎨
⎪

∈ ∉⎪⎩

This bitmap index is generated for all objects oi(1 ≤ i ≤ n) in database in advance, and
used to filter-out the irrelevant objects compared to the query object.

Let us show a simple example to build the bitmap index. Consider two 4-dimen-
sional vectors, p = <1, 8, 3, 9> and q = <1, 7, 9, 3>, where Ω = [1, 10] and d = 4. Assume
that I 1

low, I k
middle, and I 1

high are [1, 3], (3, 9), [9, 10], respectively. Then, since the 1st attrib-
ute value of p is in I 1

low it is encoded as ‘00’. In the same way, the bit representations of
2nd, 3rd, and 4th attribute values of p are ‘01’, ‘00’, and ‘11’, respectively. By concate-
nating these bits, we finally get the bitmap index of p at I1, B1(p), as “00 01 00 11”. As-
sume that l = 3, and I 2

low = [1, 3], I 2
middle = (3, 7), I 2

high = [7, 9), I 3
low = (3, 6], I 3

middle = (6,
9), and I 3

high = [9, 10]. Then, the bitmap indexes for p and q are shown in Table 1. Note
that since the 1st attribute values of p and q when k = 3 are not in I3 (i.e. p1, q1 ∉ I3), it is
encoded as ‘01’ in B3(p) and B3(q). It means that these feature values are meaningless in
B3(p) and B3(q) and would be handled in other bitmaps.

HIERARCHICAL BITMAP INDEXING FOR MULTIMEDIA RETRIEVAL

399

Table 1. An example of generating bitmap index.
k I k

low I k
middle I k

high Bk(p) Bk(q)
1 [1, 3] (3, 9) [9, 10] 00 01 00 11 00 01 11 00
2 [1, 3] (3, 7) [7, 9) 00 11 00 01 00 11 01 00
3 (3, 6] (6, 9) [9, 10] 01 01 01 11 01 01 11 01

Table 2. XORing results and relationships between actual and approximated distances.

 bk(o j
p) bk(o j

q) bk(o j
p) XOR bk(o j

q)
Relationships between

Lp(op, oq) and Dp(op, oq)
Case 1 00 11
Case 2 11 00 11 j j

p qo o− ≥ k
middleI

Case 3 00 00
Case 4 01 01
Case 5 11 11

00 j
q

j
p oo − ≤ () max , ,k k k

high middle lowI I I

Case 6 00 01
Case 7 01 00
Case 8 11 01
Case 9 01 11

01

j
q

j
p oo − ≤

() max ,k k k k
high middle low middleI I I I+ +

2.3 Calculating Approximated Distance with Bitmaps

In this section, we show how to approximate the Lp-distance with the proposed bit-
map representation. Let Lp(op, oq) be the Lp-distance between two objects op and oq, and
Dp(op, oq) be the approximated distance computed with the proposed bitmap index. By
XORing the bit representations of op and oq at jth dimension in kth bitmap, bk(o j

p) and
bk(o j

q), we can get the results shown in Table 2, where ||A|| denotes the length of interval
A. Among the cases in Table 2, since the lower bound of difference between Lp(op, oq)
and Dp(op, oq) at jth dimension in the kth bitmap could be computed in Cases 1 and 2,
only these two cases are considered in the proposed distance calculation scheme. Fur-
thermore, because the same interval Ik is used to encode the attribute values of objects at
all dimensions (i.e., the lengths of I k

middle, |||I k
middle|| are the same in all dimensions) at the

kth bitmap, we can approximate the distance between two objects op and oq, Lp(op, oq), as
follows;

1/

1
(,) ,

pl pk
p p q k middle

k
D o o C I

=

⎡ ⎤
= ×⎢ ⎥
⎣ ⎦
∑ (3)

where l is the number of bitmaps and Ck is the number of discriminative dimensions be-
tween objects op and oq at the kth bitmap.

3. SIMILARITY SEARCH USING HIERARCHICAL BITMAP INDEX

The similarity search problems in the multimedia retrievals could be classified into

JONGHO NANG, JOOHYOUN PARK, JIHOON YANG AND SAEJOON KIM

400

two classes; one is r-range search that finds the multimedia objects whose distance to the
query object is less than r, and the other is k-NN (Nearest Neighbor) search that finds k
objects with the smallest distance to the query object. Both of these search problems
could be solved with the proposed bitmap indexing structure efficiently by constructing
the bitmaps of multimedia objects in database in advance. These indexes are used to fil-
ter-out the irrelevant objects compared to the query object in both of two search problems.
For the r-range search, the bitmap for the query object (Q) is first generated and it is used to
filter out the irrelevant objects whose Dp-distance to query object is larger than r. They
are collected to form a candidate set. Then, the objects among the candidate set whose
Lp-distance are actually less than r are selected as the final results of the r-range search.

In the case of k-NN search problem, the candidate set could not be completely gen-
erated in the filtering process because it should select the objects whose distances to
query object are relatively small. It forces us to keep a set of potential nearest objects,
and the Lp-distance of an object is calculated only when its Dp-distance is less than the
largest Lp-distance among the distances of objects in this set. If its Lp-distance is actually
less than the currently largest one, it is inserted into the set and the object whose Lp-dis-
tance is the largest among the objects in the set is deleted. Of course, if the number of
objects in the set is currently less than m(the size of the final results), it is inserted re-
gardless of its Dp- or Lp-distances. The procedure to find the object with the largest dis-
tance could be implemented easily if the potential nearest objects set is kept as an or-
dered list. Note that as Dp(q, oi) ≤ Lp(q, oi), ∀i(1 ≤ i ≤ n), the objects whose Lp-distances
are less than r or less than the largest one among the set are never filtered-out by these
filtering processes. It means that these two search algorithms based on the proposed bit-
map indexing guarantee to find the exact solutions. On the other hand, the Lp-distances
of the objects whose Dp-distance are larger than r or larger than the largest one among
the set are never computed in the filtering process, and it is the main source of the effi-
ciency of HBI as shown in the experimental results in section 5.

4. ANALYSIS

4.1 Storage Overheads for Indexing Structure

The total storages requirements for storing the multimedia objects themselves are n ⋅

d ⋅ v bytes where n is the number of multimedia objects in database, d is the number of
dimensions of the object’s feature vector, v is the size of storages for storing one feature
value. In the case of VA-File, the storage requirements for indexing structure are n ⋅

8
d b⋅⎡ ⎤⎢ ⎥

bytes where b is the average number of bits used to divide each dimension into several
regions. In order for indexing this database using HBI, n ⋅ 2

8
d ⋅⎡ ⎤⎢ ⎥ ⋅ l bytes are required

where l is the number of bitmaps used for the indexing. For example, if there are 100,000
multimedia objects each of which is represented with MPEG-7 Color Structure descrip-
tor [9] whose number of dimensions is 256, and each bin value of histogram is represented
with 4-bytes integer, the total storages for this multimedia database itself are 100,000 ⋅
256 ⋅ 4 = 100 Megabytes. In the case of indexing with VA-File, 100,000 ⋅ 256 4

8
⋅⎡ ⎤⎢ ⎥ = 12.8

Mega bytes are required to index the database when b = 4. On the other hand, in the case
of indexing with HBI, 100,000 ⋅ 256 2

8
⋅⎡ ⎤⎢ ⎥ ⋅ 3 = 19.2 Mega bytes are required when l = 3. As

HIERARCHICAL BITMAP INDEXING FOR MULTIMEDIA RETRIEVAL

401

shown in this example, although the storage requirement of indexing with HBI is larger
than that with VA-File because more bits are usually required for each dimension in HBI
(i.e., usually, b ≤ 2 ⋅ l) in order to get a comparable filtering rate as VA-File, it helps to re-
duce the CPU time of the filter process very much as shown in the experiments in section 5.

4.2 Analysis of Total Search Time

Let us now quantitatively compare and analyze the total time of similarity search in

multimedia database using the sequential search (or BFS (Brute-Force Search)), the
search with VA-File, and the search with the proposed HBI. The total elapsed time for
similarity search with BFS, TBFS, is estimated as follows because it should read the fea-
ture vectors of all objects and compute their Lp-distances to query object;

TBFS ≈ n ⋅ (Rvec + CL)

where Rvec is the time to read the feature vector of an object, and CL is the time to com-
pute the Lp-distance to the query object. On the other hand, the total time for similarity
searches with VA-File, TVA, and with HBI, THBI, would be estimated as follows because
they first filter-out the irrelevant objects and compute the Lp-distances of the remaining
objects only;

TVA ≈ n ⋅ (RVA + CL) + (1 − μVA) n ⋅ (Rvec + CL)
THBI ≈ n ⋅ (RHBI + CD) + (1 − μHBI) ⋅ n ⋅ (Rvec + CL)

where RVA and RHBI are the time to read the index for an object in VA-File and HBI, re-
spectively, CD is the time to compute the Dp-distance of the object to the query object,
and μVA and μHBI are the filtering rates of the VA-File and HBI, respectively. If we as-
sume that the filtering rates of VA-File and HBI are similar to each other and they are
greater than 0.95 (i.e., μVA ≈ μHBI ≥ 0.95), the dominant component of the search time is
the filtering time. If we further assume that the time for distance calculations with indexes
are large enough than the time for index readings (i.e., CL, CD >> RVA, RHBI), the time for
similarity search with VA-File and HBI would be n ⋅ CL and n ⋅ CD, respectively. It means
that the time for similarity search with HBI could be L

D

C
C

 times faster than the one with
VA-File. Actually, under our experimental environment (Microsoft Windows XP on an
Intel Pentium 4 (3.0GHz) with 1GB main memory), because CL and CD are approximately
0.009 milli-seconds and 0.003 milli-seconds, respectively, when the type of feature value
is the floating-point number and the number of bitmaps used in HBI is 10 (i.e., l = 10),
the expected speed-up would be about

0.009
0.003

L

D

C
C = ≈ 3.0. This quantitative analysis has

been verified by several experiments as shown in the following section.

5. EXPERIMENTS

The main idea of the proposed HBI is to encode the feature values of the object with
a set of two bits that hierarchically indicates their relative positions at each dimension. It

JONGHO NANG, JOOHYOUN PARK, JIHOON YANG AND SAEJOON KIM

402

Table 3. Multimedia data sets used in the experiments2.
Data
Set Feature Vector Data

Distribution
Number of

Dimensions (l)
Feature Value Type

& Range (Ω)
Number of
Objects (n)

R1 MPEG-7 Color Structure
Descriptor [9] 256 Integer, [0, 255] 25,160

R2 MPEG-7 Edge Histogram
Descriptor [9] 80 Integer, [0, 7] 25,160

R3 HSV Color Histogram

Extracted
from Real
Image Sets

32 Float, [0, 1] 68,040
S1 Uniformly
S2 Skewed
S3

Synthetically Generated
[10]

Clustered
256 Float, [0, 255] 100,000

causes that its performance would be highly dependent on the number of bitmaps used for
indexing and the distributions of the feature vectors in the search space. In order to show
the effects of the data distributions to the search performances, we have experimented
with three real data sets (R1, R2, R3) and three synthetic data sets (S1, S2, S3) whose pa-
rameters are summarized in Table 3. We performed the r-range similarity search under
Microsoft Windows XP on an Intel Pentium 4 (3.0GHz) with 1GB main memory.

5.1 Number of Bitmaps and Filtering Rates

In the filtering approach for similarity search in multimedia database, the irrelevant

objects are first filtered-out using some compact approximations of the feature vectors of
multimedia objects. The advantage of this filtering approach is shown in Fig. 3 in which
the filtering-rates of the R-Tree, VA-File, and HBI for a uniformly distributed data set are
presented as a function of the number of dimensions of feature vectors. As shown in this
example, the filtering rate of the R-Tree indexing scheme is dramatically decreased when
the number of dimensions is larger than 10, whereas the filtering rates of VA-File and
HBI are not decreased although the number of dimensions is being increased. This ex-
periment shows that the filtering approach including VA-File and HBI could overcome
the “curse of dimensionality”.

0

0.2

0.4

0.6

0.8

1

1.2

2 5 10 20 30 40 50 60 70 80 90 100

Number of Dimensions

Fi
lte

ri
ng

 R
at

e

R-Tree
HBI (10 bitmaps)
VA-File (6 bits)

Fig. 3. Examples of filtering rates of R-tree, VA-file, and HBI.

2 R1 and R2 are extracted from http://clib.cs.berkeley.edu/photos/use.html using MPEG-7 XM. R3 is down-
loaded at (http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.data.html). S1~S3 are synthetic data
sets generated as in [10].

HIERARCHICAL BITMAP INDEXING FOR MULTIMEDIA RETRIEVAL

403

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19
Number of Bitmaps (l)

Fi
lte

ri
ng

 R
at

e
(μ

H
B

I)

R1 R2 R3 S1 S2 S3

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19
Number of Bitmaps (l)

Fi
lte

ri
ng

 R
at

e
(μ

H
B

I)

R1 R2 R3 S1 S2 S3

(a) Filtering rates of HBI.

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7 8
Number of Bits Allocated to Each Dimension (b)

Fi
lte

ri
ng

 R
at

e
(μ

V
A

-F
ile

)

R1 R2 R3 S1 S2 S3

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7 8
Number of Bits Allocated to Each Dimension (b)

Fi
lte

ri
ng

 R
at

e
(μ

V
A

-F
ile

)

R1 R2 R3 S1 S2 S3

(b) Filtering rates of VA-file.

Fig. 4. Comparisons of filtering rates of VA-file and HBI.

Now, let us show some experiments on the filtering rates of VA-File and HBI with
the data sets shown in Table 3. As shown in Fig. 4 (a), the filtering rates of HBI are in-
creased as the number of bitmaps used for indexing is being increased for the real image
data sets (R1, R2, R3) and S1. It is the same in VA-File when the number of bits allocated to
each dimension is increased as shown in Fig. 4 (b). In the case of S2, in which the feature
values are skewed to some ranges and these ranges are different to each other at each
dimension, the filtering rate of HBI is not so good although more than 10 bitmaps are
used because it is very hard to determine a good set of thresholds that could partition the
intervals at all dimensions effectively. On the other hand, if the feature values are clus-
tered within small ranges as in S3, a high filtering rate could be achieved with HBI al-
though a small number of bitmaps is used for indexing.

5.2 Experimental Analyses and Comparison of Search Time

The total search time with HBI (and also VA-File) consists of the I/O time for index

reading, the CPU time for approximated distance calculations with index, and I/O and
CPU time for actual distance calculations with real feature vectors of relevant objects that
are not filtered-out. In order to minimize I/O and CPU time for actual distance calcula-
tions, the number of relevant objects should be minimized by a higher filtering rate. How-

JONGHO NANG, JOOHYOUN PARK, JIHOON YANG AND SAEJOON KIM

404

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 BFS

Number of Bitmaps (l)

T
ot

al
 E

la
ps

ed
 T

im
e

(m
s)

CPU and I/O time (for vector)
CPU time (for Index)
I/O time (for Index)

(a) Total search times for R3.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 BFS

Number of Bitmaps (l)

T
ot

al
 E

la
ps

ed
 T

im
e

(m
s)

CPU and I/O time (for vector)
CPU time (for Index)
I/O time (for Index)

(b) Total search tomes for SI.

Fig. 5. Experimental search time of HBI with respect to the number of bitmaps.

ever, to get a higher filtering rate, more bitmaps should be used and it causes to increase
the I/O and CPU time for index. It means that there is a trade-off between time for in-
dexing and time for Lp-distance calculations in the search with HBI indexing.

Fig. 5 shows the elapsed total search time of HBI for R3 and S1 while increasing the
number of bitmaps for indexing. In the case of R3 (Fig. 5 (a)), the total search time is
minimized when 15 bitmaps are used. On the other hand, in the case of S1 (Fig. 5 (b)),
the filtering rate is almost 1.0 when 11 bitmaps are used because the feature vectors are
clustered, and the total search time is minimized when 7 bitmaps are used. For these data
sets, the search times are 2.5~4.0 times faster than BFS when an optimal number of bitmaps
are used as shown in Fig. 5. From these experiments, we find that there is an optimal
number of bitmaps that minimizes the total search time. Although the optimal number of
bitmaps would be dependent on the distributions of feature vectors in the search space,
we find that, from several experiments with the data sets with different feature vector
distributions, a good performance would be usually achieved when about 10 bitmaps are
used for indexing.

Now, let us experimentally compare the search time of HBI, VA-File, and BFS. Fig.
6 shows the time for indexing and the time for Lp-distance calculations with the feature
vectors of relevant objects when HBI, VA-File, and BFS are used for similarity searches
for data sets in Table 33. As shown in this experiment, the I/O and CPU time for Lp-dis-
tance calculations for feature vectors of relevant objects with HBI are larger thanthe ones

3 Note that the numbers of bitmaps used in the experiments are 6 for R1, 15 for R2, 15 for R3, 7 for S1, 20 for
S2, and 1 for S3. In the experiments with VA-File, 6-bits are allocated to each dimension, and it produces the
filtering rates of more than 0.95 for the all data sets. They are selected to produce the best performances.

HIERARCHICAL BITMAP INDEXING FOR MULTIMEDIA RETRIEVAL

405

0

200

400

600

800

1000

1200

1400

HBI VA-
File

BFS HBI VA-
File

BFS HBI VA-
File

BFS HBI VA-
File

BFS HBI VA-
File

BFS HBI VA-
File

BFS

R1 R2 R3 S1 S2 S3

Data sets and Indexing Scheme

T
ot

al
 E

la
ps

ed
 T

im
e

(m
s)

CPU and I/O time (for vector)
CPU time (for Index)
I/O time (for Index)

Fig. 6. Experimental comparisons of the search time with BFS, VA-file and HBI.

with VA-File because of its lower filtering rate. However, since the time for filtering (es-
pecially, the CPU time for Dp-distance calculations) with HBI is much less than the ones
with VA-File, the total search time with HBI is 2.0~3.0 times faster than the ones with
VA-File, and 2.5~4.0 times faster than the ones with BFS, in the case of experiments
with R1, R2, R3, and S1. This result verifies the quantitative speed-up analysis of HBI
presented in section 4.2. In the experiment with S2, since a lot of bitmaps are required to
get a filtering rate of 0.9 (actually, 20 bitmaps are used in this experiment) and it results a
lot of I/O and CPU time for indexing, the total search time with HBI is similar to the one
with VA-File. On the other hand, in the experiment with S3, since only one bitmap is
enough to get a filtering rate of 0.99, the total search time with HBI is about 25 times
faster than the one with VA-File. From these experiments, we find out that the similarity
search with HBI is averagely 2.0~3.0 times faster than the one with VA-File, and could
produce the best performance in the clustered data set as S3, and the comparable per-
formance in the skewed data set as S2.

6. CONCLUDING REMARKS

This paper proposed an efficient indexing scheme, called HBI (Hierarchical Bitmap
Indexing), in which the feature values of an object are represented with a set of two bits
that hierarchically indicates whether it is relatively high, low, or neither compared to the
feature values of other objects. In the view of storage efficiency, it requires only about 6-
14 bits to represent a feature value of objects on average. In the view of computational
efficiency, many irrelevant objects could be quickly filtered-out by the approximated dis-
tance calculated by a simple XOR operation. Upon experimental results, we found out
that the total search time based on HBI was averagely 2~3 times faster than that of VA-
File, and its performance was best when the distribution of feature vectors was highly
clustered, and was comparable to the VA-File when the feature vectors are highly
skewed at each dimension differently. Furthermore, we also show an experiment that the
proposed HBI scheme could be used for indexing of multimedia database with a lot of
multimedia objects. The proposed indexing mechanism could be used to build an effi-
cient CBMR system that guarantees a quick response time.

JONGHO NANG, JOOHYOUN PARK, JIHOON YANG AND SAEJOON KIM

406

REFERENCES

1. A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Proceed-
ings of ACM SIGMOD International Conference on Management of Data, 1984, pp.
47-57.

2. N. Beckmann and H. Kriegel, “The R*-tree: An efficient and robust access method
for points and rectangles,” in Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, 1990, pp. 322-331.

3. S. Berchtold, D. Keim, and H. Kriegel, “The X-tree: An index structure for high di-
mensional data,” in Proceedings of International Conference on Very Large Data
Bases, 1996, pp. 28-39.

4. P. Yianilos, “Data structures and algorithms for nearest neighbor search in general
metric spaces,” in Proceedings of the 4th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 1993, pp. 311-321.

5. P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method for simi-
larity search in metric space,” in Proceedings of International Conference on Very
Large Data Bases, 1997, pp. 426-435.

6. S. Berchtold, C. Bohm, and H. Kriegel, “The pyramid technique: Towards breaking
the course of dimensionality,” in Proceedings of ACM SIGMOD International Con-
ference on Management of Data, 1998, pp. 142-153.

7. R. Weber, H. Schek, and S. Blott, “A quantitative analysis and performance study
for similarity-search methods in high dimensional spaces,” in Proceedings of Inter-
national Conference on Very Large Data Bases, 1998, pp. 194-205.

8. G. Cha, X. Zhu, D. Petkovic, and C. Chung, “An efficient indexing methods for
nearest neighbor search in high dimensional image databases,” IEEE Transactions
on Multimedia, Vol. 4, 2002, pp. 76-87.

9. ISO/IEC JTC1/SC29/WG11, Information Technology Multimedia Content Descrip-
tion Interface-Part3: Visual, 2001.

10. T. Bozkaya and M. Ozsoyoglu, “Distance based indexing for high dimensional met-
ric spaces,” in Proceedings of ACM SIGMOD Conference on Management of Data,
1997, pp. 357-368.

11. C. Faloutsos, “Signature based text retrieval methods,” Data Engineering, Vol. 13,
1990, pp. 25-32.

12. J. S. Yoo, Y. J. Lee, J. W. Chang, and M. H. Kim, “The HS file: A new dynamic sig-
nature file method for efficient information retrieval,” Lecture Notes in Computer
Science, Vol. 856, 1994, pp. 571-580.

13. Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, “The A-tree: An index struc-
ture for high-dimensional spaces using relative approximation,” in Proceedings of
International Conference on Very Large Data Bases, 2000, pp. 516-526.

14. C. Wang and X. Wang, “Indexing very high dimensional sparse and quasi-sparse
vectors for similarity searches,” Very Large Database Journal, Vol. 9, 2001, pp.
344-361.

15. G. Burghouts, A. Smeulders, and J. Geusebroek, “The distribution family of similar-
ity distances,” in Proceedings of Neural Information Processing Systems, 2007, pp.
201-208.

HIERARCHICAL BITMAP INDEXING FOR MULTIMEDIA RETRIEVAL

407

Jongho Nang (浪鍾鎬) received his Ph.D. and M.S. degrees
in Computer Science from Korea Advanced Institute of Science
and Technology (KAIST), Daejon, Korea, in 1992 and 1988, re-
spectively, and his B.S. degree in Computer Science from Sogang
University, Seoul, Korea, in 1986. He has been a Professor of
Department of Computer Science and Engineering, Sogang Uni-
versity, Seoul, Korea, since 1993. His research interests include
multimedia system, parallel processing, and internet technology.

Joohyoun Park (朴柱炫) received his B.S. and M.S. deg-
rees in Computer Science and engineering from Sogang Uni-
versity, Seoul, Korea, in 1999 and 2002 respectively. He has
joined the Software Lab of Visual Display Division at Samsung
Electronics as a Senior Engineer after completing Ph.D. in Sogang
University, Seoul, Korea, in 2007. His research interests include
multimedia contents management and retrieval.

Jihoon Yang (楊枝勳) is an Associate Professor of De-
partment of Computer Science and Engineering at Sogang Uni-
versity. His research interests include machine learning, data
mining and knowledge discovery, artificial intelligence, pattern
recognition, and bioinformatics. Dr. Yang holds a B.S. in Com-
puter Science from Sogang University, and M.S. and Ph.D. de-
grees in Computer Science from Iowa State University.

Saejoon Kim (金世埈) received the B.S. degree from Co-
lumbia University, New York, in 1994, and the M.S. and Ph.D.
degrees from Cornell University, Ithaca, in 1996 and 1998, re-
spectively. He is presently an Assistant Professor in the Depart-
ment of Computer Science and Engineering at Sogang University,
Seoul, Korea. In 2003, he authored the book “Fundamentals of
Codes, Graphs, and Iterative Decoding,” Springer, Boston, M.A.
(w/S.B. Wicker). His research interests include coding theory and
machine learning.

