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Nowadays, more and more images are available. However, to find a required image for an ordinary user

is a challenging task. Large amount of researches on image retrieval have been carried out in the past

two decades. Traditionally, research in this area focuses on content based image retrieval. However,

recent research shows that there is a semantic gap between content based image retrieval and image

semantics understandable by humans. As a result, research in this area has shifted to bridge the

semantic gap between low level image features and high level semantics. The typical method of

bridging the semantic gap is through the automatic image annotation (AIA) which extracts semantic

features using machine learning techniques. In this paper, we focus on this latest development in image

retrieval and provide a comprehensive survey on automatic image annotation. We analyse key aspects

of the various AIA methods, including both feature extraction and semantic learning methods. Major

methods are discussed and illustrated in details. We report our findings and provide future research

directions in the AIA area in the conclusions

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the explosive growth of digital technologies, ever
increasing visual data are created and stored. Nowadays, visual
data are as common as textual data. There is an urgent need of
effective and efficient tool to find visual information on demand.
A large amount of research has been carried out on image
retrieval (IR) in the last two decades. In general, IR research
efforts can be divided into three types of approaches. The first
approach is the traditional text based annotation. In this
approach, images are annotated manually by humans and images
are then retrieved in the same way as text documents
[9,10,15,16]. However, it is impractical to annotate a huge amount
of images manually. Furthermore, human annotations are usually
too subjective and ambiguous. The second type of approach
focuses on content based image retrieval (CBIR), where images
are automatically indexed and retrieved with low level content
features like colour, shape and texture [11–13,41–47]. However,
recent research has shown that there is a significant gap between
the low level content features and semantic concepts used by
humans to interpret images. In addition, it is impractical for
general users to use a CBIR system because users are required to
provide query images. The third approach of image retrieval is the
automatic image annotation (AIA) so that images can be retrieved
ll rights reserved.
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in the same way as text documents [17–40,115,116]. The main
idea of AIA techniques is to automatically learn semantic concept
models from large number of image samples, and use the concept
models to label new images. Once images are annotated with
semantic labels, images can be retrieved by keywords, which is
similar to text document retrieval. The key characteristic of AIA is
that it offers keyword searching based on image content and it
employs the advantages of both the text based annotation and
CBIR. There are several surveys on broad CBIR research in
literature [2–7,127], and a survey on broad semantic IR techni-
ques is given by Liu et al. [1]. However, none of them gives
sufficient attention to AIA which is a new development in IR. In
this paper, we focus our review on this emerging trend in IR, so as
to complement existing surveys in literature. Specifically, we
focus on the two major aspects of AIA, feature extraction and
semantic learning/annotation.

The rest of the paper is organised as follows. In Section 2, image
segmentation and low level feature extraction are described. In
Section 3, various AIA techniques using machine learning are
discussed in details. Section 4 summarises and concludes the survey.
2. Feature extraction and image representation

In image classification and retrieval, images are represented
using low level features. Because an image is an unstructured
array of pixels, the first step in semantic understanding is to
extract efficient and effective visual features from these pixels.
Appropriate feature representation significantly improves the
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performance of the semantic learning techniques. While both
global and region based image representations are used in the
existing image retrieval techniques, the trend is towards using
region based features. Region based feature extraction needs prior
image segmentation while global features are directly calculated
from the whole image. In the following, we first briefly review
common image segmentation algorithms used in AIA techniques.
Then, various feature extraction techniques will be reviewed in
detail.

2.1. Image segmentation

Image segmentation is usually the first step to extract region
based image representation. The segmentation algorithm divides
images into different components based on feature homogeneity.
A number of segmentation approaches exist in the literature, such as
grid based, clustering based, contour based, model based, graph
based, and region growing based method. This section provides a
brief review of segmentation methods commonly used in AIA. For a
comprehensive segmentation review, readers are referred to [128].

Because automatic image segmentation is a difficult task,
many techniques simplify this task using grid based approach to
roughly segment images into blocks [18,20,23,25–27,29,59,67].
Visual features are then extracted from these blocks. Block based
approach takes little computations; however, this simple techni-
que does not describe the semantic components in images well.
A single block often consists of parts of visually different objects.
Furthermore, it is difficult to determine the size of blocks for
image representation. Therefore, region features are usually not
accurate. If appropriately applied, it can be used in domain
specific applications, e.g., medical image classification [14].

Clustering algorithms, like k-means, are used to cluster pixels
into different groups [8,19,62,63], with each group identifying a
region. In most cases, an image is first partitioned into blocks of
size 4�4 pixels. Colour and/or texture features are extracted for
each block. Then, k-means is applied to cluster the block feature
vectors. A region is formed with the pixels belonging to blocks of
the same cluster. The major issue with this approach is that it
needs to predefine the number of segments based on heuristics.
An inappropriate choice of k may yield poor results. The other
issue is that the algorithm assumes data are in spherical clusters
so that the mean values are near the cluster centres. This
assumption, however, is usually not true.

The main idea of contour based segmentation is to evolve a
curve around an object. The evolution stops when the curve
coincides with the boundary of an object. Unlike the cluster based
segmentation algorithm, contour based segmentation algorithms
do not need the prior assumption of the number of clusters
[68–70]. The underlying problem in this approach is the depen-
dency on accurate edge detection which is subject to noise.
Therefore, it often needs human to define rough boundary outline
which makes the approach to be applicable only to specific
domain, e.g., image processing tools.

Segmentation algorithms based on statistical models have also
been proposed [71–73]. Among them, Blobworld [71] is widely
used [60,74,75]. In Blobworld, each pixel is represented by an
8 dimensional feature vector of colour, texture and position. An
image pixel is then modelled as a random variable with Gaussian
mixture distributions. The number of regions and Gaussian
parameters are calculated using expectation maximisation (EM)
algorithm. Once the model parameters are found, the pixel–
region relationship is calculated using the posterior probabilities.
The pixel–region relationship is used to determine the image
segmentation. One of the major issues with this approach is that
the computation is very expensive because the EM is an optimi-
sation algorithm.
Shi and Malik [76] propose a graph based segmentation
algorithm known as normalised cut (NCut). The NCut method
represents an image as a graph where vertices are image pixels
and the edge weights represent the feature similarities between
pixels. Image segmentation then becomes a graph partitioning
problem. The idea is to partition the vertices of the graph into
disjoint sets so that the total similarity between different sets is
minimised. Each set is regarded as region. As the number of pixels
in an image is large, there are exponential numbers of possible
partitions of the graph. As a result, it is computationally expensive
to find the optimal partition. Tao et al. [77] improves the NCut by
pre-segmenting images using mean shift algorithm [72]. Instead
of using pixels, the regions of the initial segmentation are used as
vertices in the NCut algorithm. Hence, the computational cost is
reduced, and the performance is more robust. The basic NCut is
based on colour features only. Malik et al. [78] extend it to
incorporate texture features.

The widely used JSEG [79] algorithm is a region growing
approach. It groups pixels or smaller regions into larger regions.
At first, pixel colours of the image are quantised into a number of
classes and pixels in the image are replaced with the colour class
labels. A class map is formed and region growing is followed on the
class map. Pixels with more homogeneous neighbours are assumed
to be interior pixels of possible regions. These pixels are selected as
candidate seed points and regions are grown around these seed
areas. As this method looks for both colour and texture homogene-
ity, the segmented regions have highly homogeneous characteris-
tics. It has been widely used in image retrieval [37,47,74,80].

Image segmentation is a complex issue and a large research
topic. Segmentation performance usually depends on applica-
tions. For image retrieval purpose, the region boundary does
not have to be accurate as long as the region is homogenous.
However, regions from segmentation are usually contaminated
with segments from neighbouring regions. This problem can be
overcome by a clean-up post-processing [47].

2.2. Colour features

Colour is one of the most important features of images. Colour
features are defined subject to a particular colour space or model.
A number of colour spaces have been used in literature such as,
RGB, LUV, HSV, HMMD [6,81–84].

Once the colour space is specified, colour feature is extracted
from images or regions. A number of important colour features
have been proposed in the literatures, including colour histogram
[11,85], colour moments (CM) [86], colour coherence vector (CCV)
[87], colour correlogram [41], etc. MPEG-7 [82] also standardizes
a number of colour features including dominant colour descriptor

(DCD), colour layout descriptor (CLD), colour structure descriptor

(CSD), and scalable colour descriptor (SCD).
Colour moments are one of the simplest features. They are used in

many retrieval systems [20,24,25,56,57,86]. The common moments
are mean, standard deviation and skewness. Usually they are
calculated for each colour channels (components) separately. There-
fore, nine features form the feature vector. These features are useful
when they are calculated for region or object. However, the moments
are not enough to represent all the colour information of an image.

The colour histogram describes the colour distribution of an
image [55–57,86]. It quantises a colour space into different bins and
counts the frequency of pixels belonging to each colour bin. This
feature is robust to translation and rotation changes. However, a
colour histogram does not tell pixels’ spatial information. Therefore,
visually different images can have similar colour histograms. In
addition, the dimension of a histogram is usually very high.

The colour coherence vector (CCV) incorporates spatial information
into the basic colour histogram. It divides each histogram bin into two



Table 1
Contrast of different colour descriptors.

Colour
method

Pros Cons

Histogram Simple to compute,

intuitive

High dimension, no spatial info,

sensitive to noise

CM Compact, robust Not enough to describe all colours, no

spatial info

CCV Spatial info High dimension, high computation

cost

Correlogram Spatial info Very high computation cost, sensitive

to noise, rotation and scale

DCD Compact, robust,

perceptual meaning

Need post-processing for spatial info

CSD Spatial info Sensitive to noise, rotation and scale

SCD Compact on need,

scalability

No spatial info, less accurate if

compact
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components: coherent and non-coherent parts. The coherent compo-
nent includes those pixels which are spatially connected. The non-
coherent component includes those pixels that are isolated. As CCV
captures spatial information, it usually performs better than a colour
histogram. However, the dimension of a CCV is twice of a conven-
tional histogram.

A colour correlogram is the colour version of grey level

co-occurrence matrix (GLCM). It characterises the distribution of
colour pairs in an image [29,30,41]. A colour correlogram can be
treated as a 3D histogram where the first two dimensions
represent the colours of any pixel pair and the third dimension
is their spatial distance [41]. Thus, in a correlogram, each bin
(i, j, k) represents the number of colour pair (i, j) at a distance k.
The colour correlogram is calculated for horizontal distance k¼1.
Correlograms for other distances can be similarly calculated.
The performance of the colour correlogram is better than both
histogram and CCV because it captures both intensity levels and
spatial patterns in an image. However, it is much more complex
due to high dimensionality and multiple matrix processing.

Among MPEG-7 colour descriptors, the scalable colour descrip-

tor (SCD) is a histogram based descriptor. SCD is basically a
histogram in HSV colour space [59]. It differs from the conven-
tional histogram by scalability. The scalability is achieved in two
ways: (1) reducing the number of colour bins with Haar transform
and (2) removing some least significant bits from the quantised
(integer) representations of bin values. However, experimental
results show that such down scaling significantly affects the
retrieval performance [82]. Furthermore, the descriptor does not
include any spatial information. Therefore, it has similar problem
to the conventional histogram.

The Colour structure descriptor (CSD) is also a histogram based
descriptor [88]. The CSD histogram is created by moving a
structuring element (e.g., square) throughout the image. Bin i of
the histogram indicates how many times the structuring element
contains at least one pixel with colour i. If the window is of size
1 pixel, the CSD is an ordinary histogram. The performance of CSD
depends on the size and structure of the window, which are
difficult to determine. Furthermore, it is computationally more
expensive than SCD.

The Dominant colour descriptor (DCD) is also a variation of
histogram [24,37]. DCD selects a small number of colours from
the highest bins of a histogram. The number of colours (bins)
selected as DCD depends on the threshold of bin height. MPEG-7
recommends that 1–8 colours are sufficient to represent a region.
Unlike the traditional histogram, the selected colours in DCD are
adapted to the region instead of being fixed in the colour space.
Thus, the colour representation with DCD is more accurate and
compact than the conventional histogram. However, the similar-
ity or distance calculation of two DCDs needs many-to-many
matching.

Among the various colour features, colour moments are not
sufficient to represent the regions. On the other hand, histogram
based descriptors are either too high dimensional or too expen-
sive to compute. DCD is a good balance between the two extreme.
It has been shown that DCD is sufficient to represent the colour
information of a region [47]. In addition, the feature dimension of
DCD is low and the computation is relatively inexpensive. Colour
features such as CCV, colour correlogram and CSD are useful for
whole image representation, butthey all involve complex compu-
tation. Table 1 provides a summary of different colour methods.

2.3. Texture features

Texture is another important image feature. While colour is
usually a pixel property, texture can only be measured from a
group of pixels. Due to its strong discriminative capability, texture
feature is widely used in image retrieval and semantic learning
techniques. Texture has been well studied in image processing
and computer vision area [89]. A number of techniques have been
proposed to extract texture features. Based on the domain from
which the texture feature is extracted, they can be broadly
classified into spatial texture feature extraction methods and
spectral texture feature extraction methods. In the following,
we describe these techniques.

2.3.1. Spatial texture feature extraction methods

In spatial approach, texture features are extracted by comput-
ing the pixel statistics or finding the local pixel structures in
original image domain. The spatial texture feature extraction
techniques can be further classified as structural, statistical and
model based.

Structural techniques describe textures using a set of texture

primitives (texon or texture elements) and their placement rules
[83,90,91]. Textons are organised into a string descriptor, and
syntactical pattern recognition techniques are used to find simi-
larity of two descriptors.

Statistical texture feature characterises texture as a measure of
low level statistics of grey level images. The common spatial
domain statistical features are moments [6,83], Tamura texture
features [46,89,92,111] and features derived from grey level co-

occurrence matrix (GLCM) [6,58]. Statistical features are compact
and robust because they are derived from large support. However,
they are not sufficient to describe the large variety of textures.

In model based techniques, texture is interpreted using stochas-
tic (random) or generative models. Model parameters characterize
the underlying texture property of the image. Popular texture
models are Markov random field (MRF) [6,20,91,93,94,96,97], simul-

taneous auto-regressive (SAR) model [8], fractal dimension (FD)
[91,95], etc. As these models involve optimisation, they are usually
computationally expensive.

Spatial texture methods are easy to understand and many of
them even have semantics. They do not require regular region
shape and can be applied to irregular regions straightforwardly.
However, these features are usually sensitive to noise and distor-
tions. Furthermore, many of these methods involve complex
search and optimisation processes which have no general solu-
tions. Table 2 summarises different spatial texture methods.

2.3.2. Spectral texture feature extraction techniques

In spectral texture feature extraction techniques, an image is
transformed into frequency domain and then feature is calculated
from the transformed image. The common spectral techniques
include Fourier transform (FT) [98,102], discrete cosine transform



Table 2
Contrast of different spatial texture methods.

Texture method Pros Cons

Texton Intuitive Sensitive to noise, rotation

and scale, difficult to define

textons

GLCM based
method

Intuitive, compact, robust High computation cost, not

enough to describe all

textures

Tamura Perceptually meaningful Too few features

SAR Compact, robust, rotation

invariant

High computation cost,

difficult to define pattern

size

FD Compact, perceptually

meaningful

High computation cost,

sensitive to scale

Table 3
Contrast of different spectral texture methods.

Texture method Pros Cons

FT/DCT Fast computation Sensitive to scale and

rotation

Wavelet Fast computation,

multi-resolution

Sensitive to rotation,

limited

orientations

Gabor Multi-scale,

multi-orientation, robust

Need rotation

normalisation, losing of

spectral information due

to incomplete cover of

spectrum plane [103]

Curvelet Multi-resolution,

multi-orientation, robust

Need rotation

normalisation
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(DCT) [99], wavelet [8,24,58], and Gabor filters [82,100,101,113].
FT and DCT are very fast to compute but are not scale and rotation
invariant. Wavelet is both efficient and robust, but it only
captures horizontal and vertical features. Among them, Gabor
features are most robust because it captures image features in
multi-orientations and multi-scales. Recently, researches on
multi-resolution analysis have shown [103] that curvelet features
have significant advantages over Gabor features and wavelet
features, because curvelet features are more effective in capturing
curvilinear properties, like lines and edges [48].

The problem with those spectral methods is that they can only
be applied to square regions due to the use of FFT. Most of the
existing region based techniques define a region as a set of small
blocks of size 4�4 pixels and apply spectral transform on those
blocks [8], because small blocks are likely homogenous. Features
of a region are then calculated as the average features of those
blocks. This method has a drawback that the blocks are too small
to capture sufficient edge information. To solve this problem,
recently Islam et al. [114] propose a texture padding method to
transform an irregular texture region to a square texture region.
This method also acquires sizable regions to extract meaningful
texture features. Table 3 summarises different spectral texture
methods.
2.3.3. Summary

Both spatial and spectral features have advantage and disadvan-
tages. Spatial features can be extracted from any shape without
losing information and usually have semantic meaning understand-
able by humans. However, it is difficult to acquire sufficient number
of spatial features for image or region representation, and spatial
features are usually sensitive to noise. Spectral texture features on
the other hand are robust, and they also take less computation
because convolution in spatial domain is done as product in
frequency domain which is implemented using FFT [100]. However,
they do not have the semantic meaning as spatial features usually
have. For images or regions with sufficient size, spectral texture
features are a desirable choice. However, for small images or regions,
especially when the regions are irregular, spatial features should be
considered.

2.4. Shape features

Shape is known to be an important cue for human to identify
and recognise real world objects. Shape features have been
employed for image retrieval in many applications. Zhang and
Lu [104] broadly classify shape extraction techniques into two
major groups: contour based and region based methods. Contour
based methods calculate shape features only from the boundary
of the shape, while region based methods extract features from
the entire region. Because contour based techniques use only a
portion of the region, they are more sensitive to noise than region
based techniques, as small changes in the shape significantly
affect the shape contour. Therefore, colour image retrieval usually
employs region based shape features.

A number of simple region shape descriptors are commonly
used in colour image retrieval, including, area, moments, circular-

ity, and eccentricity. The area-based descriptor is used in a number
of works [19,21,56,63,65]. Circularity and moments are used in
[21,56,65]. Circularity measures the ratio of area to boundary. In
[63], eccentricity or elongation is also used in addition to area.
Eccentricity is the ratio of the length of the major axis to that of
minor axis. Individual simple shape descriptors are not robust.
Therefore, they are normally combined to create a more effective
shape descriptor.

More complex shape features are usually used in domain
specific applications such as trademark retrieval [105,106], and
object classification [63,88,107],where shape is the most impor-
tant feature. For example, Park et al. [88] use MPEG-7’s contour
shape descriptor and Liu et al. [107] use Fourier descriptor of
shape contour for bird classification.

2.5. Spatial relationship

Spatial relationship tells object location within an image or the
relationships between objects. Absolute spatial location of regions
are used in [24,56]. Relative locations of regions, such as ‘left,
right, top, bottom, and centre’ with respect to image itself, are
used in [63] for ontology based concept learning.

In [108], the spatial relationship between regions is modelled
using a 2D string. In a 2D string method, images are projected along
the x- and y-axis. For each projection, the relationship between
objects is represented by an array of symbols. The symbols are
drawn from two sets: the set of object symbols and the set of
relationship symbols, such as ‘left/right’, ‘below/above’. A number of
variations of this method have been proposed [109,110]. These
approaches differ in the number of relational operators (symbols)
and how they define those relations. Fig. 1 shows an example of a
2D string representation. The image in Fig. 1(a) is decomposed into
regions (blocks). For simplicity, the block identifiers are used as
object symbols. Two relationship symbols ‘o ’ and ‘¼ ’ are used in
this case. In horizontal and vertical directions, the symbol ‘o ’
denotes ‘left–right’ and ‘below–above’ relationships, respectively.
The symbol ‘¼ ’ means the spatial relationship ‘at the same spatial
location as’. A 2D string takes the form (u, v), where u and v are the
relationships of objects in horizontal and vertical directions, respec-
tively. Fig. 1(d) shows the 2D string for the image of Fig. 1(a).



d   d
b c

(a = d < a = b < c , a = a < b = c < d)

Object
Symbols a, b, c, d 

Relationship
symbols Meaning

< left-right or below-
above

= at the same spatial
location as aa

Fig. 1. Illustration of a 2D string: (a) an image decomposed into blocks, (b) object symbols as block names, (c) definitions of relationship symbols, and (d) a 2D string

for (a).
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The 2D string and its variants can be used as global features for
region based representation, provided the objects are well defined
by the segmented regions. As segmentation algorithms often divide
a single object into different fragments, the 2D string usually does
not give accurate representation. In practice, the relative location of
regions is usually used [63,112]. In [112], Islam et al. define a
distance relationship model for object location. It is assumed that
different types of objects are located at different positions in an
image. For instance, cloud and bird are usually at the top of an
image, people and animal are usually at the centre, water and grass
are usually at the bottom etc. Therefore, objects can be differentiated
based on their distance to their usual positions. A weight is defined
based on the object’s distance to its usual position. The weight is
combined with other information such as colour, texture and shape
to determine the object type.
3. Automatic image annotation techniques

Once images are represented with low level features using
either global methods or region methods, higher level semantic
can be learned from image samples. Early approach used rele-
vance feedback to learn image semantic from humans [125,126].
However, this approach has similar drawbacks to the traditional
manual annotation approach. Therefore, the new trend is towards
automatic image annotations. Assuming semantically labelled
image samples are collected and represented with low level
features, a machine learning algorithm can then be trained
using the feature to semantic label matching. Once trained, the
algorithm can be used to annotate new image samples. There
are generally three types of AIA approaches. The first approach is
the single labelling annotation using conventional classifica-
tion methods. The second approach is the multi-labelling annota-
tion which annotates an image with multiple concepts using
the Bayesian methods. The third approach is the web based
image annotation which uses metadata to annotate images.
In the following, we discuss the three types of approaches in
detail.

3.1. Single labelling annotation using binary classification

In this approach, low level features are extracted from image
content, and the features are fed directly into a conventional
binary classifier which gives a yes or no vote. The output of the
classifier is the semantic concept(s) which is used for image
annotation. The idea of single labelling is equivalent to collective
labelling, that is, instead of labelling images individually, images
are first clustered and then labelled collectively. The common
machine learning tools include support vector machines (SVM),
artificial neural network (ANN), and decision tree (DT). In the
following, we review each of these techniques.
3.1.1. Image annotation using support vector machines

Support vector machine (SVM) is a supervised classifier. It has
been shown with high effectiveness in high dimensional data
classifications, especially when the training dataset is small [118].
SVM can classify both linear and non-linear data due to the use of
kernel mapping. The advantage of SVM over other classifiers is
that it achieves optimal class boundaries by finding the maximum
distance between classes. It has been successfully applied to a
number of classification problems, such as text classification,
object recognition and image annotation [23,55,57,59,75].

An SVM classifier works by finding a hyperplane from a
training set of samples to separate them. Each training sample
is represented with a feature vector and a class label. The hyper-
plane is learned in such a way that it can separate the largest
portion of samples of the same class from all other samples. An
SVM is basically a binary classifier. However, automatic image
classification and annotation needs multiclass classifier. The most
common approach is to train a separate SVM for each concept
with each SVM generating a probability value. During the testing
phase, the decisions from all classifiers are fused to get the final
class label of a test image. Fig. 2 shows this process. The complete
classifier is a two levels process. The base level consists of
multiple binary classifiers and the second level fuses the decisions
from the base level classifiers.

Chapelle et al. [55] use the above mentioned basic framework
to train 14 SVM classifiers for 14 image level concepts. Images
are represented with 4096 dimensional HSV histograms. To train
an SVM for a particular concept, training images belonging to that
concept are regarded as positive samples while the others are
regarded as negative samples. Therefore, each trained classifier
can be regarded as a ‘one vs. all’ classifier. During testing, each
classifier generates a probabilistic decision. The class with max-
imum probability is selected as the concept of the test image.
Despite simple histogram based image representation, this basic
framework outperforms the k-nearest neighbour (k-NN) based
annotation. Similar approaches are used in [23,75] to learn
semantic concepts for image regions. In Shi et al. [75], images
are segmented using k-means algorithms and 23 SVM classifiers
are trained to learn 23 region level concepts. Cusano et al. [23] use
SVM to do image segmentation and classification simultaneously.
In this approach, an image is partitioned into overlapping tiles
which are sampled at fixed interval. Each pixel is covered by a
number of tiles. The tiles are classified independently into one of
the seven predefined concepts. The concept of the pixel is
determined by the majority voting from the classes of its parent
tiles. Pixels belonging to the same concept constitute a segment.
Thus this approach simultaneously segments images into regions
and annotates the segmented regions.

The basic approach works well for small number of concepts.
The quality of classification degrades with the increase of the
number of concepts due to the increase of the noise and class



Fig. 3. Image annotation with multiple sets of SVMs.

Classifier for
class,  c1

Classifier for
class, c2

Classifier for
class, cn

Image, X

Classification by
individual classifiers

Fusion decisions from
multiple Classifiers 

fc1
(x)

fc2
(x)

fcn
(x)

ci
arg max { fci

 (x)} class, c
for Image, X

Fig. 2. Multiclass classifier using multiple binary SVM classifiers.
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imbalance in the training data. To be more robust, several
approaches use multiple sets of SVM classifiers as shown in
Fig. 3. Each set of SVMs is similar to a multiclass classifier shown
in Fig. 2. Each set of classifiers independently classifies an input
image. The final decision is fused from the decisions of all sets. In
the literature, there are a number of works that use this multi-
level framework [57,59]. They differ by how the individual
classifiers are trained at Level 1 and how the decisions are fused
at subsequent levels.

Goh et al. [57] use the above 3-level approach (Fig. 3) to
classify images into one of 116 concepts. During training, each set
of classifiers is trained using different subset of training samples.
At the time of annotation, they normalise the probabilistic
outputs of Level 1 classifiers before using them in Level 2 fusion
process. During the fusion process at Level 2, they also find a
confidence factor, in addition to the highest probabilistic decision.
The confidence factor is the function of both the highest prob-
abilistic value and the difference between the highest two
probabilistic decisions. At Level 3, the confidence factors of same
concept are added together. The concept with the maximum
cumulative confidence is the final decision. They show that the
noisy output from a set of classifiers is compensated using the
decisions of other sets of classifiers.

Qi and Han [59] use a similar framework to Goh et al. [57] but
fuse the decisions in a different way as shown in Fig. 4. In this
work, they use both global and local features in two different sets
of SVMs. The same set of training sample is used to train both set
of classifiers. The SVM set with global feature representation
works in the same way as shown in Fig. 2. For the other set of
SVM, each image is represented with the features of the region of
interest. Instead of fusing the decisions set by set like Goh et al.
[57], Qi and Han [59] fuse them classifier by classifier. Therefore,
this approach can compensate the limitations of one type of
feature by the other.

SVM has shown considerable performance in learning image
annotations. The advantage is that SVM can learn from a small set



Fig. 4. Three levels multiclass classifiers used in [59].
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of samples because it needs only the samples (known as ‘support
vectors’) close to the separating hyperplane. However, SVM has
class-imbalance problem, which means, it has poor performance
on imbalanced data. Unfortunately, class imbalance is a common
phenomenon in image data. For example, for a particular seman-
tic, the number of negative samples is often much larger than the
number of positive samples. Furthermore, the positive samples
are relevant to each other but each negative sample often belongs
to separate semantic groups. These problems degrade the quality
of the classifiers.
3.1.2. Image annotation using artificial neural network

An Artificial neural network (ANN) is a learning network that
can learn from examples and can make decision for a new sample.
Different from common classifiers which usually learn one class
at a time, ANN can learn multiple classes at a time. An ANN
consists of multiple layers of interconnected nodes, which are
also known as neurons or perceptrons. Therefore, an ANN is also
called multilayer perceptron (MLP). The first layer is the input
layer which has neurons equal to the dimension of input sample.
The number of neurons in the output layer is equal to the number
of classes. This means, an ANN can learn multiple classes at a
time, although single class ANN is also available [19]. The choice
of the number of hidden layers and the number of neurons at each
hidden layer are open issues in ANN approaches [119]. These
numbers are usually selected empirically. The connecting edges
between neurons of different layers are associated with weights.
Each neuron works as a processing element and is governed by an
activation function which generates output based on the weights
of the connecting edges and the outputs of the neurons at the
previous layers. During the training, ANN learns the edge weights
so that overall learning error is minimised. While classifying a
new sample, each output neuron generates a confidence measure
and the class corresponding to the maximum measure indicates
the decision about the sample.

An ANN can be used both for explicit classification of images,
regions or pixels [58,61,119], or implicit assignment of fuzzy
decisions on images [62]. Frate et al. [119] use a 4-layer ANN to
classify pixels of satellite images into one of the four categories:
vegetation, asphalt, building, and bare soil. Based on the optimal
experimental performance, they use a network of two hidden
layers each consisting of 20 neurons. Kim et al. [61] classifies
images into object and non-object images using a 3-layer ANN.
Instead of segmenting an image, the centre 25% of the image is
used to represent the image content. It assumes that the centre
part significantly characterises the entire image. Because of this
simplified assumption, the system cannot classify an image prop-
erly if the object appears in the other part of the image. A similar
assumption is made in Park et al. [58] about the object importance.
Park et al. [58] use segmentation algorithm to segment an image
into regions and use the largest region at the centre of the image to
identify the image. The regions with similar colour distribution of
the central region are regarded as foreground (object) regions. The
foreground regions are used to extract statistical texture features
which are fed to a 3-layer ANN to classify the image into one of 30
concepts. The network consists of 49 neurons in the hidden layer.
The drawback of the two approaches is that they may miss
important objects from other parts of the image. For example, in
a sunset/sunrise image, the sun often appears in the upper corner
of the image. Furthermore, object regions may not necessarily be
the largest region. In that case, the system will produce incorrect
annotation.

Kuroda and Hagiwara [62] use four different 3-layer ANNs to
hierarchically classify image regions. The numbers of neurons
used in the hidden layers of the four networks are 30, 10, 20, and
20, respectively. Fig. 5 shows how the first network classifies an
image region into one of the three broad categories such as sky,
water, and earth. 37 dimensional region features are fed into the
input layer. Each node of the output layer corresponds to one of
the classes, e.g., sky, water, and earth and produces a likelihood
value. The class of the input region is determined by the
maximum likelihood value. Sky and earth regions are further
classified into more specific classes using the other two ANNs.
For example, a sky region is classified into one of five detailed
categories: blue sky, cloud, sunset, night, and light. Similarly,



Fig. 5. Classifying a region using ANN.
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an earth region is classified into one of nine more specific
categories. The fourth ANN does not classify any region. Instead,
it associates an image with a vector of 18 dimensions: each
dimension measures the degree of certain global charac-
teristics of the image, for example, bright/dark, rural/urban,
busy/plain, etc.

The neural network has the advantage that the outputs of
output layer neurons are determined by the previous layers
and the connecting edges. It does not need any other parameter
tuning or any assumption about the feature distribution.
However, there are several essential issues with ANNs. First, the
classification accuracy depends on the number of hidden
layers and neurons. Second, in most ANN research works, the
numbers of hidden layers and neurons are not justified. Third, the
choice of appropriate activation functions for the neurons is also
an issue. Fourth, the training (finding the optimal edge weights)
takes long time and it can fall into local optima. Fifth, an ANN
works like a black box which means that the exact relation
between the input and output is not transparent and is difficult
to explain [19].
3.1.3. Image annotation using decision tree

A decision tree (DT) is a multi-stage decision making or
classification tool [120,121]. Depending on the number of deci-
sions made at each internal node of the tree, a DT can be called
binary or n-ary tree. Different from other classification models
whose input–output relationships are difficult to describe, the
input–output relationship in a DT can be expressed using human
understandable rules, e.g., if–then rules.

A DT is trained using a set of labelled training samples.
Samples are represented with a number of attributes. During
training, a DT is built by recursively dividing the training samples
into non-overlapping sets, and every time the samples are
divided, the attribute used for the division is discarded. The
procedure continues until all samples of a group belonging to
the same class or the tree reaches its maximum depth when no
attribute remains to separate them. Fig. 6 shows the process. The
tree has two types of nodes: internal and leaf node. Each internal
node is associated with a decision governed by a certain attribute
which divides the training samples most effectively. Each leaf
node represents the outcome (class) of the majority samples that
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follow the path from the root of the tree to the corresponding leaf.
The leaf nodes can be expressed with unique if–then–else rules.
For example, the decision tee of Fig. 6 can also be expressed using
the if–then rules of (1):

if colour¼ Red and texture¼ Three edges

then outcome¼ Red Triangle
2 Leaf1

if colour ¼ red and texture¼ four edges

then outcome¼ red square
2 leaf2

if colour¼ blue and shape¼ square

then outcome¼ blue square
2 leaf3

if colour¼ Blue and shape¼ circular

then outcome¼ blue circle
2 leaf4

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð1Þ

To label a new sample, the tree is traversed from the root node
to a leaf node using the attribute value of the new sample. The
decision of the sample is the outcome of the leaf node where the
sample reaches. Several DT algorithms are used in the literature,
including ID3 [120], C4.5 [121], and CART [122]. These DTs differ
by the type of attributes, the attribute selection criteria, the
outcome, etc.

ID3 is the simplest DT algorithm that works only with
discretized attributes. On the other hand, C4.5 and CART can
work with both discretized and continuous attributes. In ID3 and
C4.5, the number of children of an internal node is equal to the
number of attribute values of the selected attribute at that node.
On the contrary, CART always splits an internal node into two
children. Therefore, CART usually generates a bigger tree and
takes more time than ID3 or C4.5. While ID3 and C4.5 are only
used for classification, CART is used for both classification and
numerical prediction. The contrast of the 3 major DT algorithms is
given in Table 4.

Sethi and Coman [123] use CART to classify outdoor images
into four classes. For image representation, they partition each
component of HSL colour space into 8 intervals. Each of the 24
(¼3�8) intervals is used as an attribute. Thus, each image is
represented with 24 attributes. However, it is found that 9 attri-
butes have been used by the algorithm. This happens because the
number of concepts is small and database images have very little
variation. Wong and Leung [124] use the DT algorithm to
annotate scenery images into 10 classes. Instead of traditional
visual features, they use image acquisition parameters, such as
aperture, exposure time, focal length, etc. as attributes. As these
attributes are continuous valued, they use C4.5 to learn decision
rules for mapping these attributes to image semantics.

Apart from single tree based classification, Marée et al. [14,27]
use ensemble of multiple DTs for image annotation and classifica-
tion. Each DT is similar to the classical DT shown in Fig. 6. But,
each of them is trained differently. During the splitting of an
internal node, an attribute is randomly chosen instead of selecting
the best one. The tree built in this way is called a random tree.
A set of random trees is generated in this way. During classification,
Table 4
Contrast of three major DT algorithms.

Algorithm Attribute
type

Split criterion Tree
structure

Pros

ID3 Discrete Information

gain

Multi-tree More interpre

C4.5 Discrete and

continuous

Gain ratio Multi-tree Attribute bala

missing

attribute valu

CART Discrete and

continuous

Gini coefficient Binary tree More balance
a testing sample is passed through all random trees and a
majority vote is used to determine the class label of the image.

Recently, Liu et al. [37] use weighted average of colour and
texture features for DT induction. Unlike the above mentioned
approaches which can only classify images globally, they use DT
to annotate regions of segmented images. One of the major
features of this work is the design of both pre-pruning and
post-pruning techniques to train a well behaved DT. However,
the number of concepts learned in this work is small. Zhang et al.
[112] improve Liu et al.’s method using vector quantisation for
feature discretization. Furthermore, they learn much larger num-
ber of semantic concepts and index images using an inverted file
to facilitate text based image retrieval.

Compared to other learning methods, DT is simple to interpret
and understand and can learn with small number of samples. It is
also robust for incomplete and noisy data [120]. DT usually
requires discretized feature values as inputs [37,120]. Though
C4.5 and CART can work with continuous features, they perform
poorer compared to discrete features [37]. Another issue with DT
is that C4.5 [121] and CART [122] are designed for single valued
features. They do not work for high dimensional vectored fea-
tures. Recently, Liu et al. [37] proposed a semantic template based
feature discretization for image data. However, this technique is
only useful when the underlying feature vectors have the same
dimension. Therefore, a more robust feature discretization tech-
nique is necessary which can discretize variable dimension
feature vectors such as DCD [82].

3.1.4. Summary

In single labelling annotation approaches, once images are
classified into different categories, each category is annotated
with a concept label such as plane, mammal, building etc.
Retrieval of image categories is straightforward by just typing
keywords related to the concept labels. The advantage of this type
of approach is that the retrieval is efficient as there is no need to
do image indexing and expensive online matching as in other IR
approaches. The disadvantage of this type of approach is that it
does not consider the fact that many images belong to multiple
categories. As a result, many relevant images can be missed from
the retrieval list if a user does not type the exactly right keyword.
One way to alleviate this problem is to label each category with
multiple keywords reflecting different themes within the cate-
gory. Another issue with the single labelling annotation is that
images within each category are not ranked, leading to reduced
retrieval accuracy.

3.2. Multi-labelling annotation using Bayesian methods

Different from the binary classification approaches in last
section, multiple labelling methods annotate an image with
multiple semantic concepts/categories. The concept of multi-
labelling approach is related to the multi-instance learning, or
Cons

table rules Attribute bias

Over-fitting, samples in memory

nce, no over-fitting, allow

es

Tall tree, need to test multiple attribute

values

d tree, numerical prediction Less interpretable than multi-tree
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more specifically, multi-instance multi-label (MIML) learning
[129,130]. In MIML, an image is represented with a bag of features
or a bag of regions (multiple instances). The image is annotated
with a concept label if any of the regions/instances in the bag is
associated with the label. As a result, an image is annotated with
multiple labels. A typical MIML is achieved using probabilistic
tools such as the Bayesian methods [18,20,56,60,65]. The Baye-
sian methods work by finding the posterior probability that an
image belongs to any particular concept, given the observation of
certain features from the image or region. This makes it possible
to assign an image to multiple concepts and rank images with the
same concept according to the probabilities. Given a set of images
{I1, I2, y, IN} from a set of given semantic classes {c1, c2, y, cn},
Bayesian models try to determine the posterior probability from
the conditional probabilities and the priors. Suppose, an image I is
represented by the feature vector x. Given prior probabilities p(ci)
and conditional probability densities p(x9ci), the probability of an
unknown image I belonging to class ci is determined by (2):

pðci9xÞ ¼
pðx9ciÞpðciÞ

pðxÞ
ð2Þ

From Eq. (2), it can be seen that a Bayesian framework essentially
has four components: one output component p(ci9x) and three input
components: p(ci), p(x9ci), and p(x). Because the distribution p(x) is
usually uniform for all classes, the class of image I can be decided
using the maximising a posterior (MAP) criterion,

ĉ¼ arg max
ci

pðci9xÞ � arg max
ci

fpðx9ciÞpðciÞg ð3Þ

The critical part of Bayesian annotation is to model the
conditional probabilities because prior probabilities p(ci) can be
found by the frequency of samples belonging to concept ci. The
variety of Bayesian models differ by how they model the condi-
tional probabilities p(x9ci). There are generally two types of
approaches to model the conditional probabilities—non-para-
metric approach and parametric approach.

3.2.1. Non-parametric approach

In this approach, the conditional probabilities are calculated
without any prior assumption about the distribution of the image
Fig. 7. The general Bayesi
features. Rather, the actual feature distribution is learned from
the features of the training samples using certain statistics. In
practice, the image features are first quantised into clusters using
a certain clustering algorithm. Next, the continuous features are
replaced by the cluster centroids. This process discretizes the
image feature space. The conditional probabilities for each class
are calculated by finding the frequency of samples belonging to
that class. For example, if the closest centroid of feature vector x
is xj, the p(x9c) in Eq. (2) can be calculated as,

pðx9cÞ � pðxj9cÞ ¼
No: of samples in xj which are from concept, c

Total no: of samples from concept, c

ð4Þ

The complete annotation process of this approach is shown in
Fig. 7. Given a new image, its features are extracted and compared
with cluster centres. The closest cluster centres are selected. The
conditional probability models corresponding to the selected
cluster centres are then used to calculate the posterior probabil-
ities. The MAP criterion of (6) is then used to annotate the
new image.

This model is used in [20,60]. Vailaya et al. [20] use this
model for vacation image classification. Instead of segmentation,
they directly cluster global image features to calculate the con-
ditional probabilities. In [60], training images are segmented into
regions and regions are then clustered. For instance, an image I is
segmented into regions and represented with their closest
centroids, x1,x2,x3,. . .,xn. The conditional probability p(I9c) is
calculated as,

pðI9cÞ ¼ pðx1,x2,x3,. . .xn9cÞ ¼
Yn

k ¼ 1

pðxk9cÞ ð5Þ

In the work by Mori et al. [18], training images are divided into
blocks and blocks are clustered. As shown in Fig. 8, each block
inherits all the annotations of its parent images and each cluster
is a collection of concepts from all the blocks in it. The posterior
probability p(c9xj) is modelled as the co-occurrence of word c

within cluster Xj,

pðc9xjÞ ¼
Total no: of annotation c inherited into cluster Xj

Total no: of all annotation words in Xj
ð6Þ
an annotation model.



Fig. 8. The word co-occurrence model [18].
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The posterior probability of each concept ci is computed for
cluster Xj. As a result, a concept histogram is created for each
cluster centroid xj. During annotation, an unknown image is
partitioned into blocks. For each block in the unknown image,
the centroid with the closest feature to the block is selected. The
histograms of the selected centroids are accumulated. The con-
cepts with top likelihood values (highest bins in the accumulated
histogram) are used as the annotations of the testing image. The
advantage of this model is its simplicity. However, the idea of
labelling regions/blocks using image concepts is flawed. For
example, an image can have a multiple objects, like grass, horse,
sky, water, etc. It is not appropriate for a sky block to inherit grass
or horse, etc. This type of errors can propagate, making the system
incapable of doing correct annotation. The other issue is that
blocks are inaccurate to represent images.

In the above approaches, the clusters are used to compute the
conditional probabilities which are then used for image annota-
tions. Duygulu et al. [21], however, attempt to label the clusters
by a learning process. Regions can then be annotated by relating
to their closest clusters. They first cluster the regions from all
training images. Regions are represented by the index of the
closest centroid (blob). Next, they associate each blob with a word
in the vocabulary by maximising the joint probability of associat-
ing each of the instances in the blob with the word in each of the
images. As this is a one-to-one match between word and blob, it is
called the translation model. Basically, they formulate an optimi-
sation problem to learn the probability of a word c given a blob xj,
e.g., p(c9xj). The maximisation process is done by EM algorithm,
making the computation very expensive. During annotation,
regions of a testing image are represented by the closest centroids
(blobs) and consequently, the annotation of each region is
determined using the translation probabilities.

Different from translation model, Jeon et al. [65] assign words
to entire images instead of specific blobs. They model the poster-
ior probability p(c9I) as the joint probability of words and blobs,
which they call cross media relevance model (CMRM). This is in
contrast to the blob to word translation model. Suppose, a testing
image I is represented by the set of blobs {x1, x2, y, xm}. p(c9I) is
then approximated as p(c, x1, x2, y, xm) which is calculated from
the training set T,

pðc,x1,. . .,xmÞ ¼
X
JAT

pðJÞpðc,x1,. . .,xm9JÞ ¼
X
JAT

pðJÞpðc9JÞ
Ym
i ¼ 1

pðxi9JÞ ð7Þ

where, J is a training image in the set T. The prior probabilities p(J)
are kept uniform for the entire training set. To calculate p(c9J) and
p(xi9J), they build a word model and a blob model for each
individual training image J. A global word model and a global
blob model are built for the entire training set. p(c9J) and p(xi9J)
are then calculated using the interpolation between the indivi-
dual models and the overall models as follows:

pðc9JÞ ¼ ð1�aJÞ
#ðc,JÞ

9J9
þaJ

#ðc,TÞ

9T9

pðxi9JÞ ¼ ð1�bJÞ
#ðxi,JÞ

9J9
þbJ

#ðxi,TÞ

9T9
ð8Þ

where aJ and bJ are the interpolation parameters. #(c, J) is the
number of times concept c appears in J and #(xi, J) denotes the
number of times blob xi appears in J. #(c, T) and #(xi, T) are
similarly defined for the entire training set T. 9J9 is the aggregate
count of all concept words and blobs in J and 9T9 is the size of the
training set. The model has better annotation accuracy than the
translation model [21]. However, the performance is subject to
the selection of appropriate interpolation parameters.

Yavlinsky et al. [92] also use a non-parametric approach to
model the conditional probabilities. Different from the above
mentioned approaches, they learn an estimation of the actual
feature distribution using the traditional kernel smoothing
method. In practice, they use two types of kernels to estimate
the feature distribution. These are Gaussian kernel and EMD
kernel. In the case of Gaussian kernel, they use either 24 or 108
dimensional colour and texture features for image representa-
tions. In the case of EMD kernel, they use region based image
representations where regions are created by applying simple
k-means clustering to image pixels. To calculate the conditional
probability p(x9c) for an unknown image x, the kernel functions
are averaged over all training images in the training set.
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3.2.2. Parametric approach

In this approach, the feature space is assumed to follow a
certain type of known continuous distribution. Therefore, the
conditional probability p(x9c) is modelled using this feature
distribution. The general process is similar to that shown in
Fig. 7. Features or regions are first clustered and quantised; the
conditional probability model is then built for each cluster (or
blob). The conditional probability p(x9c) is usually modelled as a
multivariate Gaussian distribution as shown in Eq. (9):

pðx9cÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d
� pd � 9R9

q e�ðx�xÞT R�1
ðx�xÞ ð9Þ

where, d is the feature dimension, x and R are the mean and
covariance matrix computed from the training feature vectors
belonging to concept c.

Yang et al. [56] use the above equation to model the condi-
tional probabilities in a region based approach. Training images
are segmented into regions and the regions are grouped into sets
based on their annotations. Let, Xc be the set of regions extracted
from images belonging to concept c. It is assumed that region
features in Xc follow the Gaussian distribution. During annotation,
a testing image I is segmented into regions fx1,x2,. . .,xng. The
conditional probability p(I9c) is then calculated as following,
which is similar to Eq. (5),

pðI9cÞ ¼ pðx1,x2,x3,. . .,xn9cÞ ¼
Yn

k ¼ 1

pðxk9cÞ

¼
Yn

k ¼ 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dpd9Rk9

q e�ðxk�xc Þ
T R�1

k ðxk�xc Þ

0
B@

1
CA ð10Þ

where multivariate mean xc and covariance matrix Rc are learned
from the regions of Xc. Once the conditional probabilities are
determined, the same MAP criterion of (3) is used to determine
the annotation of the testing image.
Both Li and Wang [33] and Carneiro et al. [26] learn the
conditional probability models concept by concept and then use
the models to annotate unknown images. Li and Wang [33] first
break down training images in each concept into regions which
are represented using LUV colours and wavelet texture features.
They then cluster regions into clusters which they call prototypes.
For each prototype, a Gaussian model is learned. Finally, a
Gaussian Mixture Model (GMM) is built for each concept by
averaging the Gaussian models of individual prototypes within
the concept. To annotate an unknown image, its region features
are extracted and the posterior probability of the image belonging
to a concept is computed based on the concept GMM model. The
drawback of this method is that parameter estimation for the
Gaussian models is complex.

Different from Li et al.’s approach, Carneiro et al. [26] do not
segment images into regions. Instead, they assume that image
features follow certain Gaussian distributions and directly learn a
GMM for each training image within a concept using expectation

maximisation (EM) algorithm. This is equivalent to a simultaneous
segmentation and model learning process. They then build the
concept GMM by averaging the individual GMMs within the
concept. In the annotation stage, a GMM is learned for the unknown
image and the GMM is then matched with each concept model. The
concepts with the best match are selected as the annotations for the
unknown image. Fig. 9 shows this process. Similar to Li et al.’s
method, the drawback is that the estimation of the GMM models is
complex due to the use of EM optimisation method.

There are several issues with the parametric approaches. First,
these approaches usually assume a particular feature distribution
which may not be true. Second, the model parameters are usually
learned by optimisation methods, in most cases it may not
converge; and the computation of the optimisation process is
very expensive. Third, for those concept by concept annotation
models [26,33], the model for each concept is learned indepen-
dently and the correlations between concepts are not captured.



Table 5
Contrast of different annotation methods.

Annotation
method

Pros Cons

SVM Small sample, optimal

class boundary, non-linear

classification

Single labelling, one

class per time, expensive

trial and run, sensitive to

noisy data, prone to

over-fitting

ANN Multiclass outputs, non-

linear classification, robust

to noisy data, suitable for

complex problem

Single labelling,

sub-optimal, expensive

training, complex and

black box classification

DT Intuitive, semantic rules,

multiclass outputs, fast,

allow missing values,

handle both categorical

and numerical values

Single labelling,

sub-optimal, need

pruning, can be unstable

Non-parametric Multi-labelling, model

free, fast

Large number of

parameters, large

sample, sensitive to

noisy data

Parametric Multi-labelling, small

sample, good

approximation of

unknown distribution

Predefined distribution,

expensive training,

approximated boundary

Metadata Use of both textual and

visual features

Difficult to relate visual

features with textual

features, difficult textual

feature extraction
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3.2.3. Summary

In multi-labelling annotation, once the models are learned, the
annotation process is pretty much similar to the online matching and
ranking in the traditional CBIR. Therefore, every time a user types a
keyword, the entire annotation process is repeated online in order to
test all images against the keyword [26] and it may take unacceptably
long time. Alternatively, images in database are annotated offline and
are then indexed with an inverted file. Images are then retrieved in
the same way as text documents [112]. However, in either case,
expensive online matching is used. This is a key drawback compared
with the single labelling annotation.

3.3. Image annotation incorporating metadata

The WWW is a rich source of both imagery and text informa-
tion. Web images often come with text descriptions, URL, HTML
code, etc. The web information can be used for image annotation
and retrieval. A number of techniques have been developed for
annotating web images, most of them integrating both metadata
and visual features for accurate image annotation [49–54,66].
Therefore, these methods can be called hybrid methods.

Cai et al. [51] proposed a two level annotation and clustering
mechanism: textual clustering for semantic annotation and visual
clustering for re-organisation of images within each semantic
category. Images from web pages are first represented using three
types of features: textual features (derived from surrounding
text), link graph (derived from three complex hyperlink matrices)
and visual features (derived from colour moments on local Four-
ier transform). The textual features and link graph are used to
cluster images into semantic category which is equivalent to
annotation. However, images within each of the semantic cate-
gories may not be perceptually similar. Therefore, they apply a
second level of clustering on each of the semantic categories to
re-organise the images into clusters based on visual features. The
major issue with this method is that the textual features espe-
cially the link graph features are not reliable, as shown in existing
image search engines.

Wang et al. [31] also propose an automatic system that
annotates images using both web description and content fea-
tures. The system needs at least one correct initial keyword and
one example image to initiate the process. The keyword is used to
search the web to find images and their web descriptions. There-
after, 36 dimensional colour correlogram is used to select a
number of top ranked images similar to the example image. The
web descriptions of the selected images are clustered using a
special text clustering algorithm. Each cluster is scored either by
its size or by the average number of words. The words in the top
scored clusters are used for annotations. The advantage in this
approach is that it does not need any training samples. However,
the performance is subject to the quality of the description of the
images, which is not reliable in the WWW.

As annotations from text description can be noisy, these
annotations need refinement. This is especially needed for web
based image annotation, because each image is usually annotated
with multiple words which may not be related to each other. In a
refinement stage, it preserves the annotations which are strongly
correlated and rejects those which are not so strongly related
to each other. Jin et al. [64] use WordNet [117] for annotation
refinement. WordNet is an online lexicon where more than 150 K
words are hierarchically organised. The words in WordNet main-
tain ‘is a kind of’ or ‘is a part of’ relationships which are used to
find similarity between words. After getting the annotations of an
image using any existing method, Jin et al. [64] use WordNet to
calculate the total similarity of each word to other words of the
annotation set. If the similarity is below certain threshold, it is
discarded. The principle is that the words, which are very similar
to each other, must belong to the same higher level semantic.
They should be preserved and others should be removed. Suppose
an image is annotated with four words: Tiger, Tree, Bush and
South Asia. Heuristically, the first three are regarded as strongly
correlated to each other and they are part of a higher level
semantic ‘tiger in forest’. However, ‘South Asia’ has a weak
relationship to the other three words; therefore, the phrase is
discarded from the annotation.

The disadvantage of Jin et al. [64] is that it depends on WordNet
and thus, this approach cannot refine the annotations which do not
appear in WordNet. Wang et al. [29,32] improve the refinement
process by removing the dependency on WordNet. Instead of using
WordNet, Wang et al. [29] calculate the similarity between two
words as the normalised frequency of images annotated by both
words. In [32], they calculate this similarity as the normalised sum
of content-similarities between the candidate image and the
images annotated by both words. The similarity values are used
to find strongly correlated annotation words.

Another important issue is to define appropriate level of seman-
tics. This is especially important in web image applications because
the noise in web texts is common and it is difficult to understand
which annotations should be used. For example, for an image with
kangaroos, the concept ‘Australia’ is more abstract than the concepts
‘Kangaroo’. Therefore, it is necessary to identify the concepts which
have smaller semantic gap (like the concept, ‘Kangaroo’).

Lu et al. [34] propose a system that models the semantic gap

and rank a set of candidate annotation words according to their
increased semantic gap. For example, in an image with annota-
tions of ‘green’, ‘brown’, ‘grass’, ‘bush’, ‘kangaroo’, and ‘Australia’,
the terms ‘green’ and ‘brown’ would have smaller semantic gap
from low level features. ‘Kangaroo’, ‘grass’, and ‘bush’ would be
the next level semantics and have higher semantic gap than the
annotations ‘green’ and ‘brown’ from the low level features. The
annotation ‘Australia’ has the highest semantic gap from the low
level features. Lu et al. use web images to develop a sorted list of
lexicon (annotating words or concepts) based semantic gap, and
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they first cluster a short listed web images based on their textual
and visual similarity. The available words of each cluster are
ranked based on text ranking technique. The rankings of words
from all the clusters are fused together to generate a final ranking.
Existing annotation approaches can use this ranking to decide
which concepts should be learned because the top ranked words
in the list are easier to learn than the bottom ones. The problem is
that the ranking needs to be learned every time the database
changes. Table 5 summarises the different type of annotation
methods.
4. Discussions and conclusions

We have made a comprehensive review on the state of the art
AIA techniques in literature. We have focused on two major
aspects of AIA: feature extraction and semantic learning. In terms
of features, several types of features have been used in AIA. These
features can be extracted either locally or globally. Global meth-
ods compute a single set of features from the entire image like a
colour histogram or moments. As natural images are not homo-
genous, this single set of features may not be meaningful unless
they are applied in domain specific applications. Local methods
divide images into regions or blocks, a set of features is computed
for each of the regions. As a result, an image is represented as a
bag of features. Bag of features can represent images at object
level and provides spatial information. However, region features
may not be accurate due to the usually unsupervised segmenta-
tion. For AIA, supervised segmentation may be considered. It is
interesting to find a few works in the literature which integrate
segmentation and learning in a single process. It has also been
found that some colour descriptors like correlogram, CSD and CCV
capture both colour and texture features. However, they are
usually applied to entire image. Texture descriptors like edge
histogram, co-occurrence matrix, directionality and spectral
methods capture both texture and shape features.

In terms of semantic learning, there are several approaches
including the traditional binary classification methods, multiple
labelling methods and metadata methods. Traditional binary
classification may sound attractive and straightforward but it
overlooks the fact that an image can usually be included into
more than one category. Furthermore, it lacks a mechanism of
ranking images according to their similarity to the classified
categories. Multiple labelling is a more reasonable approach,
because it assigns an image to several categories and assigns an
image to a category with a confidence value which assists image
ranking. All the above approaches attempt to learn higher level
semantics from low level features or visual features alone. It
appears natural that metadata should be used to overcome the
limitation of visual features if it is available. However, analysing
metadata is a complex matter and becomes another issue in
image annotation.

Overall, AIA is a very challenging research area. There are
several major issues in AIA research. The first issue is high
dimensional feature analysis. Currently, all existing features have
limitations of describing images and none of existing features is
powerful enough to represent the large variety of images in
nature. Common practice is to combine several types of features
to represent as many images as possible. However, the processing
and analysing of high dimensional image features is a very
complex issue. Due to the ‘curse of dimensionality’, the perfor-
mance of classifiers degrades dramatically when feature dimen-
sion is too high. Therefore, features need to be further mined to
select the right number of features and right features for annota-
tion. The recent advance in subspace research offers promising
solution in this regard.
The second issue is how to build an effective annotation
model. Most existing AIA models are learned from low level
image features. However, due to the ‘combinatorial explosion’ of
required image to build an annotation model, the number of
sample images is not large enough to train an accurate model.
Therefore, textual information or metadata should be employed
to improve annotation accuracy. However, very often, metadata is
either not accurate or not adequate. How to integrate both low
level visual information and high level textual information into a
coherent annotation model is a challenging issue. The number of
hybrid annotation methods discussed in Section 3.3 may provide
some clues to addressing this issue.

The third issue is that currently annotation and ranking are
done online simultaneously in the multiple labelling annotation
approaches. This is not efficient for image retrieval. The alternative
is to do the annotation offline as in the single labelling approach
and separate the ranking from annotation, that is, images are first
annotated with a concept/category and ranking is also done offline
after annotation. Once the images are annotated and ranked offline,
retrieval is instant.

The fourth issue is how to rank images within each of the
categories resulted from the single labelling techniques, so as to
improve retrieval accuracy. Since images within each category
show certain distribution pattern, a Gaussian mixture model
followed by an MAP ranking offers a practical solution.

The fifth issue is the lack of standard vocabulary and taxonomy
for annotation. At this moment, arbitrary vocabularies are used in
AIA literature. It is not known how images should be categorised.
A hierarchical modelling of image semantics is needed to cate-
gorise images properly. A hierarchical taxonomy not only stan-
dardizes the annotation vocabulary but also allows step by step
annotation which is more practical.

Finally, there is no commonly acceptable image database for
AIA training and evaluation. All AIA methods require a large
number of pre-labelled image samples for training the model. At
this moment, different AIA methods use different image datasets
for training and evaluation, making it difficult to compare the
performance. The database issue is closely related to the taxon-
omy issue. If a standard taxonomy of image semantics is available,
a standard database can also be created accordingly.

All these issues point to future research directions in AIA area.
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