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ABSTRACT
With the steadily increasing amount of multimedia docu-
ments on the web and at home, the need for reliable se-
mantic indexing methods that assign multiple keywords to
a document grows. The performance of existing approaches
is often measured with standard evaluation measures of the
information retrieval community. In a case study on image
annotation, we show the behaviour of 13 different evaluation
measures and point out their strengths and weaknesses. For
the analysis, data from 19 research groups that participated
in the ImageCLEF Photo Annotation Task are utilized to-
gether with several configurations based on random num-
bers. A recently proposed ontology-based measure was in-
vestigated that incorporates structure information, relation-
ships from the ontology and the agreement between anno-
tators for a concept and compared to a hierarchical variant.
The results for the hierarchical measure are not competi-
tive. The ontology-based results assign good scores to the
systems that got also good ranks in the other measures like
the example-based F-measure. For concept-based evalua-
tion, stable results could be obtained for MAP concerning
random numbers and the number of annotated labels. The
AUC measure shows good evaluation characteristics in case
all annotations contain confidence values.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Experimentation, Performance, Measurement
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1. INTRODUCTION
Recent trends in multimedia research go from the explicit

categorization of media items into several classes to the an-
notation of media items with a variable number of concepts.
For the categorization approach the evaluation per category
is sufficient as each media item exclusively belongs to one
class. In evaluation of media item annotation, often the
same evaluation measures are applied as in the evaluation
of categorization approaches. The prediction is evaluated for
each concept in isolation. This allows using the well-known
evaluation measures like Precision, Recall, F-measure or Ac-
curacy. E.g., Fan et al. [9] use the Accuracy to determine
the quality of the classifier for each concept.

The opposite way is to start with the media document
and evaluate if all concepts are assigned correctly on a per
item basis. Then instead of comparing a single predicted
label to a single ground-truth label, one needs to compare
two sets of labels. As a result, the predicted labels can
be fully correct (label sets are identical), fully wrong (the
intersection of the sets is empty), or partly correct (the sets
have common labels, but are not fully identical).

In this paper, we compare the behaviour of different eval-
uation measures on the results of the ImageCLEF Large-
Scale Visual Concept Detection and Annotation Task (LS-
VCDT) 2009. It is structured as follows: In Sec. 2 a review
of different performance measures for multilabel annotation
evaluation including related work is given. In Sec. 3 the LS-
VCDT of ImageCLEF 2009 is explained in more detail and
the submissions of the participating groups are briefly out-
lined. In Sec. 4 the results of the case study on multilabel
evaluation measures are presented and discussed. Finally we
summarize our findings and future work in Sec. 5.

2. PERFORMANCE MEASURES
In multilabel classification evaluation, two paradigms for

evaluation exist as briefly pointed out in Sec. 1. Tsoumakas
et al. [29] name them example-based evaluation and label-
based evaluation. The example-based evaluation generates a
score for each media item (example) and then averages over
all items. The label-based evaluation subdivides the anno-
tations in a single evaluation per concept and averages later
over all concepts. We would like to call the latter concept-
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based evaluation throughout the paper to distinguish from
the word label that we use for the concrete annotations for
one media item (see Sec. 2.5).

2.1 General notations
In multilabel classification each data example (in our case

each image) is associated with a set of labels. Let X be a
dataset consisting of examples Xn, n = 1, N , where N is
a total number of examples in the dataset. We denote the
class membership for the data set X as Y = {ync}, c = 1, C,
where C is a total number of concepts, and

ync =

(
1, if example n belongs to concept c,

0, otherwise.
(1)

In other words, the annotation matrix {ync} is a binary ma-
trix, where the rows yn correspond to examples and the
columns yc correspond to concepts. In each matrix row yn
each non-zero element ync indicates that the example n is
associated with a concept c. In our case of multilabel clas-
sification, each row of Y can have multiple non-zero values.
Likewise, the non-zero elements of the column yc indicate
the examples belonging to the concept c. Alternatively, a
set of labels for the example n is denoted as Yn.

If it is not stated otherwise, the ground-truth annotations
are denoted as Y , Yn, yc or ync, while the estimated anno-
tations (suggested by the system) are denoted as Z, Zn, zc
or znc, respectively.

The important characteristics of a multi-labelled dataset
are label cardinality (LC) and label density (LD). LC shows
how many labels have been assigned to a dataset example
in average:

LC(X) =
1

N

NX
n=1

CX
c=1

ync, (2)

and the LD is defined as fraction of the average number of
the used labels to the total number of available labels:

LD(X) =
1

N · C

NX
n=1

CX
c=1

ync. (3)

2.2 Concept-based evaluation measures
Concept-based evaluation measures judge the quality of

annotation systems for each concept. In the following dif-
ferent concept-based evaluation measures are introduced.

2.2.1 Precision, Recall, F-Measure
The traditional information retrieval evaluation measures,

namely Precision, Recall and F-measure are initially calcu-
lated for each concept independently. For the concept c two
binary vectors zc and yc are compared. The number of true
positive (TP (c)), false positive (FP (c)) and false negative
(FN(c)) examples is calculated for the concept c. If the el-
ements of the binary vectors are treated as logical values,
then TP (c), FP (c) and FN(c) can be written as:

TP (c) =

NX
n=1

(znc ∨ ync), (4)

FP (c) =

NX
n=1

(¬znc ∨ ync), (5)

FN(c) =

NX
n=1

(znc ∨ ¬ync). (6)

Then the average concept-based Precision, Recall and F-
measure are defined as follows:

Precisioncb(Z, Y ) =
1

C

CX
c=1

TP (c)

TP (c) + FP (c)
, (7)

Recallcb(Z, Y ) =
1

C

CX
c=1

TP (c)

TP (c) + FN(c)
, (8)

F-measurecb(Z, Y ) =
1

C

CX
c=1

2 · TP (c)

2 · TP (c) + FN(c) + FP (c)
.

(9)

2.2.2 AUC, EER - ROC curve measures
The concept-based measures Area-Under-Curve (AUC)

and Equal Error Rate (EER) can be calculated from the Re-
ceiver Operating Characteristics (ROC) curve and are com-
mon measures for different recognition tasks, e.g. [16]. A
ROC curve can be used to graphically plot true-positive-
rates and false-positive-rates of a binary classifier, accord-
ing to different threshold values. The EER is defined as
the point where both values are equal. The measure AUC
describes the overall quality of a classification system inde-
pendent from an individual threshold configuration, with the
specific trade-off between true-positive and false-positive. It
is calculated by integration of the ROC curve, whereas an
AUC value of 1 equals a perfect system with no false posi-
tives and an AUC value of 0.5 equals a random system. For
the evaluation per concept, the EER and the AUC of the
ROC curves summarize the performance of the individual
runs by taking the average values of all concepts.

2.2.3 MAP - Precision-Recall Curve measure
The measure Mean Average Precision (MAP) is a concept-

based measure that approximates the area under the unin-
terpolated Precision-Recall Curve averaged over several in-
formation needs. In other words, it is the average of the
Precision values calculated after each relevant document is
retrieved for a single query and later averaged over queries.
MAP is often used as a single-value measure that summa-
rizes the quality across recall levels of ranked retrieval results
and is e.g. utilized as standard evaluation measure in the
TREC community. For a detailed explanation see [20].

2.3 Example-based evaluation measures
Example-based evaluation measures judge the quality of

annotation systems for each media item. In the following
different example-based evaluation measures are introduced.

2.3.1 Precision, Recall, F-Measure, Accuracy
In contrast to the concept-based variants of Precision, Re-

call and F-measure, the scores are firstly calculated for each
example and then averaged over all examples. In this work,
we use example-based Precision, Recall, F-measure and Ac-
curacy as suggested in [29]:

Precisioneb(Z, Y ) =
1

N

NX
n=1

|Yn ∩ Zn|
|Zn|

, (10)
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Recalleb(Z, Y ) =
1

N

NX
n=1

|Yn ∩ Zn|
|Yn|

, (11)

F-measureeb(Z, Y ) =
1

N

NX
n=1

2 ∗ |Yn ∩ Zn|
|Yn|+ |Zn|

, (12)

Accuracyeb(Z, Y ) =
1

N

NX
n=1

|Yn ∩ Zn|
|Yn ∪ Zn|

. (13)

2.3.2 Alpha Evaluation
Shen et al. [28] propose an α-evaluation and multilabel

class Recall and Precision. α-evaluation generates a score
while taking the ground-truth, predicted labels, missed la-
bels and false positive labels into account. Moreover, false
positives and missed labels can be penalized differently if it
is more suitable for the particular application. The parame-
ter α introduces the so-called forgiveness rate as a trade-off
between the fully correct and partly correct prediction. In
Eq. 14, the α-evaluation formula for equally treated false
positives and missed labels is depicted.

score(Zn,Yn) =

„
|Yn ∩ Zn|
|Yn ∪ Zn|

«α
α ≥ 0 (14)

Accuracyα(Z, Y ) =
1

N

NX
n=1

score(Zn,Yn) (15)

If α = 1, Eq. 15 is equal to the example-based Accuracy
measure as depicted in Eq. 13.

2.4 Hierarchical Evaluation Measures
Hierarchical evaluation measures stick to the paradigm of

example-based evaluation. Next to the ground truth annota-
tions of the media items (examples), a hierarchical structure
of the concepts to be detected is required. Different hierar-
chical measures for unilabel classification are summarized in
[11]. Intuitively, the concepts, that are located near in a
hierarchy are more similar than the ones that are located
far. The idea is to judge an annotation from the predictor
that does not match exactly to the ground truth by their
distance in the hierarchy.

The most important measures are the depth independent
distance-based misclassification costs and the depth depen-
dent distance-based misclassification costs. In the former
case, the predicted concept is compared to the correct one
and the number of edges of the shortest path in the hierarchy
between both are counted. In the latter case, an additional
weight is assigned to each edge in the hierarchy. So, misclas-
sifications in deeper levels of the hierarchy get lower costs
assigned than at an upper level.

Blockeel et al. [3] propose an evaluation measure for hier-
archical multilabel classification evaluation. They extrapo-
late distances between individual labels to distances between
sets of labels by mapping the feature vectors of the sets into
Euclidean space where the individual labels form the base
vectors. In [4] a hierarchical loss function is proposed that
considers classification into a hierarchy with multiple and
partial paths. The first wrongly classified node is regarded
as mistake and adds to the loss. The mistakes that are made
in classification below the first wrongly classified node are

not considered as loss anymore. Underlying is the assump-
tion that for each classification a path from root to leaf or
from root to an internal node is present. They compare their
work to the zero-one loss and symmetric-difference loss.

2.5 Ontology-based Evaluation Measures
The challenge in example-based multilabel classification

evaluation is the way how to deal with partly incorrect label
sets. In Sec. 2.3 the score is derived by counting the numbers
of labels in both sets and calculating a fraction of different
sets. In Sec. 2.4 the measures rely on a path in an associated
taxonomy and base their score on the length of the path
between concepts. Further, there are approaches that do not
use the length of the path between concepts, but calculate
a semantic similarity between concepts.

One early approach to calculate semantic similarity be-
tween concepts in a is-a taxonomy was proposed by Resnik
[26]. He uses the information content to derive a similar-
ity and compares the semantic similarity to the hierarchical
depth-independent misclassification costs. In [1] a compari-
son of different ontology based similarity measures was con-
ducted. They compare ontology-based distance approaches
with information-theoretic approaches, vector space meth-
ods and algorithms based on Levensthein distance. Lord et
al. [18] compare semantic similarity measures and their ap-
plication to ontological annotations on the example of the
Gene Ontology.

However, except for the measures explained in Sec. 2.2,
the difficulty is still to find the matching labels in both sets
between which the similarity (or distance) should be com-
puted. In [25], we propose an ontology-based score (OS) for
the evaluation of multilabel annotations incorporating on-
tology information. The OS considers three different char-
acteristics:

1. Depth-dependent distance-based misclassification costs
between concepts

We extended the depth-dependent distance-based mis-
classification costs calculation from the unilabel case
to the multilabel case. As the overlap of the system
output and the ground truth are in most cases partly
correct, we defined a matching procedure that maps la-
bels from the system annotations to the ground truth
and vice versa. The distance between mapped labels
is calculated and a cost dependent on the depth in the
hierarchy is assigned. The calculation of misclassifica-
tion costs favours systems that annotate a photo with
concepts close to the correct ones more than systems
that annotate concepts that are far away in the hier-
archy from the correct concepts.

2. Ontology-based penalty

Next to the is-a relationship in the ontology, different
relationships between concepts are defined. The on-
tology restricts e.g., that for a certain sub-node only
one concept can be assigned at a time (disjointness)
or that concepts postulate other concepts. If relation-
ships in Z are violated, not the depth-dependent costs
are used, but a penalty is assigned.

3. Annotator Agreements

The annotator agreements serve as scaling factor for
the costs. Due to the difficulty to judge some concepts
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objectively, the OS considers the agreements between
annotators for rescaling the costs. In a user study 11
annotators annotated all concepts of the ontology in
a small set of photos. The annotation of the majority
of annotators was regarded as correct and the percent-
age of annotators that annotated correctly equals the
agreement factor (see [23]). The outcome of the user
study is an agreement-map. The factor 1 denotes total
agreement on a concept over the whole photo set. If
a system label is mapped to a concept of the ground
truth with low agreement, the costs are scaled down.

Formalized, the matching procedure for each example n be-
tween the predicted set of labels Zn and the ground-truth
set of labels Yn is defined as follows:

Each set contains labels li respectively lj that are as-
signed to a multimedia document Xn. First, the false pos-
itive labels Z ′n = Zn \ (Zn ∩ Yn) and the missed labels
Y ′n = Yn \ (Zn ∩ Yn) are computed. Please note that
|Z ′n|+|Y ′n| ≤ |Zn∪Yn| is always valid, because the number
of false positive and missed labels can never be greater than
the number of the union of labels in both sets. A crosscheck
on the predicted label set Zn is performed. If labels in Zn
violate relationships from the ontology, these labels get the
maximum costs of 1 as penalty assigned and are removed
from Z ′n, Yn and Y ′n if contained. This ensures that the
measure does not assign costs two times. Next, for each
label li from Z ′n a match to a label lj from Yn is calcu-
lated and for each label lj from Y ′n a mapping to a label
li from Zn is performed in an optimization procedure (see
Eq. 16). The costs between two labels li and lj depend on
the shortest path in the hierarchy between both concepts.
Each link is associated with a cost that is cut in halves for
each deeper level of the tree and is maximal equal to 1 for
a path between two leaf nodes of the deepest level. The
costs for a link at level l of the hierarchy are calculated as

cost linkl = 2(l−1)

2(L+1)−2
with L as the number of links from the

leaf to the root. If Zn = ∅, the matching costs for all labels
lj of Y ′n = Yn are set to the maximum. The matching costs
are computed as follows:

match(Zn,Yn) =
X
li∈Z′

„
(min
lj∈Y

cost(li, lj)) · a(lj
∗)

«

+
X
lj∈Y ′

„
(min
li∈Z

cost(li, lj)) · a(lj)

«
,

(16)

with lj
∗ = argminlj∈Z(cost(li, lj)).

a(lj) determines the annotation agreement factor for a con-
cept lj and ranges between [0, 1]. The final score for each
multimedia document Xn is based on the matching costs
between Zn and Yn divided by the number of different con-
cepts in both label sets (see Eq. 17). The score is 1 if all con-
cepts are correctly annotated and goes to 0 if no concept was
found. Additionally, Shens α-factor, (α ≥ 0), introduced in
Sec. 2.3.2, can be incorporated to weight the strictness of
the score regarding fully and partly correct annotations, de-
pending on the application demands.

OS(Z, Y ) =
1

N

NX
n=1

„
1− match(Zn,Yn)

|Zn ∪ Yn|

«α
(17)

In the experiments reported in this paper α is set to 1. The
measure is called Hierarchical Score (HS) if the crosscheck
on the system annotations Zn is not performed. Then the
measure only includes the structure information of the on-
tology and the annotator agreement factors.

3. LS-VCDT IN IMAGECLEF 2009
ImageCLEF is an evaluation track that belongs to the

Cross Language Evaluation Forum (CLEF) and poses yearly
benchmarks in the area of image retrieval and annotation.
In our case study we refer to the results of the LS-VCDT
of ImageCLEF 2009 (see [24]). The task of the participants
in the LS-VCDT was to annotate a set of 13.000 photos
from the MIR Flickr 25.000 image dataset [14] with 53 vi-
sual concepts. For the training of the algorithms, a set of
5.000 photos with annotations and a Photo Tagging Ontol-
ogy was provided. The frequencies of the concept occur-
rence in training and test set is depicted in Fig. 1. The
Photo Tagging Ontology could be used to solve the annota-
tion task by e.g. taking advantage of the relations between
concepts and their hierarchical ordering. For more informa-
tion about the ontology and the visual concepts see [23]. As
evaluation measures, the two paradigms of concept-based
and example-based annotation evaluation were followed in
the official ImageCLEF LS-VCDT results. For the concept-
based evaluation the EER and AUC were calculated from
ROC curves as explained in Sec. 2.2.2. The evaluation on
example basis was performed with the OS as illustrated in
Sec. 2.5. We had submissions from 19 research groups with
altogether 73 run configurations.

Figure 1: The figure shows the percentage in which
the concepts occurred in training and test set of the
LS-VCDT.

3.1 Choice of configurations for Case Study
In the case study about the characteristics of evaluation

measures in image annotation, not always all submitted con-
figurations are used due to a more intuitive visualization of
the results. In some plots just one configuration per group
is utilized. For that not the best submitted configuration
of every group, but the configuration with the largest vari-
ance between the result ranks for both measures is chosen.
Each group was allowed to submit up to five configurations.
In Table 1, part of the official results for the EER and the
OS measure are displayed. The 19 configurations and one
random configuration were chosen out of the 73 configura-
tions because of their variance in the ranking of the results
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System Rank EER Rank OS Rank
Diff

System 9 1 0.234 21 0.740 -20
System 11 5 0.250 23 0.731 -18
System 5 11 0.256 2 0.810 +9
System 19 14 0.267 1 0.811 +13
System 6 15 0.272 9 0.793 +6
System 3 17 0.292 40 0.613 -23
System 13 24 0.331 53 0.482 -29
System 7 26 0.342 67 0.368 -41
System 14 31 0.357 66 0.376 -35
System 12 35 0.384 72 0.261 -37
System 15 40 0.440 28 0.716 +12
System 18 46 0.452 11 0.779 +35
System 2 48 0.454 62 0.396 -14
System 10 53 0.467 10 0.786 +43
System 17 54 0.479 32 0.690 +22
System 1 56 0.483 17 0.756 +39
System 8 59 0.486 20 0.744 +39
Random 0 - 0.500 - 0.384 -
System 4 70 0.502 29 0.709 +41
System 16 73 0.527 65 0.385 +8

Table 1: The table shows the configurations with the
largest variances in the ranking of the official LS-
VCDT results for the measures EER and OS. One
configuration was selected from each participating
group for the case study.

of both measures. As we would like to analyse the differ-
ences and weaknesses of the evaluation measures, we believe
that these are the most interesting configurations for the
case study. We exemplarily confirm that the characteristics
of evaluation measures are valid for all submitted runs.

3.2 Image annotation approaches
In the following, a brief summary of the technologies sub-

mitted by the participants is provided. The systems of the
participants are numbered from 1 to 19 in alphabetic order
[12, 5, 22, 2, 13, 7, 30, 27, 6, 8, 31, 17, 21, 10, 15].

Most systems follow this processing workflow: Feature ex-
traction, feature reduction, classification and post process-
ing. The majority of the groups considers the hierarchy and
ontology information in the post processing step and applies
specific rules to fulfil the requirements for disjoint concepts
or branches in the hierarchy. Some systems integrate the
hierarchy information already in the classification and fea-
ture selection process, whereas others do not consider the
ontology requirements at all.

Within the feature extraction, several systems with lead-
ing ranks have in common that they make extensive use of
keypoint based local edge direction histograms, e.g. SIFT
features [19]. These features can describe precisely a specific
structure of a local pattern. Most approaches extend the lo-
cal features with global color or edge histograms or Gist of
Scene features to gather information about the overall vi-
sual impression of the photos. Additionally, e.g. System 5,
applies an individual region finder for each concept to deter-
mine the most relevant image region for the specific concept.
The local and global features are then calculated from the
selected region and from the complete image.

A selection or reduction process is applied most of the
times due to the high dimension of these feature combi-
nations with partly more than 1.000 dimensions. Certain

groups utilize a codebook or visual words approach to clus-
ter the high dimensional feature space, e.g. with a k-means
algorithm. Others apply a feature selection algorithm, in-
dividually trained for each ontology concept. Such selec-
tion process prefers, e.g. global features for the concepts
“summer” or “night”, while SIFT features are preferred for
concepts like “trees”.

For classification, most groups conduct a SVM classifier,
which was individually trained for each concept. The indi-
vidual SVM parameters were estimated within a cross vali-
dation using the provided training data. The classification
is partly conducted as one-against-all or multi-class SVM
process. Differences between the groups are related to the
used SVM details, e.g. System 6 utilizes SVM with average
kernels, sparse L1 multiple kernel learning (MKL) and non-
sparse Lp MKL. Other groups, e.g. System 19 use sparse
logistic regression classifiers.

The biggest differences between the systems can be found
in the post processing. This step covers the interpretation of
the classification results according to the definitions in the
ontology, e.g. selecting one concept in a group of disjoint
concepts. A careful applied post processing can lead to ben-
efits in terms of the OS measure as can be derived from the
increased rank numbers in Table 1. Exemplarily, System 8
could achieve a 39 ranks better result by a label refinement
process, which utilizes a co-occurrence statistics of the dis-
joint concepts. In contrast, the leading System 9 considering
the EER measure, looses 20 ranks because of incorporating
no post processing that deals with disjoint concepts. Sys-
tem 5 performs a simple manipulation of the result scores to
have only a single concept labelled within a group of disjoint
concepts, which leads to an improvement of 9 ranks.

4. CASE STUDY ON EVALUATION
MEASURES FOR IMAGE ANNOTATION

This section presents the results of the case study on eval-
uation measures for image annotation. For all 19 teams
from the LS-VCDT challenge, one configuration per team
was chosen as explained in Sec. 3.1. All submissions con-
tained confidence values between [0:1] for each concept in
each photo. It was agreed upon a threshold of 0.5 for the
measures that need a binary decision to judge presence or
absence of a concept. Additionally, we investigated several
random configurations. The configuration Random0 stands
for the results of uniformly distributed pseudo random num-
bers that varied between [0:1]. All other random runs are
denoted by RandomXX where XX stands for the percentage
of 1 values in the annotations.

The results refer to the test set of the LS-VCDT. It con-
sists of 13.000 photos and was annotated with 53 concepts
by human judges. The occurrence of concepts in the test and
training set can be seen in Fig. 1. While in most cases the
frequency of a concept in training and test set was stable,
the occurrence of concepts over the whole data set varied
extremely. The ground truth annotations of the test set
show a label cardinality LC = 9.0554 and a label density
LD = 0.1709. This means that in average per photo 9 la-
bels were assigned by the human judges.

4.1 Results
In the following, the results of the case study are pre-

sented. We first focus on the results of the chosen run con-
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Figure 2: This figure illustrates the results of the concept-based and example-based evaluation measures for
the chosen run configurations. The results in the diagrams are ordered ascending to the system numbers,
followed by the random runs and the ground truth result for each measure.

figurations and second prove that the characteristics of the
evaluation measures can be transferred to all runs.

Fig. 2 illustrates the results of the evaluation of the cho-
sen run configurations. The first row depicts the results for
concept-based Precision, Recall and F-measure. Contrasting
row (b) shows the results for the example-based variants of
Precision, Recall and F-measure. Row (c) depicts the scores
of AUC, EER and MAP. For an easier comparison, the re-
sults of 1-EER are visualized. Row (d) shows the scores for
the α-evaluation measure with different values for α and fi-
nally row (e) presents the example-based Accuracy, HS and
OS scores. In each bar diagram the same order of runs is uti-
lized, beginning with systems 1-19, followed by the random
runs and the ground truth.

In Fig. 2 (a) the results for the concept-based Precision,
Recall and F-measure are depicted. The Precision for the
submissions varies between 0.1 and 0.6 with an average of
0.3. The random runs achieve a precision of 0.17. In terms
of Recall, the submissions score at minimum 0.05 and 0.99
at maximum with a mean of 0.3. System 12 is the system
that achieves almost a Recall of 1. This means that nearly
all concepts were annotated as present for each image. This
fact is also illustrated by the LD which is 0.99 for System 12.
The reason for this behaviour can be two-fold. First, the sys-
tem really annotates all concepts as present or second, the
threshold of 0.5 which is used to map the confidence values
to a binary decision is not well selected for this system. De-
pending on the number of annotated labels the random runs

get at most a score of 0.9 Recall in case 90% of the anno-
tations are set to 1. The F-measure combines the scores of
Precision and Recall. For the systems the F-measure varies
between 0.07 (System 14) and 0.47 (System 9) with a mean
of 0.22 and the random runs get at most a F-measure of
0.24. These values indicate that with random runs contain-
ing a high percentage of annotated concepts a score higher
than the average of the submissions can be achieved. This
also holds when regarding all submissions to the task. The
mean of all submissions in terms of F-measure is 0.20.

In Fig. 2 (b) the results of the example-based Precision,
Recall and F-measure are depicted. Compared to the concept-
based ones, one can say in general, that the example-based
evaluation measures report higher scores, e.g. for the sys-
tems 4, 8 and 14. The average values are 0.56 Precision,
0.54 Recall and 0.49 F-measure. For the random configura-
tions one can see little difference between the example-based
and concept-based Precision measure. For both evaluation
paradigms the random configurations do not achieve better
results than 0.18 Precision. Having a look at the plots in row
(a) und (b), especially at the example-based and concept-
based F-measures, it is interesting, that these measures dif-
fer not only in scale, but also in the order of the systems.
This finding can be explained by different averaging meth-
ods. The concept-based F-measure uses averaging over all
concepts and all concepts are weighted equally, so that sev-
eral badly estimated concepts could drastically lower the
average score. Choosing the concept-based F-measure, the
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systems and the random runs are mixed all over the result
list. For the example-based F-measure, the random runs
are grouped at the end of the result list with the lowest
scores, except for System 14. Therefore, it can be derived,
that using the example-based evaluation, a simple adaption
of thresholds of randomly generated scores can not achieve
high ranked results, which is in the concept-based F-measure
an indicator for manipulation possibilities.

The results for the concept-based measures AUC, EER
and MAP are presented in row (c). These measures are
calculated based on ranked annotation results and use the
confidence values that were provided by the participants.
The results show that in terms of AUC, scores between 0.07
and 0.84 were achieved with a mean of 0.54 for the submis-
sions. The random runs get at most a score of 0.5 in case
of the run with random numbers in the interval [0:1] and
worse (< 0.25) in case of binary runs. In terms of 1-EER,
the scores range between 0.47 and 0.77 and the random runs
get a score of 0.5. In terms of MAP, the mean score is 0.31,
ranging between 0.19 and 0.49. Randomly a score of 0.19
can be achieved at maximum.

Fig. 2 (d) illustrates the results of the α-evaluation mea-
sure with parameter values (2, 0.5, 0.2) for α. The results
for α=1, which equals the example-based Accuracy, are de-
picted in Fig. 2 (e). It is apparent that with smaller values
of α, the results of the systems get better as the measure be-
comes more forgiving. Despite of System 14, all lower ranks
are occupied from the random configurations. For α = 0.2
even with random runs a score of about 0.65 can be achieved.
It is also obvious that with the α-evaluation not the whole
range of values can be achieved by the systems. E.g., for
α=2, the best system (despite the ground truth) achieves a
score of 0.32 and the worst of about 0.01. That is a differ-
ence of 0.31. With decreasing α the interval grows over 0.47
(α = 1) to 0.53 (α = 0.5) and decreases to 0.49 (α = 0.2).

The results for HS and OS are illustrated in Fig. 2 (e). A
classification score of about 0.65 can be achieved with the
random configurations in terms of HS. These results show,
that the HS can not differentiate between good and bad clas-
sification systems. The OS measure reports better results.
The system scores vary between 0.26 and 0.81 with an av-
erage of 0.63 in terms of OS. The random runs achieve at
most a value of 0.49. The OS tends to give good results
if the annotations show a density which is comparable to
the LD of the ground truth. This can be observed e.g. for
System 17, which has a low value in terms of concept-based
F-measure (0.12), a bad score in terms of AUC (0.11), but
an OS of 0.69 and a LD of 0.11. In comparison, the LD of
the ground truth is 0.17. Systems that get low scores in the
AUC and F-measure can achieve good results in the OS if
they stick to the ontology rules. Good systems in terms of
AUC and F-measure remain with good results in the OS.

The scatter plots in Fig. 3 visualize the results of all 73
submitted configurations, the 10 random configurations and
the ground truth. Exemplarily pairs of evaluation measures
were chosen and plotted against each other. The runs that
were utilized in the bar diagrams of Fig. 2 are denoted as big
circles and the other submissions as small circles. Further,
the crosses represent the random configurations and the star
depicts the score of the ground truth. The indices attached
to each symbol denote the name of the run.

In Fig. 3 (a), (b) and (c) the example-based Precision, Re-

call and F-measure are compared with their concept-based
counterparts. The analysis of the results as outlined in the
discussion of the bar diagrams can be transferred to all runs.
In general, the example-based variants assign higher scores.
The concept-based Recall is slightly higher for two systems
than the example-based one. For many systems the assigned
labels are uniformly distributed over the examples while
the Recall values for different concepts vary significantly.
Due to different averaging methods, this results in a higher
example-based Recall, but a lower concept-based Recall. In
case of the two systems with higher concept-based Recall
than example-based, the Recall values over the concepts are
uniformly distributed. The random runs achieve the same
values for both variants in terms of Precision and Recall.
The Precision score is low, but the Recall goes to 1 with
rising number of annotations. The random runs get scores
assigned that are in the average of all scores in terms of the
concept-based F-measure. In contrast, the scores range at
the lower bottom of the result lists for the random runs in
terms of example-based F-measure. From the plots (k) and
(l) one can derive that the F-measure is not fundamentally
influenced by the number of labels annotated. The random
runs with a high percentage of annotations just get slightly
better scores than the ones with a lower percentage. It is
also obvious that the correct percentage of annotations as
in the ground truth does not increase the score.

The characteristics of the MAP measure are compared to
the concept-based Precision and EER and in the plots (d)
and (e), respectively. The scores for the concept-based Pre-
cision and MAP are in agreement. The MAP tends to assign
stricter scores which is clearly observable compared to the
EER. For both measures the random runs get lower scores
assigned than the systems. Independent which percentage
of annotations are randomly set to 1, the random runs get
the same score assigned which is amongst the lowest score
of all submissions. The MAP measure is therefore a stable
measure which is robust against manipulations from ran-
dom runs similar as the concept-based and example-based
Precision.

Scatter plot 3 (f) shows the measure 1-EER compared
with AUC. Two clusters are visible in the plot. The clus-
ter at top contains the results for systems that submitted
confidence values for each annotation. For this cluster AUC
and 1-EER correlate. In some configurations the annota-
tions were submitted as binary values. The scores for these
systems cluster at the bottom of the plot. In terms of EER
the scores between the cluster at the bottom and the worst
runs with confidence values are similar. Whereas for the
AUC all runs with binary decisions get at most a score of
0.25 and the runs with confidence values get at least a score
of 0.46. This can e.g. be observed for the run with pseudo
random numbers between [0:1] which receives a score of 0.5.
Summarizing, the AUC measure disadvantages submissions
containing binary decisions.

The plots (g), (h), (i) and (j) illustrate the characteristics
of the OS measure. As already outlined in the discussion
of the bar diagrams, the HS measure cannot differentiate
between random runs and submissions of average perfor-
mance. The OS measure assigns the lowest scores to the
random runs. The behaviour of OS and HS is correlated for
the top submissions. Keeping in mind that the difference
between both measures are the penalties of the ontology, it
is obvious that the top systems are not penalized to a great
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Figure 3: The scatter plots visualize the results for all run configurations for some of the evaluation measures.
The submitted run configurations are presented as circles. Big circles denote the runs that were utilized in
the bar plots of Fig. 2 and small circles were utilized for all other submissions. The results for the random
runs are presented as crosses and the score of the ground truth as star.
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extent. Therefore both measures assign similar scores. In
contrast to HS and OS, the example-based Accuracy assigns
stricter scores. The OS measure tends to give good results
to configurations with similar LD as the ground truth. The
LD of the dataset is 0.17. This means in average 17% of
the concepts are annotated per photo. The random runs
with 30%, 20% and 10% annotated concepts, get the highest
scores compared to the other random runs. But through the
restrictions of the relationships the results of these random
runs are nevertheless not better than 0.5.

4.2 Discussion
In the previous section, the results of 13 evaluation mea-

sures are presented and analysed. The following enumera-
tion summarizes the most important characteristics of eval-
uation measures that were found in our case study:

• Example-based evaluation: HS and OS

The HS does not satisfy the needs of a good evaluation
measure. With random numbers good results can be
achieved and the difference to results of well-working
classification systems is not apparent. The OS assigns
good scores to systems that got also good ranks in
the other measures like the example-based F-measure.
However, it tends to give better results to systems that
follow all ontology rules but got only average ranks in
the traditional measures. Further, the OS assigns bet-
ter scores if a number of concepts is annotated which
is close to the LC of the ground truth.

• Example-based evaluation: α-evaluation

The results of the α-evaluation are dependent on the
threshold chosen for α. If α is equal to 1 or to 0.5, the
results for our case study show the best distribution
without assigning good scores to the random runs.

• Precision, Recall and F-Measure

The example-based Precision, Recall and F-measure
assign higher scores as their concept-based counter-
parts. As outlined, this is due to the uniformly dis-
tributed annotation quality per example for most sys-
tems, but the variying quality per concept. While the
concept-based Precision shows good evaluation char-
acteristics, the concept-based Recall is not adequate
as evaluation measure for multilabel evaluation. Fur-
ther, our study shows that a simple adaption of thresh-
olds of randomly generated scores can achieve high
ranked results in an evaluation with the concept-based
F-measure. In contrast, the scores for random runs are
not of comparable quality in comparison to the scores
achieved by systems for evaluation with the example-
based F-measure. In both cases there is no major in-
fluence on the scores by the number of labels.

• Concept-based evaluation: AUC

AUC clusters the scores for submissions with binary
values and submissions with confidence values in two
clusters. In consequence of the definition of the mea-
sure, binary submissions can get significantly worse re-
sults than 0.5 as achieved in case random values in the
interval [0:1] are used. This leads to the conclusion
that either confidences for the annotations should be
applied as default in a benchmark scenario or another

measure should be (additionally) utilized, as the AUC
does not allow for a comparison of both kinds of sub-
missions.

• Concept-based evaluation: MAP

The scores obtained by MAP show a correlation to
the concept-based Precison and the EER. Especially
compared to EER it assigns stricter scores. Further,
MAP is a stable measure as it is robust against ma-
nipulations from random runs and not dependent on
the percentage of labels that are set.

In summary, no preference to example-based or concept-
based evaluation measures can be given. Depending on the
application the one or the other may be more appropri-
ate. If using example-based evaluation, we suggest to use
the example-based F-measure, Accuracy or OS, as depend-
ing on the needs these measures show good characteristics.
The HS should not be utilized as evaluation measure. Also
the adaptation of the α-evaluation with different parameters
cannot convince for α values despite 1. For concept-based
evaluation, we recommend using MAP. If it is assured that
the evaluation is performed solely on submissions with confi-
dence values, the AUC measure shows good characteristics.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented the results of a multilabel

image annotation benchmark and analysed its results with
several evaluation measures. We highlighted the differences
between concept-based and example-based multilabel eval-
uation and the results achieved. Altogether 13 evaluation
measures were utilized to establish a profound comparison
about their strengths and weaknesses.

Concluding, the example-based F-measure, Accuracy or
OS showed promising results in terms of example-based eval-
uation. In contrast, the HS cannot cope with traditional
evaluation measures. Also the adaptation of the α-evaluation
with different parameters cannot convince for α values de-
spite 1. For concept-based evaluation, we recommend using
MAP. The AUC measure also shows good evaluation char-
acteristics in case all annotations contain confidence values.

In case of confidence-based annotation, all presented eval-
uation measures need a threshold to obtain a binary decision
about the presence and absence of concepts despite AUC,
EER and MAP. These thresholds have a major influence on
the results of the evaluation.

In contrast to all other evaluation measures, the OS does
not only perform a binary decision when comparing label
sets, but calculates scores for each label also when just con-
tained in one of both sets. This evaluation approach seems
promising, as concepts annotated semantically close to the
correct one are not regarded as incorrect, but partly correct.
The degree of correctness is deducted from the length of the
path in the ontology between both concepts. Because of
that, it is important to find a common agreed way of struc-
turing the concepts in the ontology in future work. This
could be performed e.g. with the help of user studies or by
utilizing a method based on semantic similarity to calcu-
late costs. It has to be investigated if the existing semantic
ontology-based measures that were tested on quite differ-
ent ontologies in size and structure like Gene Ontology or
WordNet, can be applied to the Photo Tagging Ontology.

43



Further, the OS would benefit if it is independent from a
threshold for confidence-based annotations.

To improve the concept-based evaluation measures one
could modify the averaging procedure by introducing addi-
tional weights to the concepts according to their importance
and the annotator agreement.
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