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Abstract. Numismatics deals with various historical aspects of the phe-
nomenon money. Fundamental part of a numismatists work is the identi-
fication and classification of coins according to standard reference books.
The recognition of ancient coins is a highly complex task that requires
years of experience in the entire field of numismatics. To date, no optical
recognition system for ancient coins has been investigated successfully.
In this paper, we present an extension and combination of local im-
age descriptors relevant for ancient coin recognition. Interest points are
detected and their appearance is described by local descriptors. Coin
recognition is based on the selection of similar images based on feature
matching. Experiments are presented for a database containing ancient
coin images demonstrating the feasibility of our approach.

1 Introduction

Numismatics is at a point where it can benefit greatly from the application of
computer vision methods, and in turn provides a large number of new, challeng-
ing and interesting conceptual problems and data for computer vision. For coin
recognition we distinguish between two approaches: coin identification and coin
classification. A coin classification process assigns a coin to a predefined cate-
gory or type, whereas a coin identification process assigns a unique identifier to
a specific coin. What makes this application special and challenging for object
recognition, is that all the coins are very similar.

The first coins were struck in Asia Minor in the late 7th century BC. Since then
coins are a mass product [1]. In the Antiquity coins were hammer-struck from
manually engraved coin dies. Coins from the same production batch will have
very much the same picture and also the same quality of its relief. Depending on
the series of coins in question, the only varying details can be either part of the
picture or legend or there can be a difference in a prominent detail such as the
face of a figure. The scientific requirement is to assign a coin its correct number
according to a reference book.
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Fig. 1. Different coins of the same coin type

Fig. 2. Different image representations of the same coin

Ancient and modern coins bear fundamental differences that restrict the ap-
plicability of existing algorithms [14]. Due to their nature ancient coins provide
a set of identifying features. The unique shape of each coin originates in the
manufacturing process (hammering procedure, specific mint marks, coin break-
ages, die deterioration, etc.). Furthermore, the time leaves its individual mark
on each coin (fractures, excessive abrasion, damage, corrosion, etc.). Eventually,
identification of ancient coins turns out to be ”easier” compared to classification.
For example, Figure 1 shows ten different coins of the same coin type. A clas-
sification algorithm should ideally classify them all of the same class. However,
they all provide complete different characteristics (see shape, die position, mint
marks or level of details). At the same time, exactly those features enable the
identification process.

In contrast, Figure 2 presents five pictures of one and the same coin. The
pictures were taken using different acquisition setups, i.e. scan as well as fixed
and free hand cameras with varying lighting conditions. The figure points out
the challenges for an automated identification process as well as the importance
of quality images for the process itself. Different lighting conditions can hide or
show details on the coin that are significant for a successful identification process
(e.g. compare the first and the third image in Figure 2).

The remainder of this paper is organised as follows: In Section 2 related work
on recognizing coins is presented. Section 3 gives an overview of local features
with respect to our needs. The coin recognition workflow is described in Section 4.
The experiments performed and their results are presented in Section 5. We
conclude the paper in Section 6 with discussion on the results achieved and an
outlook for further research.
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2 Related Work

Research on pattern recognition algorithms for the identification of coins started
in 1991 when Fukumi et al. [2] published their work on rotation-invariant vi-
sual coin recognition using a neural networks approach. Also [3] is devoted to
neural network design, but investigates the possibilities of simulated annealing
and genetic algorithms. In 1996 Davidson [4] developed an instance-based learn-
ing algorithm based on an algorithm using of decision trees [5]. An industrial
implementation of a neural networks approach is described in [6].

A more recent neural algorithm was published in [7]. This approach employs
the output of a filter bank of Gabor filters fed into a back propagation network.
The algorithm uses correlation in the polarspace and in combination with a
neural networks. Khashman et al. implemented a neural coin recognition system
for use in slot machines [8].

Huber et al. present in [9] a multistage classifier based on eigenspaces that
is able to discriminate between hundreds of coin classes. The Dagobert coin
recognition system presented by Nölle et al. [10] aims at the fast classification of
a large number of modern coins from more than 30 different currencies. In their
system coin classification is accomplished by correlating the edge image of the
coin with a preselected subset of master coins and finding the master coin with
lowest distance.

In [11] Maaten et al. present a coin classification system based on edge-based
statistical features. It was developed for the MUSCLE CIS Coin Competition
2006 [12] focusing on reliability and speed. The coin classification method pro-
posed by Reisert et al. [13] is based on gradient information. Similar to the work
of Nölle et. al [10] coins are classified by registering and comparing the coin with
a preselected subset of all reference coins.

Current research approaches for coin recognition algorithms possess mainly
two limitations. On the one hand, the input digital image is well defined – there
is always only one coin pictured and the image is taken under very controlled
conditions (such as background, illumination, etc.). On the other hand, the al-
gorithms focus mainly on the recognition of modern coins. Those assumptions
facilitate the classification and identification process substantially. In the case
of controlled conditions and the well known circular shape of modern coins, the
process of coin detection and segmentation becomes an easier task. The almost
arbitrary shape of an ancient coin narrows the amount of appropriate segmen-
tation algorithms. Tests performed on image collections both of medieval and
modern coins show that algorithms performing good on modern coins do not
necessarily meet the requirements for classification of medieval ones [14]. The
features that most influence the quality of recognition process are yet unexplored.

3 Local Image Features

Local features describe image regions around given interest points. Their ap-
plication in the computer vision is manifold ranging from object and texture
recognition [15] to robot localization [16], symmetry detection [17] and wide
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baseline stereo matching [18]. Local features are already successfully used for
object classification. Crucial influence on local feature based object recognition
bear both the detection of interest points and their representation. Hence, in the
following we give a short overview over top performing interest point detectors
and local feature descriptors and discuss their applicability with respect to the
identification of ancient coins.

3.1 Interest Point Detectors

In the literature exist a broad number of interest point detectors with varying
level on invariance against rotation, scale or affine changes. Comparative studies
on interest points and their performance evaluation can be found in [19,20].

The Harris corner detector [21] is based on local auto-correlation matrix of
the image function. The squared first derivatives are averaged over a 41 × 41
Gaussian weighted window around an image point. If the auto-correlation ma-
trix has two significant eigenvalues, an interest point is detected. However, the
detected points are not invariant to scale and affine changes. To achieve scale
invariance Mikolajczyk et al. [22] extend the Harris detector by selecting corners
at location where a Laplacian attains an extrema in scale space (Harris-Laplace).
The Harris-Affine detector [22,19] additionally uses second moment matrix to
achieve affine invariance. Detected points are stable under varying lighting con-
ditions since significant signal change in orthogonal directions is captured.

Hessian-Laplace localizes points at local maxima of the Hessian determinant
in scale-space maxima of the Laplacian-of-Gaussian [15,19]. Detected keypoints
are invariant to scale and rotation transformations. Similar to Harris-Affine, the
Hessian-Affine detector provides in a next step affine invariance based on second
moment matrix [19]. In contrary to the Harris-based detectors, Hessian interest
points indicate the presence of blob like structures. Bay et al. [23] introduced
recently a further detector based on the Hessian matrix – the Fast-Hessian detec-
tor. It approximates Gaussian second order derivative with box filter. To further
reduce the computational time, image convolutions use integral images.

Tuytelaars et al. present in [18] further two methods to extract affine invariant
regions. The Geometry-based region detector starts from Harris corners and uses
the nearby edges identified by the Canny edge operator [24] to build a parallelo-
gram. Keypoints are detected if the parallelogram goes through an extremum of
intensity-based functions. The second method proposed – Intensity-based region
detector – relies solely on the analysis of image intensity. It localizes interest points
based on intensity function along rays originating from local extrema in intensity.

The Maximally Stable Extremal Regions (MSER) proposed by Matas et al. [25]
are a watershed based algorithm. It detects intensity regions below and above a
certain threshold and select those which remain stable over a set of thresholds.

The Difference-of-Gaussian(DoG) detector was introduced by Lowe as key-
point localization method for the Scale Invariant Feature Transform (SIFT) ap-
proach [26,15]. Interest points are identified at peaks (local maxima and minima)
of Gaussian function applied in scale space. All keypoints with low contrast or
keypoints that are localized at edges are eliminated using a Laplacian function.
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Table 1. Average interest points detected

Detector Interest points
Difference-of-Gaussian (DoG) [26] 968
Harris-Laplace [15] 204
Harris-Affine [19] 198
Hessian-Laplace [19] 1076
Hessian-Affine [19] 778
Fast-Hessian [23] 198
Geometry-based region (GBR) [18] 61
IBR [18] 184
Maximally Stable Extremal Regions (MSER) [25] 134

Common critic to edge-based methods is that it is more sensitive to noise and
changes in neighboring texture. Interest point detectors which are less sensitive
to changes changes in texture perform well in a classification scenario since they
recognize and capture those features that are common for all instances in a given
class. On the opposite, identification relies on those features that are unique for
a given object. Due to their nature and manufacturing process, ancient coins are
unique. Coins produced by the same die show the same picture. However, since
they are hand-hammered, shape, texture and relief can vary to a large degree. In
this particular scenario, texture-sensitive interest point detectors are expected
to perform better. Table 1 shows average interest points extracted per detector
for the dataset explained in Section 5.

As we will show in Section 5, the methods which detect most interest points
do not necessarily perform the best. First, we are faced with the problem of
overfitting (i.e. each coin is similar to all the other coins to some degree). Second,
essential role play the information captured per interest point. Thus, in the next
subsection we give a short overview of the local feature descriptors we used for
the experiments.

3.2 Local Feature Descriptors

Given a set of interest points, the next step is to choose the most appropriate
descriptor to capture the characteristics of a provided region. Different descrip-
tors emphasize different image properties such as intensity, edges or texture.
Please refer to [27] for a thorough survey on the performance of local feature
descriptors. We focus our study on four descriptors which show outstanding
performance with respect to changes in illumination, scale, rotation and blur.

(1) Lowe [15] introduced the Scale Invariant Feature Transform (SIFT) de-
scriptor which is based on gradient distribution in salient regions – at each feature
location, an orientation is selected by determining the peak of the histogram of
local image gradient orientations. Subpixel image location, scale and orientation
are associated with each SIFT feature vector.
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(2) Mikolajczyk and Schmid [27] propose an extension of the SIFT descriptor
– Gradient Location and Orientation Histogram (GLOH) – designed to increase
the robustness and distinctiveness’s of the SIFT descriptor. Instead of dividing
the path around the interest points into a 4 × 4 grid, the authors divide it into
radial and angular grid. A log-polar location grid with 3 bins in radial and 8
bins in angular directions is used. The gradient orientations are quantized into
16 bins which gives a 272 bin histogram further reduced in size using PCA to
128 feature vector dimension.

(3) Belongie et al. [28] introduce Shape Context as feature descriptor for shape
matching and object recognition. The authors represent the shape of an object
by a discrete set of points sampled from its internal or external boundaries. As
starting points, edge pixels as found by an edge detector. Following, for each
point the relative location of the remaining points is accumulated in a coarse
log-polar histogram.

(4) Speeded Up Robust Features (SURF) [23] are fast scale- and rotation in-
variant features. The descriptor captures distributions of Haar-wavelet responses
within the neighborhood of an interest point. Each feature descriptor has only
64 dimensions which results in fast computation and comparison.

In [27] complementary evaluation on the performance of local descriptors with
respect to rotation, scale, illumination, and viewpoint change, image blur and
JPEG compression, is presented. In most of the tests SIFT and GLOH clearly
outperformed the remaining descriptors: shape context, steerable filters, PCA-
SIFT, differential invariants, spin images, complex filters, and moment invari-
ants. In [29] Stark and Schiele report that the combination of Hessian-Laplace
detector with SIFT and GLOH descriptor outperforms local features such as
Geometric Blur, k-Adjacent Segments and Shape Context in a object catego-
rization scenario. For their evaluation the authors used three different datasets
containing quite distinguishable objects such as cup, fork, hammer, knife, etc. By
contrast, our two coin data sets possess very different characteristics in compar-
ison with existing evaluation and application scenarios. Both data sets contain
similar objects and both are targeted to evaluate identification performance.

4 Recognition Workflow

We define the workflow for the identification of ancient coins by five well-defined
stages as shown in Figure 3. In the preprocessing step (1) coins contained in
the image are detected and segmented. Essential influence on the process carries
the image diversity, e.g. single or multiple objects pictured, varying lighting
conditions, shadows, diverse background textures, etc. In the scenario of ancient
coins identification the almost arbitrary shape of coin additionally impede the
task of coin(s) detection and segmentation. Since our test database consists
solely of images of single coin on an unitary background no preprocessing is
required. Eventually, the applied local feature detectors locate interest points on
the background (e.g. due to intensity change). However, their amount is minimal
and has no influence on the identification process.
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Fig. 3. The five stages of coins identification workflow

The goal of the feature extraction step (2) is twofold. First, local features
algorithms are applied to extract local image descriptors for coins identifica-
tion. Second, features that can be used to reduce the number of required feature
comparisons by reducing the coins database can be extracted. Provided uncon-
trolled acquisition process, simple features such as area or perimeter of a coin
are not eligible since the scaling factor is unknown. Other features such as shape
descriptors can be used as basis for step (3) - preselection step [30].

Step (4) descriptor matching is performed by identifying the first two nearest
neighbors in terms of Euclidean distances. A descriptor D1 is accepted only if
the distance ratio of the nearest (1.NN) to the second nearest (2.NN) neighbors
is less then or equal to 0.5:

2d(D1, D1.NN ) <= (D1, D2.NN). (1)

In [15] Lowe suggests a distance ratio of 0.8. However, our experiments showed
that for the case of lower inter-class differences (as all classes are coins), a lower
distance ratio tends to keep more distinctive descriptors while eliminating a great
part of the false matches. The value of 0.5 was determined experimentally and
used throughout the tests. Furthermore, we apply a restriction rule to fasten
the quality of the matches. Since each image in the database picture is a single
ancient coin, a given keypoint can only be matched to a single point in a different
feature set. Thus, all multiple matches are removed as they are considered to be
unstable for the identification process.

Finally, an additional verification step (5) can assure the final decision. Pro-
vided images of both obverse and reverse side of a coin, each side is first identified
separately. If both sides vote for the same coin identification, the coin is identified
adequately. Otherwise, it is classified as unknown.
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5 Experiments

For our experiments we used a dataset of images acquired at the Fitzwilliam
Museum in Cambridge, UK. We used varying technical setups – scan as well
as fixed and free hand cameras, and varying lighting conditions. The dataset
consists of 350 images of three different coin types (10 to 16 coins à coin type, 3
to 5 pictures à coin side). Ground truth is encoded in the file names. For testing
the recognition one image was selected as test images. Presented evaluations as
[27,29] on the performance of local descriptors use different datasets containing
quite distinguishable objects such as cup, fork, hammer, knife, etc. By contrast,
our coin data set possesses very different characteristics in comparison with ex-
isting evaluation and application scenarios. The data set contains similar objects
and is targeted to evaluate coin recognition performance.

In a first experiment we compare the performance of three descriptors on coin
identification.

Figure 4 shows corresponding interest points detected by the different ap-
proaches. Despite the lower image quality of the input image, the rotation and
scale change of the coin, the SIFT approach matches correctly against image of
the same coin acquired by the scan device (see Figure 4(a)).

The Fast Approximated SIFT approach – Figure 4(b) – tends to detect key-
points mostly on the background of the image. The algorithm detects far more
points than SIFT, e.g. for the example input image 8999 keypoints (by contrast
keypoints detected by SIFT for the same image: 721). However, they lack of
stability and distinctiveness. Eventually, each detected interest point is similar
(i.e. being matched) to a large number of keypoints in the second image. The
elimination of multiple matched points reduces the number of final matches by
approximately 90%.

Performing manual pairwise comparison of the resulting matches, PCA-SIFT
(see Figure 4(c)) seems to achieve almost the same amount on descriptors as
SIFT for less computational time. However, the stability of the PCA-SIFT fea-
tures is considerably lower since approximately 40% of the correct classified

(a) SIFT (b) Fast Approximated
SIFT

(c) PCA-SIFT

Fig. 4. Example matches for a given ancient coin acquired using a free hand camera
(Input image on the left side and corresponding match on the right hand). Using the
SIFT approach (a), the test coins was successfully matched against an image of the
same coin acquired using scan device. The Fast Approximated SIFT fail to recognize
the image (b). PCA-SIFT (c) matched against different coin of the same coin type.
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Table 2. Evaluation results on the recognition performance of the local image feature
descriptors using the small database of ancient coins. CR shows the rate of correctly
classified coins, and IR those of correctly identified ancient coins.

Interest Point (1) SIFT (2) GLOH (3) Shape (4) SURF
Detectors CR IR CR IR CR IR CR IR
DoG 90.57% 84.57% 60.00% 40.00% 61.14% 29.14% 82.57% 28.57%
Harris-Laplace 68.39% 50.86% 71.84% 53.45% 79.71% 61.45% 71.30% 28.12%
Harris-Affine 76.15% 55.46% 73.56% 54.31% 73.04% 53.04% 71.88% 27.83%
Hessian-Laplace 65.90% 47.28% 65.90% 47.28% 92.57% 82.00% 84.29% 32.29%
Hessian-Affine 71.63% 50.72% 68.48% 49.28% 88.00% 80.00% 79.43% 29.71%
Fast-Hessian 85.43% 79.43% 85.43% 78.29% 84.86% 72.29% 90.86% 78.29%
GBR 51.47% 27.36% 48.53% 24.76% 52.44% 29.64% 56.03% 15.31%
IBR 80.29% 60.57% 75.71% 50.57% 80.29% 55.14% 77.43% 25.14%
MSER 80.86% 68.29% 77.71% 64.29% 74.86% 58.00% 74.00% 28.29%

Fig. 5. Performance distribution of the interest point detectors

images are due matching of the obverse with the reverse side of a coin. The
PCA reduction of feature vector size seems to lead to loss of valuable informa-
tion for the identification process. In terms of identification rate, SIFT clearly
outperforms both modifications by more than 10%.

The second experiment aims at evaluation of the performance of the presented
interest point detectors and local descriptors with respect to recognition. We
compare both classification (CR) and identification rate (IR) and show that a
good classification rate is no guarantee for the distinctiveness and stability of
the respective detectors or descriptors. Table 2 summarizes the results on the
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coin data set. The best classification rate of 92.57% was achieved with Shape
Context combined with Hessian Laplace detector. The best identification rate of
84.57% was achieved with SIFT combined with DoG. The main reason for the
significant difference between classification and identification rate is the nature
of local descriptors. Local descriptors simply describe the close surroundings of
given interest point. Dependent on the size of this box, matching, i.e. similar
enough, descriptor can be found on multiple coins or even on the same coin or
different sides of the same coin.

Figure 5 visualizes the performance distribution with respect to the interest
point detectors. One can clearly identify four groups. The first one, low identifica-
tion and low classification rate, is dominated by the GBR detector. Independent
of the applied local feature descriptor the achieved performance is too low with
a rate close or far bellow 50%. The second group, high classification and low
identification rate, is defined by the use of the SURF descriptor. Independently
of the applied interest point detector, the SURF descriptor shows high stability
with respect to classification. The last conspicuous group, high classification and
high identification rate, is dominated by the Fast Hessian detector.

6 Conclusion

In this paper, we described a strategy for the recognition of ancient coins based on
local image features. The achieved recognition rates indicate the feasibility of the
approach. SIFT features show outstanding performance in existing evaluations.
However, the main drawback and critical point is their computational time.
Benefits of the proposed system are in the field of coin recognition. Based on
the promising results we plan to extend the evaluation on a recently recorded
coin collection of 2400 images of 240 different coins. Future research will include
methods in the field of optical character and symbol recognition. Furthermore, we
will extend our work towards die and mint sign identification based on spatially
constrained local features.

Acknowledgment. The authors want to thank Dr. Mark Blackburn and his
team at the Coin Department, Fitzwilliam Museum, Cambridge, UK, for sharing
their experience and providing the database of images of ancient coins.
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