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Abstract

In order to improve the retrieval accuracy of content-based image retrieval systems, research focus has been shifted from designing
sophisticated low-level feature extraction algorithms to reducing the ‘semantic gap’ between the visual features and the richness of human
semantics. This paper attempts to provide a comprehensive survey of the recent technical achievements in high-level semantic-based
image retrieval. Major recent publications are included in this survey covering different aspects of the research in this area, including
low-level image feature extraction, similarity measurement, and deriving high-level semantic features. We identify five major categories
of the state-of-the-art techniques in narrowing down the ‘semantic gap’: (1) using object ontology to define high-level concepts; (2) using
machine learning methods to associate low-level features with query concepts; (3) using relevance feedback to learn users’ intention; (4)
generating semantic template to support high-level image retrieval; (5) fusing the evidences from HTML text and the visual content of
images for WWW image retrieval. In addition, some other related issues such as image test bed and retrieval performance evaluation
are also discussed. Finally, based on existing technology and the demand from real-world applications, a few promising future research
directions are suggested.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

With the development of the Internet, and the availability
of image capturing devices such as digital cameras, image
scanners, the size of digital image collection is increasing
rapidly. Efficient image searching, browsing and retrieval
tools are required by users from various domains, includ-
ing remote sensing, fashion, crime prevention, publishing,
medicine, architecture, etc. For this purpose, many general-
purpose image retrieval systems have been developed. There
are two frameworks: text-based and content-based. The
text-based approach can be tracked back to 1970s. In such
systems, the images are manually annotated by text descrip-
tors, which are then used by a database management system
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(DBMS) to perform image retrieval. There are two disad-
vantages with this approach. The first is that a considerable
level of human labour is required for manual annotation. The
second is the annotation inaccuracy due to the subjectivity
of human perception [1,2]. To overcome the above disadvan-
tages in text-based retrieval system, content-based image re-
trieval (CBIR) was introduced in the early 1980s. In CBIR,
images are indexed by their visual content, such as color,
texture, shapes. A pioneering work was published by Chang
in 1984, in which the author presented a picture indexing and
abstraction approach for pictorial database retrieval [3]. The
pictorial database consists of picture objects and picture re-
lations. To construct picture indexes, abstraction operations
are formulated to perform picture object clustering and clas-
sification. In the past decade, a few commercial products
and experimental prototype systems have been developed,
such as QBIC [4], Photobook [5], Virage [6], VisualSEEK
[7], Netra [8], SIMPLIcity [9]. Comprehensive surveys in
CBIR can be found in Refs. [10,11].
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1.1. The semantic gap

The fundamental difference between content-based and
text-based retrieval systems is that the human interaction is
an indispensable part of the latter system. Humans tend to
use high-level features (concepts), such as keywords, text
descriptors, to interpret images and measure their similarity.
While the features automatically extracted using computer
vision techniques are mostly low-level features (color, tex-
ture, shape, spatial layout, etc.). In general, there is no di-
rect link between the high-level concepts and the low-level
features [2].

Though many sophisticated algorithms have been de-
signed to describe color, shape, and texture features, these
algorithms cannot adequately model image semantics and
have many limitations when dealing with broad content im-
age databases [12]. Extensive experiments on CBIR systems
show that low-level contents often fail to describe the high-
level semantic concepts in user’s mind [13]. Therefore, the
performance of CBIR is still far from user’s expectations.

In Ref. [1], Eakins mentioned three levels of queries in
CBIR.

Level 1: Retrieval by primitive features such as color,
texture, shape or the spatial location of image elements.
Typical query is query by example, ‘find pictures like this’.

Level 2: Retrieval of objects of given type identified by
derived features, with some degree of logical inference. For
example, ‘find a picture of a flower’.

Level 3: Retrieval by abstract attributes, involving a sig-
nificant amount of high-level reasoning about the purpose
of the objects or scenes depicted. This includes retrieval of
named events, of pictures with emotional or religious signif-
icance, etc. Query example, ‘find pictures of a joyful crowd’.

Levels 2 and 3 together are referred to as semantic image
retrieval, and the gap between Levels 1 and 2 as the semantic
gap [1].

More specifically, the discrepancy between the limited
descriptive power of low-level image features and the rich-
ness of user semantics, is referred to as the ‘semantic gap’
[14,15].

Users in Level 1 retrieval are usually required to submit
an example image or sketch as query. But what if the user
does not have an example image at hand? Semantic image
retrieval is more convenient for users as it supports query
by keywords or by texture.

Therefore, to support query by high-level concepts, a
CBIR systems should provide full support in bridging the
‘semantic gap’ between numerical image features and the
richness of human semantics [13,15].

1.2. High-level semantic-based image retrieval

How do we relate low-level image features to high-level
semantics? Our survey shows that the state-of-the-art tech-
niques in reducing the ‘semantic gap’ include mainly five

categories: (1) using object ontology to define high-level
concepts, (2) using machine learning tools to associate low-
level features with query concepts, (3) introducing relevance
feedback (RF) into retrieval loop for continuous learning of
users’ intention, (4) generating semantic template (ST) to
support high-level image retrieval, (5) making use of both
the visual content of images and the textual information ob-
tained from the Web for WWW (the Web) image retrieval.

Retrieval at Level 3 is difficult and less common. Possi-
ble Level 3 retrieval can be found in domain specific areas
such as art museums or newspaper library. Current systems
mostly perform retrieval at Level 2. There are three funda-
mental components in these systems: (1) low-level image
feature extraction, (2) similarity measure, (3) ‘semantic gap’
reduction.

Excellent survey on low-level image feature extraction
in CBIR system can be found in Ref. [11]. In this paper,
we focus on CBIR with high-level semantics. The rest of
the paper is organized as follows. In Section 2, we briefly
review various low-level image features used in high-level
semantic-based CBIR systems. Image similarity measure is
also discussed in Section 2. Section 3 focuses on different
methods in narrowing down the ‘semantic gap’. In Section
4, test image dataset and performance evaluation (PE) are
discussed. Section 5 includes a few other issues related with
CBIR systems which are suggested as promising research
directions. Finally, Section 6 concludes this paper.

2. Low-level image features

Low-level image feature extraction is the basis of CBIR
systems. To performance CBIR, image features can be either
extracted from the entire image or from regions. As it has
been found that users are usually more interested in specific
regions rather than the entire image, most current CBIR
systems are region-based. Global feature based retrieval is
comparatively simpler. Representation of images at region
level is proved to be more close to human perception system
[16]. In this paper, we focus on region-based image retrieval
(RBIR).

To perform RBIR, the first step is to implement image
segmentation. Then, low-level features such as color, texture,
shape or spatial location can be extracted from the segmented
regions. Similarity between two images is defined based on
region features. This section includes a brief description of
these three parts focusing on what are used in RBIR system
with high-level semantics.

2.1. Image segmentation

Automatic image segmentation is a difficult task. A variety
of techniques have been proposed in the past, such as curve
evolution [17], energy diffusion [18], and graph partitioning
[19]. Many existing segmentation techniques work well for
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Fig. 1. JSEG segmentation results.

images that contain only homogeneous color regions, such
as direct clustering methods in color space [20]. These apply
to retrieval systems working only with colors [21,22].

However, natural scenes are rich in both color and tex-
ture, and a wide range of natural images can be considered
as a mosaic of regions with different colors and textures.
Texture is an important feature in defining high-level con-
cepts. As stated in Ref. [23], texture is the main difficulty
in a segmentation method. Many texture segmentation algo-
rithms require the estimation of texture model parameters
which is a very difficult task [23]. ‘JSEG’ segmentation [23]
overcomes these problems. Instead of trying to estimate a
specific model for texture region, it tests for the homogene-
ity of a given color-texture pattern. ‘JSEG’ consists of two
steps. In the first step, image colors are quantized to several
classes. Replacing the image pixels by their corresponding
color class labels, we can obtain a class-map of the image.
Spatial segmentation is then performed on this class-map
which can be viewed as a special type of texture compo-
sition. The algorithm produces homogeneous color-texture
regions and is used in many systems [16,24,25]. Fig. 1 gives
two examples.

Blobworld segmentation [26] is another widely used seg-
mentation algorithm [24,27]. It is obtained by clustering
pixels in a joint color-texture-position feature space. Firstly,
the joint distribution of color, texture, and position features
is modelled with a mixture of Gaussians. Then expectation
maximization (EM) algorithm is used to estimate the param-
eters of the model. The resulting pixel-cluster membership
provides a segmentation of the image. The resulted regions
correspond roughly to objects.

Some systems design their own segmentations in order to
obtain the desired region features during segmentation, be it
color, texture, or both [9,28–31]. These algorithms are usu-
ally based on k-means clustering of pixel/block features. In
Ref. [9], firstly, an image is segmented into small blocks of
size 4∗4 from which color and texture feature are extracted.
Then k-means clustering is applied to cluster the feature vec-
tors into several classes with each class corresponding to one
region. Blocks in same class are classified into same region.
A so-called KMCC (k-means with connectivity constraint)
is proposed in Ref. [31] to segment objects from images.

It is extended from the k-means algorithm. In this algorithm,
the spatial proximity of each region is taken into account by
defining a new center for the k-means algorithm and by inte-
grating the k-means with a component labelling procedure.

The use of segmentation algorithm depends on the re-
quirements of the system and the data set used. It is hard to
judge which algorithm is the best. For example, JSEG pro-
vides color-texture homogeneous regions, while KMCC in-
tends to obtain objects which are usually not homogeneous.
Compared with JSEG, KMCC is computationally more in-
tensive. JSEG and Blobworld segmentations seem to be the
most widely used so far.

2.2. Low-level image features

Many sophisticated feature extraction algorithms have
been designed and good surveys are available. Here we fo-
cus on the features used in RBIR systems with high-level
semantics.

2.2.1. Color feature
Color feature is one of the most widely used features

in image retrieval. Colors are defined on a selected color
space. Variety of color spaces are available, they often serve
for different applications. Description of different color
spaces can be found in Ref. [32]. Color spaces shown to
be closer to human perception and used widely in RBIR
include, RGB, LAB, LUV, HSV (HSL), YCrCb and the
hue-min-max-difference (HMMD) [21,25,27,31,33]. Com-
mon color features or descriptors in RBIR systems include,
color-covariance matrix, color histogram, color moments,
and color coherence vector [16,28,34–36]. MPEG-7 has in-
cluded dominant color, color structure, scalable color, and
color layout as color features [37]. In Ref. [38], the authors
are interested in objects taken from different point of view
and illumination. As the result, a set of viewpoint invariant
color features have been computed. The color invariants
are constructed on the basis of hue, hue-hue pair and three
color features computed from reflection model.

Most of those color features though efficient in describ-
ing colors, are not directly related to high-level seman-
tics. For convenient mapping of region color to high-level
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Fig. 2. Average color and dominant color: (a) original region; (b) average color; (c) dominant color.

semantic color names, some systems use the average color
of all pixels in a region as its color feature [22,31,39]. Al-
though most segmentation tends to provide homogeneous
color regions, due to the inaccuracy of segmentation, aver-
age color could be visually different from that of the origi-
nal region. In Ref. [25], a dominant color in HSV space is
defined as the perceptual color of a region. To obtain dom-
inant color, the authors first calculate the HSV space color
histogram (10 ∗ 4 ∗ 4 bins) of a region and select the bin
with maximum size. Then the average HSV value of all the
pixels in the selected bin is defined as the dominant color. It
is observed that in most cases, average color and dominant
color are very similar, as in Fig. 2(1). However, in some
cases, they can be visually very different as in Fig. 2(2).

The selection of color features depends on the segmen-
tation results. For instance, if the segmentation provides
objects which do not have homogeneous color, obviously
average color is not a good choice. It is stated that for more
specific applications such as human face database, domain-
knowledge can be explored to assign a weight to each pixel
in computing the region colors [22].

It should be noted that in most of the CBIR works, the
color images are not pre-processed. Since color images
are often corrupted with noise due to capturing devices or
sensors, it will improve retrieval accuracy significantly if
effective filter is applied to remove the color noise. The
pre-process can be essential especially when the retrieval
results are used for human interpretation. A number of such
color filters are available for this purpose [32,40,41].

2.2.2. Texture feature
Texture is not so well-defined as color features, some sys-

tems do not use texture features [2,21,22,31,42]. However,
texture provides important information in image classifica-
tion as it describes the content of many real-world images
such as fruit skin, clouds, trees, bricks, and fabric. Hence,
texture is an important feature in defining high-level seman-
tics for image retrieval purpose.

Texture features commonly used in image retrieval sys-
tems include spectral features, such as features obtained us-
ing Gabor filtering [8] or wavelet transform [9], statistical
features characterizing texture in terms of local statistical
measures, such as the six Tamura texture features [43], and
wold features proposed by Liu et al. [44]. Among the six
Tamura features: coarseness, directionality, regularity, con-
trast, line-likeness, contrast and roughness, the first three
are more significant [43]. The other three are related to
the first three and do not add much to the effectiveness of

texture description. MPEG-7 has employed the regularity,
directionality and coarseness as the texture browsing de-
scriptor [33,37]. The wold features of periodicity, random-
ness and directionality have been proved to work well on
Brodatz textures [45].

The limitation of Tamura features is that there was no work
at multiple resolutions to account for scale. Wold feature is
also affected by image distortions such as scale and orien-
tation variations due to perspective distortion [30]. Though
working well on Brodatz textures, these features are proved
to be less effective when applied to natural scene image re-
trieval as texture regions in such images are not so structured
and homogeneous [30].

Among the various texture features, Gabor features and
wavelet features are widely used for image retrieval and have
been reported to well match the results of human vision study
[8,9,37]. Gabor filtering and wavelet transform are origi-
nally designed for rectangular images. However, regions in
RBIR systems are of arbitrary-shapes. How to extract texture
features from arbitrary-shaped regions in RBIR systems?
In some systems, texture features are obtained based on
the texture property of pixels or small blocks contained in the
region [8,31]. For example, in Ref. [8], for each region, the
mean of the texture features of all the 4∗4 blocks it contains
is used as the region feature. The problem of such feature is
that they cannot sufficiently describe the texture property of
the entire region. An intuitive way to solve this problem is to
extend the arbitrary-shaped region into a rectangular area by
padding some values outside the boundary and then apply
block transforms. However, as regions in real-world images
are usually not homogeneous texture, such initial padding
will introduce spurious components which do not describe
the original region and hence degrade the performance of
the texture feature obtained. Still another possible solution
is to obtain an inner rectangle (IR) from a region onto which
block transforms can be performed to generate coefficients
from which texture feature can be calculated. This works
well when the region texture is homogeneous and the IR
carries enough information to describe the region’s texture
property. However, image regions in real-world images are
usually not homogeneous. In addition, in many cases, we
can only obtain an IR covering a small area of the original
region. Hence, the texture feature obtained from IR cannot
well represent the property of the entire region. To solve this
problem, an efficient texture feature extraction algorithm for
arbitrary-shaped regions is presented in Ref. [46]. This al-
gorithm extends an arbitrary-shaped region into a rectangle
area by initial padding. Then a projection onto convex sets
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Fig. 3. Arbitrary-shaped region and padded results: (a) original region;
(b) mirroring padded result.

(POCS) loop is applied to find a set of coefficients best de-
scribing the region by iterative projection between the image
domain and its transform domain. Finally, texture features
can be extracted from the coefficients obtained. Fig. 3 gives
an example of initial padding.

The edge histogram descriptor (EHD) is found to be quite
effective for representing natural images [37]. It captures the
spatial distribution of edges, somewhat in the same idea as
the color layout descriptor. To compute the EHD, a given im-
age is first sub-divided into 4×4 sub-images, and local edge
histograms for each of these sub-images is computed. Edges
are broadly grouped into five categories: vertical, horizon-
tal, 45◦, 135◦ and neutral. Thus, each local histogram has
five bins corresponding to the above five categories. The im-
age partitioned into 16 sub-images results in 80 bins. These
bins are non-uniformly quantized using 3 bits/bin, resulting
in a descriptor of size 240 bits. But the EHD can be very
sensitive to objects or scene distortions.

Huang and Dai have computed the gradient vector from
the subband images of a wavelet decomposition as texture
feature [47]. The gradient vector is a similar approach to
EHD.

2.2.3. Shape
Shape is a fairly well-defined concept. Shape features of

general applicability include aspect ratio, circularity, Fourier
descriptors, moment invariants, consecutive boundary seg-
ments [48], etc.

Shape features are important image features though they
have not been widely used in RBIR as color and texture fea-
tures. Shape features have shown to be useful in many do-
main specific images such as man-made objects. For color
images used in most papers, however, it is difficult to apply
shape features compared to color and texture due to the inac-
curacy of segmentation. Despite the difficulty, shape features
are used in some systems and has shown potential benefit
for RBIR. For example, in Ref. [31], simple shape features
such as eccentricity and orientation are used. The system in
Ref. [34] uses normalized inertia of order 1–3 to describe
region shape. In Ref. [28], gross region shape descriptors
based on area and second-order moments are used. MPEG-
7 has included three shape descriptors for object-based im-
age retrieval, one is the 3-D shape descriptor derived from
3-D meshes of shape surface, one is for region-based shape
derived from Zernik moments and the other is for contour-

based shape derived from curvature scale space (CSS) [37].
Although the CSS descriptor is invariant to translation, scal-
ing and rotation, it is sensitive to general distortions which
can be resulted from objects taken from different point of
view. Mokhtarian and Abbasi have extended the CSS de-
scriptor to be robust to affine transform which is a common
way to approximate general shape distortions [49].

2.2.4. Spatial location
Besides color and texture, spatial location is also useful in

region classification. For example, ‘sky’ and ‘sea’ could have
similar color and texture features, but their spatial locations
are different with sky usually appears at the top of an image,
while sea at the bottom.

Spatial location usually are simply defined as ‘upper, bot-
tom, top’ according to the location of the region in an im-
age [50,51]. In Ref. [8], region centroid and its minimum
bounding rectangle are used to provide spatial location in-
formation. In Ref. [31], spatial center of a region is used to
represent its spatial location.

Relative spatial relationship is more important than abso-
lute spatial location in deriving semantic features. 2D-string
[52] and its variants are the most common structure used
to represent directional relationships between objects such
as ‘left/right’, ‘below/above’. However, such directional re-
lationships alone are not sufficient to represent the seman-
tic content of images ignoring the topological relationships.
To better support semantic-based image retrieval, a spatial
context modelling algorithm is presented in Ref. [53] which
considers six spatial relationships between region pairs: left,
right, up, down, touch and front. An interesting method was
proposed by Smith et al. [29]. The system uses a compos-
ite region template (CRT) to define the spatial arrangement
of regions and each semantic class is characterized by the
CRTs obtained from a collection of sample images [29].

2.3. Similarity measure

In RBIR systems, image similarity is measured at two lev-
els. The first is region-level. That is to measure the distance
between two regions based on their low-level features. The
second is at image level. That is to measure the overall sim-
ilarity of two images which might contain different number
of regions.

Most researchers employ the Minkowski-type metric to
define region distance. Suppose we have two regions rep-
resented by two p dimensional vectors (x1, x2, . . . , xp),
(y1, y2, . . . , yp), respectively. The Minkowski metric is
defined as

d(X, Y ) =
(

p∑
i=1

|xi − yi |r
)1/r

. (1)

Particularly, when r = 2, it is the well-known Euclidean
distance (L2 distance). When r is 1, it is the Manhattan
distance (L1 distance).
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An often-used variant version is the weighted Minkowski
distance function which introduces weighting to identify im-
portant features

d(X, Y ) =
(

p∑
i=1

wi |xi − yi |r
)1/r

, (2)

where wi , i = 1, . . . , p is the weight applied to different
features.

Other distances are also used in image retrieval, such as
the Canberra distance, angular distance, Czekanowski co-
efficient [54], inner product, dice coefficient, cosine coeffi-
cient and Jaccard coefficient [55].

The overall similarity of two images is more difficult to
measure. Basically, there are two ways.

(1) One-One match: This means each region in the query
image is only allowed to match one region in the target
image and vice versa. As in Ref. [56], each query region of
the query image is associated to a single ‘best match’ region
in the target image. Then the overall similarity is defined
as the weighted sum of the similarity between each query
region in the query image and its ‘best match’ in the target
image, while the weight is related to region size.

(2) Many-Many match: This means each region in the
query image is allowed to match more than one region in
the target image and vise versa. A widely used method is
the Earth Mover’ Distance (EMD) [57]. EMD is a general
and flexible metric. It measures the minimal cost required
to transform one distribution into another based on a tradi-
tional transportation problem from linear optimization, for
which efficient algorithms are available. EMD matches per-
ceptual similarity well and can be applied to variable-length
representations of distributions, hence it is suitable for im-
age similarity measure in RBIR system [16,57].

Li et al. propose an integrated region matching (IRM)
scheme which allows for matching a region of one image
to several regions of another image and thus decreases the
impact of inaccurate segmentation [34]. In this definition, a
matching between any two regions is assigned with a signif-
icance credit. This forms a significance matrix between two
sets of regions (one set is of the query image, another set is
of the target image). The overall similarity of two images is
defined based on the significance matrix in a way similar to
EMD.

Though Minkowski metric is widely used in current sys-
tems to measure region distance, intensive experiments show
that it is not very effective in modelling perceptual similarity
[58]. How to measure perceptual similarity is still a largely
unanswered question. There are some works done in trying
to solve this problem. For example, in Ref. [58], a dynamic
partial distance function (DPF) is defined, which reduces
the dimension of feature vectors by dynamically choosing a
smaller amount of dimensions. Let �i=|xi−yi |, i=1, . . . , p,
the authors define �m = {m smallest �’ s of (�1, . . . , �p)}.

Then DPF is defined as

d(m, r) =
⎛
⎝ ∑

�i∈�m

�r
i

⎞
⎠

1/r

. (3)

There are two parameters to be adjusted m and r. Initial
experimental results demonstrate that DPF can provide more
accurate retrieval results than Minkowski metrics. However,
the value of m is data-dependent, this makes the algorithm
inflexible. In addition, to be broadly used in image retrieval
systems, further study is required to confirm its performance
in various applications.

In Ref. [59], a perceptual distance for shape similarity
measure is presented. Each shape is characterized with a set
of tokens. A metric distance between tokens is first defined
then a non-metric distance is defined as the collection of
token distance to measure shape similarity. The method can
be extended into RBIR by treating image regions as the
tokens.

Vasconcelos and Lippman proposed a multiresolution
manifold distance (MRMD) for face recognition. In the
MRMD, two images to be matched are treated as manifolds,
and the distance between the two images are the one which
minimizes the error of transforming one manifold into the
other. In order to reduce the computation, the images are put
into multiresolution analysis. The distance measure is suit-
able for image alignment applications like face recognition
and video scene detection [60].

In Ref. [61], similarity measure between different types
of image features is taken as a multilevel decision making
process. Images in the database are represented by a number
of MPEG-7 color and texture descriptors, these descriptors
are put into a hierarchical decision fusion framework using
fuzzy logic. The advantage of this similarity measurement is
that different types of image features can be combined into
an integrated feature. In their later work, the authors have
extended the decision fusion framework into a supervised
learning framework with RF from users [62].

3. Reducing the ‘semantic gap’

The state-of-the-art techniques in reducing the seman-
tic gap can be classified in different ways from different
point of view. For example, by considering the application
domain, they can be classified as those targeting at artwork
retrieval [21], scenery image retrieval [27,28,31], WWW im-
ages retrieval [63,64], etc. In this paper, we focus on the
techniques used to derive high-level semantics and identify
five categories as follows. (1) Using object ontology to de-
fine high-level concepts [21,31,65–67]. (2) Using supervised
or unsupervised learning methods to associate low-level fea-
tures with query concepts [2,24,27,28,68]. (3) Introducing
RF into retrieval loop for continuous learning of users’ inten-
tion [16,31,69]. (4) Generating ST to support high-level im-
age retrieval [29,70,71]. (5) Making use of both the textual
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Fig. 4. Object ontology used in Ref. [32].

information obtained from the Web and the visual content of
images for Web image retrieval [63,70,72]. Many systems
exploit one or more of the above techniques to implement
high-level semantic-based image retrieval. For example, (3)
is often combined with (1), (2) or (5) [16,31,70,72], (5) is
usually combined with the other four techniques [27,63,70].

3.1. Object-ontology

In some cases, semantics can be easily derived from our
daily language. For example, sky can be described as ‘up-
per, uniform, and blue region’. In systems using such simple
semantics, firstly, different intervals are defined for the low-
level image features, with each interval corresponding to an
intermediate-level descriptor of images, for example, ‘light
green, medium green, dark green’. These descriptors form
a simple vocabulary, the so-called ‘object-ontology’ which
provides a qualitative definition of high-level query con-
cepts. Database images can be classified into different cate-
gories by mapping such descriptors to high-level semantics
(keywords) based on our knowledge [31,65–67,73], for ex-
ample, ‘sky’ can be defined as region of ‘light blue’ (color),
‘uniform’ (texture), and ‘upper’ (spatial location).

A typical example of such ontology-based system is pre-
sented in Ref. [31]. In this system, each region of an image
is described by its average color in lab color space, its posi-
tion in vertical and horizontal axis, its size and shape. The
object ontology is shown in Fig. 4.

Quantization of color and texture feature is the key in
such systems. To support semantic-based image retrieval, a
more effective and widely used way to quantize color infor-
mation is by color naming. Although millions of colors can
be defined in computer system, the colors that can be named
by users are limited to about 10–20 [74,75]. Color naming
models intend to relate a numerical color space with seman-
tic color names used in natural language. The well-known
color naming system is ‘CNS’ (color naming system) pro-

posed by Berk, Brownston and Kaufman [75]. ‘CNS’ quan-
tizes HSL space into 627 distinct colors. The basic idea is to
quantize the hue value into a set of basic colors. Saturation
and luminance are quantized into different bins as adjec-
tives signifying the richness and brightness of the color. The
complete set of generic hue names in CNS is red, orange,
brown, yellow, green, blue and purple, with the addition of
achromatic terms black, gray and white, form 10 base colors.

In Ref. [21], 12 hues are defined as fundamental colors,
yellow, red, green, blue, orange, purple, and six other col-
ors obtained as the linear combination of them. Then, five
levels of luminance and three levels of saturation are identi-
fied. This results in 180 reference colors. To relate colors to
expression (emotionally) and impression (visually) for paint-
ing retrieval, different types of contrasts are defined, light-
dark contrast, warm-cold contrast, complementary contrast,
etc. For example, colors of yellow, and orange are referred
as warm, green and blue are referred as cold. Example query
is like this ‘find paintings with the following contrasts: light-
dark, cold-warm’.

In Ref. [25], the dominant color of a region (in HSV
space) is converted to a set of 35 semantic color names as:
red, orange, yellow, brown, etc. Semantic color names are
related to objects in natural scene images like grass, sky.
Example query is ‘find images with a sky blue region’. In
Ref. [65], based on the author’s observation that a small
number of colors are usually sufficient to characterize the
color information in image region, eight colors are defined
based on their RGB values, red, green, blue, yellow, ma-
genta, cyan, black, and white. These color names are related
to objects in natural scenes, for example, white are related
to snow, cloud, etc. In this way, the system reduces the ‘se-
mantic gap’ and supports query by keywords.

Similar to CNS, there is a parallel need for a texture
naming system which would standardize the description and
representation of textures [76]. However, texture naming is
found to be more difficult and so far there is no such a texture
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naming system available. As a first step towards creating a
texture naming system, some researchers try to identify the
important features human beings use in texture perception
[43,76]. Based on subjective experiment, Rao and Lohse
have shown that repetitiveness, directionality and complex-
ity are the three attributes most important to human percep-
tion of textures [76]. However, how to obtain these features,
and how to map other low-level texture features to these
three domains are yet to be further studied [30,76].

Compared with color, texture is not well modelled and
understood, much research still needs to be done. Instead
of using texture names as keyword for query which is still
impossible so far, some researchers quantize perceptual tex-
ture features into different intervals and define meaningful
texture descriptors. In Refs. [66,67], Tamura features are
quantized to different levels as very coarse, medium coarse,
fine, very fine; low contrast, high contrast, etc. Combination
of such features in logical relationships with and, or form
queries like ‘find very fine and low contrast textures’.

For database with specifically collected images, such sim-
ple semantics derived based on object-ontology may work
fine. However, with large collections of images with vari-
ous contents, more powerful tools are required to learn the
semantics.

3.2. Machine learning

In most cases, to derive high-level semantic features re-
quire the use of formal tools such as supervised or unsuper-
vised machine learning techniques [2,28,68,77]. The goal of
supervised learning is to predict the value of an outcome
measure (for example, semantic category label) based on a
set of input measure. In unsupervised learning, there is no
outcome measure, and the goal is to describe how the input
data are organized or clustered [78].

3.2.1. Supervised learning
Supervised learning such as support vector machine

(SVM) [24,27,79], Bayesian classifier [80] are often used
to learn high-level concepts from low-level image features.

With strong theoretical foundations available, SVM has
been used for object recognition, text classification, etc. and
is considered a good candidate for learning in image retrieval
system [35,69,81]. SVM is originally designed for binary
classification. Assume that we have a set of training data
{x1, x2, . . . , xn} as vectors in space X ⊆ Rd belonging to
two separate classes with their labels {y1, y2, . . . , yn} and
yi ∈ {−1, 1}. We want to find a hyper-plane to separate
the data. Among many possible hyper-planes, the optimal
separating plane (OSP) is the one which maximizes the
margin (the distance between the hyper-plane and the nearest
data point of each class). As in Fig. 5, the vectors lying on
one side are labelled as −1, and those lying on the other side
are labelled as +1. ‘Support vectors’ refer to the training
samples that lie closest to the hyper-plane. To learn multiple

margin

w

Fig. 5. A simple linear support vector machine.

concepts for image retrieval, a SVM has to be trained for
each concept. For example, in Ref. [27], SVM is employed
for image annotation. In the training stage, a binary SVM
model is trained for each of the 23 selected concepts. In the
testing stage, unlabelled regions are fed into all the models,
the concept from the model giving the highest positive result
is associated with the region.

Another widely used learning method is Bayesian clas-
sification [82]. In Ref. [68], using binary Bayesian classi-
fier, high-level concepts of natural scenes are captured from
low-level image features. Database images are automatically
classified into general types as indoor/outdoor, and the out-
door images are further classified into city/landscape, etc.
In Ref. [77], Bayesian network is used for indoor/outdoor
image classification.

Other learning techniques such as neural network are also
used for concept learning. In Ref. [28], firstly, the author
choses 11 categories (concepts): brick, cloud, fur, grass, ice,
road, rock, sand, skin, tree, and water. Then a large amount
of training data (low-level features of segmented regions)
are fed into the neural network classifiers to establish the
link between low-level features of an image and its high-
level semantics (category labels). A disadvantage of this al-
gorithm is that it requires large amount of training data and
is computationally intensive.

In Ref. [24], it is stated that conventional learning al-
gorithms suffer from two problems: (1) a large amount of
labelled training samples are needed, and it is very tedious
and error-prone to provide such data; (2) the training set
is fixed during the learning and application stages. Hence,
if the application domain changes, new labelled samples
have to be provided to ensure the effectiveness of the clas-
sifier. A bootstrapping approach is presented in Ref. [24] to
tackle these problems. It starts from a small set of labelled
training samples. By using a co-training approach, in which
two statistically independent classifiers are used to co-train
and co-annotate the unlabelled samples, the algorithm
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successively annotates a larger set of unlabelled samples.
Their experiments show that an improvement of 10% in
retrieval accuracy is obtained compared with SVM (400
labelled images for training), with much fewer labelled
training samples (only 20 labelled seeds).

Besides the above mentioned algorithms, decision tree
(supervised learning) techniques are also used to derive se-
mantic features. Decision tree induction methods such as
ID3, C4.5 (improved version of ID3), and CART build up a
tree structure by recursively partitioning the input attribute
space into a set of non-overlapping spaces [78]. A set of de-
cision rules can be obtained by following the paths from the
root of the tree to the leaves. In Ref. [2], the CART decision
tree methodology is used to derive decision rules mapping
global color distribution (HSV space color histogram) in a
given image to textual description (four keywords: Sunset,
Marine, Arid images and Nocturne). In Ref. [83], a C4.5 de-
cision tree is built based on a set of images relevant to the
query, and then used as a model to classify database images
into two classes: relevant and irrelevant. This algorithm is
used in the RF loop (will be discussed in Section 3.3) to pro-
vide relevant images for the user to label at next iteration.
A similar methodology is employed in Ref. [84]. To enhance
the performance of RF, the system uses ID3 decision tree
to classify the images as relevant/irrelevant based on their
color features, instead of directly ranking the images using
the modified query obtained in last iteration.

Compared with other learning methods, decision tree
learning is conceptually simple, robust with respect to in-
complete and noisy input features. In addition, decision
tree can be easily translated into a set of rules which can
be integrated into an expert system for automatic decision
making [78,85]. However, to be used in high-level con-
cepts learning for image retrieval, the underlying problem
is the lack of modularity [86,87]. For example, the methods
mentioned above use nominal input attributes, but usually
low-level image features have continuous values. Though
some algorithms [88,89] have been designed to discrete
continuous attributes, whether these generally designed
algorithms can always provide meaningful splitting of im-
age feature space is a question.

3.2.2. Unsupervised learning
Unlike supervised learning in which the presence of the

outcome variable guides the learning process, unsupervised
learning has no measurements of outcome, the task is rather
to find out how the input feature are organized or clustered.

Image clustering is the typical unsupervised learning tech-
nique for retrieval purpose. It intends to group a set of image
data in a way to maximize the similarity within clusters and
minimize the similarity between different clusters. Each re-
sulting cluster is associated with a class label and images in
same cluster are supposed to be similar to each other.

The traditional k-means clustering and its variations are
often used for image clustering. In Ref. [90], k-means clus-

Query image 
Features

Database image 
features stored 

Similarity
measure 

Ranking
results 

Select 
neighbouring
images 

Image 
clustering 

Display and 
feedback

CLUE

Fig. 6. Image retrieval with CLUE.

tering is applied to low-level color features of a set of train-
ing images. Then, the statistics measuring the variation with
each cluster are used to derive a set of mappings between
the low-level features and the optimal textual characteriza-
tion (keywords) of the corresponding cluster. The mapping
rules derived could be used further to index new untagged
images added to the database. In Ref. [80], in order to au-
tomatically annotate database images for retrieval purpose,
the system firstly cluster image regions into region clus-
ters using a variant of k-means clustering called pair-wise
constraints k-means (PCK-means) [91]. The number of clus-
ters is empirically set to 300. Then, the posterior probabil-
ity of every concept (59 concepts are defined for the image
database used) given a region is derived using a semi-naı¨ve
Bayesian method [80]. Thus, a new image can be annotated
by choosing the concepts with highest probabilities.

Due to the complex distribution of image data (data points
are sampled from non-linear manifold), traditional methods
such as k-means clustering often cannot well-separate im-
ages with different concepts [36]. To handle this problem,
a spectral clustering method Normalized cut (NCut) [19] is
proposed and has been successfully used in several appli-
cations such as image segmentation, image clustering. An
extended version of NCut can be found in Ref. [92].

In Ref. [14], a method named ‘CLUE’ is presented to re-
duce the ‘semantic gap’ in CBIR. Unlike other CBIR sys-
tems which display the top matched target images to the
users, this system attempts to retrieve semantically coherent
image clusters. Given a query image, a collection of target
images similar to the query are selected as the neighbour of
the query. Based on the hypothesis that images of the same
semantics tend to be clustered, NCut clustering is used to
cluster these target images into different semantic classes.
Then the system displays the image clusters and adjusts the
model of similarity measure according to user feedbacks.
Fig. 6 is the diagram of the system. Though successful in
manifold data clustering, NCut cannot produce an explicit
mapping function. To deal with new data points, similarities
between the new points and all training data have to be mea-
sured. The computation of similarities could be very com-
plicated due to the large size of training set [36]. To tackle
these problems, in Ref. [36], a locality preserving clustering
(LPC) method is proposed for image clustering. LPC can
provide an explicit mapping function. Experimental results
show that LPC provides retrieval accuracy comparable to
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that of NCut, but is more computationally efficient. In ad-
dition, retrieval result of LPC is proved to be more accurate
than that of k-means clustering.

Probabilistic classification based on Bayes theory is
among the most powerful clustering tools. The common
maximum-a-posteriori or MAP classifier and its variation
maximum-likelihood or ML classifier have shown great
promise for the CBIR problem [93,94]. However, tradi-
tionally it is difficult to apply the classifiers due to the
complexity of the MAP similarity function. In Ref. [94],
Vasconelos has shown that the similarity function can be
computed efficiently when vector quantizers and Gaussian
mixtures are used as models for the probability density
functions of the image features.

3.2.3. Object recognition techniques for image retrieval
Object recognition in images is an important problem

in computer vision with applications in image annotation,
surveillance and image retrieval. Supervised or unsupervised
object recognition algorithms have been developed recently
which can be used for semantic-based image retrieval. For
example, in Ref. [95], an unsupervised scale-invariant learn-
ing method is presented to learn and recognize object class
models from unlabelled and unsegmented cluttered scenes.
In this method, objects are modelled as flexible constella-
tions of parts and a probabilistic representation is used for all
aspects of the object: shape, appearance, occlusion and rel-
ative scale. In recognition, this model is used in a Bayesian
manner to classify images. The flexible nature of the model
is demonstrated by excellent results over a range of datasets
including geometrically constrained classes (such as faces,
cars) and flexible objects (such as animals).

It is recognized that most users like to retrieve images
based on objects in images. In Ref. [96], the authors devel-
oped a new semi-supervised version of the EM algorithm for
learning the distributions of the object classes. Images are
represented as sets of feature vector of multiple types of ab-
stract regions. Each abstract region is modelled as a mixture
of Gaussian distributions over its feature space. As regions
used in recognition can come from different segmentation
processes, the regions used are referred to as ‘abstract re-
gion’. A key part of this approach is that it does not need
to know the location of objects in each image. The experi-
ments on a set of 860 images demonstrate the efficiency of
the approach.

In Ref. [97], a two-phrase generative/discriminative learn-
ing approach is proposed that can learn to recognize ob-
jects using multiple feature types. The goal of this work
is to develop a classification methodology for the auto-
matic classification of outdoor scene images. The generative
phrase normalizes the description length of images, which
can have an arbitrary number of extracted features of each
type. In the discriminative phase, a classifier learns which
images, as represented by this fixed-length description, con-
tain the target object. Their experimental results, using color,

texture and structure features, show promising retrieval per-
formance on 31 elementary object categories and 20 high-
level concepts.

Most current approaches to learn visual object categories
require thousands of training images. In addition, most al-
gorithms presented in the literature have been tested on only
about 10–20 object categories. In Ref. [98], an incremental
Bayesian algorithm was developed to learn generative mod-
els of object categories from just a few training images. This
method makes use of prior information, assembled from ob-
ject categories which were previously learnt. A generative
probabilistic model is used to represent the shape and ap-
pearance of a constellation of features belonging to the ob-
ject. The parameters of the model are learnt incrementally
in a Bayesian manner. The algorithm is tested on images of
101 widely varied object categories including face, laptop,
strawberry, zebra, cup, chair, etc.

3.3. Relevance feedback (RF)

Compared with the off-line processing algorithms dis-
cussed above, RF is an on-line processing which tries to
learn the users’ intentions on the fly.

RF is a powerful tool traditionally used in text-based infor-
mation retrieval systems [99]. It was introduced to CBIR dur-
ing mid 1990s, with the intention to bring user in the retrieval
loop to reduce the ‘semantic gap’ between what queries
represent (low-level features) and what the user thinks. By
continuous learning through interaction with end-users, RF
has been shown to provide significant performance boost in
CBIR systems [100,101].

A typical scenario for RF in CBIR is as below [102]:

(1) The system provides initial retrieval results through
query-by-example, sketch, etc.

(2) User judges the above results as to whether and to what
degree, they are relevant (positive examples)/irrelevant
(negative examples) to the query.

(3) Machine learning algorithm is applied to learn the user’
feedback. Then go back to (2).

(2)–(3) are repeated till the user is satisfied with the results.
Fig. 7 shows a simple diagram of a CBIR system with RF.

A typical approach in step (3) is to adjust the weights
of low-level features to accommodate the users’ need
(re-weighting). In this way, the burden of specifying the
weight is removed from the user. Examples of such systems
are in Refs. [16,100]. ‘Re-weighting’ dynamically updates
the weights embedded in the query (not only the weights to
different types of features such as color, texture, shape, but
also the weights to different components in same feature
vector) to model the high-level concepts and perception
subjectivity [100].

Another method is called query-point-movement (QPM)
[16,103,104]. QPM improves the estimation of the query
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Fig. 7. CBIR with RF.

point by moving it towards the positive examples and away
from the negative examples. The technique often used to
iteratively improve this estimation is the Rocchio’s formula
[55,105,106]

Q′ = �Q + �

⎛
⎝ 1

NR′

∑
i∈D′

R

Di

⎞
⎠− �

⎛
⎝ 1

NN ′

∑
i∈D′

N

Di

⎞
⎠ , (4)

where Q and Q′ are the original query and updated query,
respectively, D′

R and D′
N are the positive and negative sam-

ples returned by the user, NR′ , NN ′ are the number of sam-
ples in D′

R and D′
N , respectively, and �, �, � are selected

constants.
Both query re-weighting and QPM use nearest-neighbour

sampling. That is, the system returns top ranked images for
the user to examine and then the query is refined based on
the user’s feedback [35].

Machine learning techniques can be used in step 3 of RF
loop as well. SVM is often used to capture the query con-
cept by separating the relevant images from the irrelevant
images using a hyper-plane in a projected space [16,31,69].
One advantage of SVM over other learning algorithms lies
in its high generalization performance without the need to
add a priori knowledge [69]. Another advantage is that it
can work for small training sets [69,103]. To effectively use
negative and non-labelled samples, and to learn a query con-
cept faster and more accurately, an active learning method
named SVMactive is proposed in Ref. [35].

Generally, the labelled samples provided by the user are
limited, and such small training data set will result in weak
classification of database images (as relevant/irrelevant). In
Refs. [107,108], D-EM (Discriminant-EM) is used to boost
the classifier learnt from the limited labelled training data.
D-EM is an improved version of EM. EM has the disadvan-
tage that a large number of parameters have to be estimated
due to the high dimensionality of the generative model used

to model data distribution. D-EM alleviates this problem by
adding a D-step. The E-step estimates the membership for
each unlabelled sample to augment the labelled training set.
D-step identifies a mapping such that the data are clustered
in the mapped feature space (a discriminating subspace).
Based on the augmented data set, M-step estimates the pa-
rameters of the generative model in the lower dimensional
discriminating space.

In some papers, decision-tree learning methods such as
C4.5, ID3 are used in RF loop to classify the database images
into two classes (relevant/irrelevant) depending on whether
they are similar to the query image [83,84]. Then the relevant
images are presented to the user for another round of RF.

There are different methods adopting different assump-
tions or problem settings, though under the same notion of
‘RF’. A more detailed survey can be found in Ref. [102].

Most of the current RF-based systems uses only the low-
level image features to estimate the ideal query parameters
and do not address the ‘semantic’ content of images. Such
system works well if the feature vectors can well describe
the query. However, for specific object that cannot be suffi-
ciently represented by low-level features, these RF systems
will not return many relevant results even with a large num-
ber of user feedbacks [109]. To address the limitations of
such systems, Ref. [109] provides a system named ‘iFind’
that performs RF on both the low-level feature vectors and
the semantic contents of images represented by keywords.
Firstly, a semantic network is constructed on top of an im-
age database and a simple machine learning technique is
used to learn from user queries and feedbacks to further
improve this semantic network. With the semantic network
formed on top of the keyword association with the images,
the system can accurately derive the image sematic content
for retrieval purposes. In this way, semantic and low-level
feature-based RF are seamlessly integrated. Experiments on
real-world image collections demonstrate its accuracy and
effectiveness.

In most of the RF-based systems, the similarity measure-
ment is fixed while the importance or weight of each descrip-
tor is estimated through the RF from users. In contrast to this
conventional approach, the Doulamis’ have proposed a gen-
eralized nonlinear RF algorithm for image retrieval [110]. In
this approach, instead of adjusting the degree of importance
of each descriptor, the similarity measure itself is estimated
through an online learning mechanism. The method is based
on a recursive optimal estimation of a nonlinear paramet-
ric relation of known functional components. However, due
to the problem of optimization itself, the computation can
be expensive and the algorithm may be trapped into local
minima.

3.4. Semantic template

‘ST’, though not yet widely used as the above mentioned
techniques, is a promising approach in semantic-based
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image retrieval. ST is a map between high-level concept
and low-level visual features. ST is usually defined as the
‘representative’ feature of a concept calculated from a col-
lection of sample images [29,70]. In some systems, icons
or sample images are provided as well for the convenience
of user query [111].

In Ref. [111], Chang et al. introduced the idea of seman-
tic visual template (SVT) to link low-level image feature to
high-level concepts for video retrieval. A visual template is
a set of icons or example scenes/objects denoting a person-
alized view of concepts such as meetings, sunsets. The fea-
ture vectors of these example scenes/objects are extracted
for query process. To generate SVTs, the user first defines
the template for a specific concept by specifying the ob-
jects and their spatial and temporal constraints, the weights
assigned to each feature of each object. This initial query
scenario is provided to the system. Through the interaction
with users, the system finally converges to a small set of ex-
emplar queries that ‘best’ match (maximize the recall) the
concept in the user’ mind.

The generation of SVT in Ref. [111] depends on the in-
teraction with the user and requires the user’s in-depth un-
derstanding of image features. This impedes its application
to ordinary users. Compared to this, the system in Ref. [70]
generates ST automatically in the process of RF, based on
the understanding that RF is a process by which the user
embodies the query semantics. Firstly, the user submits a
query image with a concept (keyword) representing the im-
age. After several iterations, the system returns some rele-
vant images to the user. The feature centroid of these images
are calculated and used as the representation of the query
concept. Then the ST is defined as ST = {C, F, W } with C
the query concept, F the centroid feature obtained, and W
being the weight applied to feature vectors. WordNet [112]
is used in this system to construct a network of ST. During
the retrieval process, once the user submits a query concept
(keyword), the system can find a corresponding ST, and use
the corresponding F and W to find similar images. The re-
trieval process is shown in Fig. 8. The user is impercepti-
ble of the template generation, and can use the system even
without any knowledge of feature representation.

Another interesting work is presented by Smith and Li
in Ref. [29]. They use the so-called CRTs to decode image
semantics. The CRTs define the prototypal spatial arrange-
ments of regions in the images. Given a semantic class, a set
of sample images are collected. The system firstly segments
each image into homogeneous color regions and extracts
five region strings by scanning the image vertically. Then,
the system consolidates the region strings by counting the
frequencies of the CRTs in the set of region strings obtained
from all the sample images. Pooling together the CRTs from
each semantic class forms a CRT library. Semantic descrip-
tion of unknown images can be generated by matching the
arrangements of image regions to the CRTs in the library.
The experiments with a set of 10 semantic classes (beach,
building, crab, divers, etc.) demonstrate that this method

Fig. 8. Image retrieval supported by WordNet and ST.

improves retrieval accuracy compared to traditional methods
using color histogram and texture features.

3.5. Web image retrieval

We classify Web image retrieval as one of the state-of-
the-art techniques in high-level image retrieval rather than a
specific application domain, as it has some technical differ-
ence from image retrieval in other applications.

One advantage in Web image retrieval is that some ad-
ditional information on the Web is available to facilitate
semantic-based image retrieval. For example, the URL of
image file often has a clear hierarchical structure including
some information about the image such as image category.
In addition, the HTML document also contains some useful
information in image title, ALT-tag, the descriptive text sur-
rounding the image, hyperlinks, etc. However, such infor-
mation can only annotate images to a certain extend [63,72].

Existing Web image searching such as Google and Al-
taVista search images based on textual evidences only
[63,64]. Though these approaches can find many relevant
images, the retrieval precision is poor as they cannot con-
firm whether the retrieved images really contain the query
concepts. The result is that users have to go through the en-
tire list to find the desired images. This is a time-consuming
process as the returned results always contain multiple
topics which are mixed together. To improve Web image
retrieval performance, researchers are making effort to fuse
the evidences from textual information and visual image
contents.

In Ref. [72], a bootstrapping co-training framework is
used to automatically annotate Web images with a given set
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Fig. 9. Summary of the current techniques in reducing the ‘semantic gap’.

of concepts for retrieval purpose. The system exploits the
evidences from both the HTML text and visual features of
images and develops two independent classifiers based on
text and visual image features, respectively. The experimen-
tal results using a pre-defined set of 15 concepts demon-
strate the substantial performance of the system. However,
due to the inaccuracy in textural information extraction, the
performance for certain concepts is not satisfied.

MSRA (Microsoft Research Asia) is developing a promis-
ing system for Web image retrieval [63,64]. The purpose
is to cluster the search results of conventional Web image
search engines, so that users can find the desired images
quickly. Firstly, a intelligent vision-based segmentation al-
gorithm is designed to segment a web-page into blocks.
From the block containing the image, the textual and link in-
formation of an image can be accurately extracted. Then an
image graph is constructed by using block-level link analy-
sis techniques. Hence for each image, three types of repre-
sentations are obtained, visual feature-based representation,
textual feature-based representation and graph-based
representation. Initial experimental results show that by
combining textual and graph-based representation for image
clustering, the system can reveal the semantic structure of
the Web images. The search results are clustered into differ-
ent semantic categories. For each category, several images
were selected as representative images, so that the user can
quickly understand the main topics of the search results.

The images in each category are then reorganized based on
their visual features to make the cluster more visually desir-
able to users. A thorough experimental evaluation needs to
be carried out to investigate the robustness of the technique.

3.6. Summary

We have identified five major categories of current tech-
niques used in reducing the ‘semantic gap’ as summarized
in Fig. 9. Ontology-based algorithms are easy to design
and are suitable to applications with simple semantic fea-
tures. However, in most cases, machine learning techniques
are required to learn more complex semantics. Due to its
simplicity in implementation and the intuitive mapping from
low-level features to high-level concepts using decision
rules, decision tree is a promising tool for image retrieval
if the learning problem can be well modelled. RF has been
proved to be effective in boosting image retrieval accuracy.
The problem is that most current systems requires about five
or even more iterations before it converges to a stable perfor-
mance level, but users are usually impatient and may give up
after two or three tries [16,35,69,109]. Using ST to support
image retrieval seems to be a practical and promising way to
reduce the ‘semantic gap’. Web image retrieval is an active
research area, and we look forward to a practical product to
be delivered in the near future. Many systems combine one
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or more of these techniques to implement semantic-based
image retrieval. For example, RF is often combined with
object-ontology, and machine learning [27,31,70], Web im-
age retrieval systems usually employ one or more of the
other four types of techniques [63,72] to derive semantic
features.

Besides the major techniques discussed above, there are
some other interesting works. For example, in Ref. [34],
based on statistical parameters derived from some testing
data, the database images are classified into semantic cat-
egories, such as texture and non-texture, graph and photo-
graph. In Ref. [113], an image is spectrally separated into
different layers, each retaining only pixels in areas with sim-
ilar ‘busyness’. In this way, it associates color features with
perceptual meanings. For example, a flat area is very possi-
ble to be associated with backgrounds or interior of an object
and a busy area may be associated with textured surfaces or
object boundaries. The algorithm in Ref. [114] attempts to
relate human perception to low-level image features by rec-
ognizing the central object of an image as the region with
significant color distribution. This is based on the assump-
tion that people tend to locate the most interesting object at
the center of the frame when they take a picture.

4. Image database and performance evaluation

There are so far no standard test data and PE model for
CBIR systems.

4.1. Image databases

In the surveyed papers, more than half of systems use a
subset of Corel image dataset [115] to test retrieval perfor-
mance, others use either self-collected images or other im-
age sets such as LA resource pictures [116], Kodak database
of consumer images [77]. Brodatz textures [45] are widely
used in perceptual texture feature studies [30,44,67]. Images
collected from Internet serve as another data source espe-
cially for systems targeting at Web image retrieval [24,63].

Many researchers tend to use natural scenery images as
test bed for semantic extraction as such images are easier to
analyse than other images. The reasons are tow-fold. Firstly,
the types of objects are limited. Main scenery object types
include sky, tree, building, mountain, grass, water, and snow,
etc. Secondly, compared with other features of image re-
gions, shape features are less important in analysing scenery
images than in other images. Thus we can avoid our weak-
ness in extracting high-level semantics from shape features
due to segmentation inaccuracy [50].

Corel image database contains a large amount of images
of various contents ranging from animals and outdoor sports
to natural sceneries. These images are pre-classified into dif-
ferent categories of size 100 by domain professionals. Some
researchers think that Corel image dataset meets all the re-
quirements to evaluate an image retrieval system, because of

its large size, heterogeneous content and human annotated
ground truth available [101]. But some other researchers
consider Corel image database not suitable for CBIR
performance evaluation because the associated ground truth
(category labels) are often too high-level to be useful in
performance analysis [117,118]. Although it is still con-
troversial about Corel images dataset is suitable for CBIR
performance evaluation or not, it is so far the most widely
used.

In our opinion, Corel image database is good in its large
size and various contents available. However, to be used for
CBIR performance evaluation, some pre-processing work is
necessary for the following two reasons: (1) some images
with similar content are divided into different categories. For
examples, the images in ‘Ballon1’ and ‘Ballon2’ are actu-
ally in the same category, same for category ‘Cuisine’ and
‘Cuisines’; (2) some ‘category labels’ are very abstract and
the images within the same category can be largely varied in
content. For instance, the category ‘Australia’ includes pic-
tures of city building, crowds in street, Australian wild an-
imals, etc. Fig. 10 gives a few examples. It is very difficult
to measure image similarities within such groups.

Hence, it is appropriate to select a subset of these images
as ground truth, or to make some necessary changes in set-
ting group truth data.

Considering the above mentioned problems in Corel
image database, in Ref. [119], a new reference data set is
presented for evaluating image retrieval algorithms. The
authors have collected a large data set of human evalua-
tions of retrieval results, both for query by image example
and query by text. The data domain is 16,000 images from
the Corel data set. Totally 20,000 query-result pairs were
evaluated for query by example image, and 5000 pairs for
query by text. The data is claimed to be independent of
any particular image retrieval algorithm and can be used to
compare many algorithms without further data collection.
The data and calibration software are available online at
http://kobus.ca/research/data.

For video retrieval, standard test data is available from
TREC video retrieval evaluation (TRECVID). The TREC
conference series is sponsored mainly by National Institute
of Standards and Technology (NIST) to encourage research
in information retrieval by providing large test collection,
uniform scoring procedures and a forum for organizations
interested in comparing their results. In 2001 and 2002, a
video ‘track’ is sponsored for research in automatic segmen-
tation, indexing and content-based retrieval of digital video.
From 2003, this track became an independent evaluation
workshop two days before TREC conference.

4.2. Vocabulary

To find an ‘ideal’ vocabulary representing the rich
semantics of images is not an easy task. In Ref. [120], psy-
chophysical experiments are conducted to gain insight into
the semantic categories that guide the human perception of
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Fig. 10. Example corel images from category ‘Australia’.

image similarity. By analysing the perceptual data, the most
important 20 semantic categories (for example, portraits,
crowds, cityscapes) in the perception of image similarity
were established. Then 40 low-level features were discov-
ered that best describe each category, such as number of
regions, color composition, number of edges, and the pres-
ence of central object. In Ref. [121], the authors establish a
so-called ‘lexical basis functions’ which contains 98 words
to represent images. In Ref. [112], a ‘WordNet’ on-line
lexical reference system is described. ‘WordNet’ organizes
English words into synonym sets, each representing one
underlying lexical concepts. It is a ‘dictionary’ based on
psycholinguistic principles so that searching can be done
conceptually instead of alphabetically.

The primary criterion in choosing a set of categories is
to ensure that they are sufficiently well-defined in terms of
the image descriptors and yet general enough to give mean-
ingful semantic associations [28]. The vocabulary used in
a system depends mainly on the image data set used. For
natural scenery images, usually the images are classified
into about 10–20 categories including water, sky, tree, sand,
grass, mountain, snow, etc. For example, in Ref. [28], 11
categories are chosen: brick, cloud, fur, grass, ice, road,
rock, sand, skin, tree, and water. In Ref. [116], 10 semantic
categories are defined: beach, building, Disneyland, desert,
mountain, freeway, downtown, park, people, and unknown.
In Ref. [50], the authors discuss the identification of six
high-level scenery features: sky, building, tree, water wave,
placid water, and ground.

However, for real-world image database retrieval, such
small vocabulary is far from enough. It is believed that hu-
mans can recognize about 5000–30,000 object categories.
Category learning with such large vocabulary is very diffi-
cult and much work still remains to be done in this area. In
Ref. [98], an incremental Bayesian algorithm is developed
to recognize 101 object categories. To our knowledge, this is
so far the largest vocabulary set used in object recognition.

4.3. Performance evaluation

Usually precision and recall are used in CBIR system to
measure retrieval performance. Precision (Pr) is defined as

the ratio of the number of relevant images retrieved (Nr ) to
the number of total retrieved images K. Recall (Re) is defined
as the number of retrieved relevant images Nr over the total
number of relevant images available in the database Nt

Re = Nr/Nt , Pr =Nr/K . (5)

It is ‘ideal’ to have both high Pr and Re. Therefore, instead
of using Pr or Re individually, usually a joint Pr(Re) curve
is used to characterize the performance of image retrieval
system [101].

As recall is often low in color image retrieval system,
Pr(Re) curve is less meaningful than it is in text-based re-
trieval systems. Many researchers are adopting precision-
scope curve to evaluate image retrieval performance [122].
Scope(Sc) specifies the number of images returned to the
user, that is K in Eq. (5). For a particular scope Sc, Pr(Sc)
can be computed as

Pr(Sc) = Nr/Sc. (6)

Another performance measure used is the rank (Ra) mea-
sure [122–124]. The rank measure is defined as the average
rank of the retrieved images. It is clear that the smaller the
rank, the better the performance.

While Pr(Sc) only cares if a relevant image is retrieved
or not, Ra(Sc) also cares the rank of the retrieved image.
Suppose there are two retrieval systems, ‘system1’ and ‘sys-
tem2’. If Pr1(Sc) > Pr2(Sc) and Ra1(Sc) < Ra2(Sc), then
definitely ‘system1’ is better than ‘system2’. However, if
Pr1(Sc) > Pr2(Sc) and Ra1(Sc) > Ra2(Sc), we cannot tell
which system is better.

5. Research issues

Most of the current image retrieval systems focus on im-
proving the accuracy of retrieval. From system point of view,
there are some other issues to be further studied.

5.1. Query language design

Query mechanisms play an important role in bridging
the ‘semantic gap’. A specialized query language designed
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for CBIR could provide a means of addressing many of
the problems associated with conventional query paradigms
such as query-by-example and query-by-sketch. However,
there has little recent work addressing this issue [125].

In Ref. [125], the authors argue that “query languages
constitute an important avenue for further work in devel-
oping CBIR query mechanisms.” They design a retrieval
language—the OQUEL query language. The retrieval pro-
cess takes place entirely within the ontology domain and is
defined by the syntax and semantics of the query. The for-
mat of text queries is highly flexible as the system does not
reply on the pre-annotation of images. The vocabulary has
400 words relating to the semantic descriptors (assigned to
segmented regions on the basis of low-level features) in-
cluding synonyms obtained by WordNet [112]. Query ex-
ample, “some green colored vegetation in the center which
is of similar size as blue sky at the top.” The OQUEL lan-
guage supports queries with either simple keyword phrases
or complex compound.

In Ref. [51], a natural query language is designed for
querying image databases. The vocabulary of the query
language is based on the concept of ‘semantic indicators’
(elementary semantic categories, such as sky, flower), while
the syntax captures the basic patterns in human perception
of semantic categories (such as ‘crowds’, ‘outdoor scenes’)
[51]. The language is claimed to be simple yet expressive.
It is simple as the words of the language are almost limited
to the names of the semantic indicators which are often
described with a single word (e.g., snow, mountain). These
words can be used to construct sentence expressing an as-
sertion about the image. For instance, “the number of skin
regions is greater than 5”. During retrieval process, all the
database images are tested against the query and only those
satisfying the assertion are selected.

In Ref. [126], the authors use sub-image to represent the
semantic content of the query in a Search and Retrieve Web
(SRW) service for searching databases containing metadata
and objects. The semantic content is captured using the mul-
tiscale color coherent vector and the texture features com-
puted from wavelet decomposition. The user can use the
sub-image query to express ‘find a picture with person or
object like this’, ‘find a painting with this class of cracks’,
etc.

Compared with the other methods in reducing the ‘se-
mantic gap’, query language is relatively ill-understood and
deserves greater attention [125].

5.2. High-dimensional indexing of image features

As the size of image database is increasing rapidly, re-
trieval speed will be an important factor to be concerned.
Hence off-line multi-dimensional image data indexing is
more and more necessary. Among the surveyed papers,
only a few include multi-dimensional feature indexing as
an integrated part of their CBIR systems. For example, in

Ref. [127], a k-means clustering algorithm [128] is used to
cluster regions according to their features. In Ref. [129],
R-tree [130] is used to index MBR (maximum bounding
box) of regions.

As the dimensionality of image features are usually high
(up to tens or hundreds), traditional indexing algorithms
such as k-d-b tree [131], quad-tree [132], and R-tree [130]
are not suitable for image feature space indexing, due to the
well-known ‘curse of dimensionality’ problem [133]. That
is, the performance of these indexing algorithms degrades
as the dimensionality of feature space increases. It is re-
ported that when the dimensionality is above 10, the perfor-
mance is no better than a simple sequential scan [134]. To
relieve this problem, high-dimensional indexing algorithms
such as X-tree [135], VA-file [134], and i-Distance [136]
have been introduced. However, such algorithms focus only
on how to index but not what to index. That is, they are de-
signed without considering the specific properties of image
features.

Some effort has been made in designing indexing al-
gorithms specifically for image database. For example,
in Ref. [137], a prototype image database system is
implemented—the FIDS (Flexible Image Database System)
system. In this system, the bare-bones triangle inequality
algorithm is used to index image data and to sharply reduce
the number of images needed to be directly compared to a
query image for a given distance measure. FIDS system al-
lows user great flexibility in run-time to find similar images
using complex combinations of many pre-defined distance
measures. In Ref. [138], a RBIR system using index is
designed. In this system, the regions in the database im-
ages are indexed using an algorithm named AWS

0 to speed
up the evaluation of k-nearest neighbor queries. This algo-
rithm computes the optimal matching between regions in
the query image and regions in a database image, so as to
maximize the overall similarity score between images.

Further work is still to be done in efficient high-
dimensional image feature indexing for real-world image
database retrieval.

5.3. Standard DBMS extended for image retrieval

In many image retrieval systems such as Photobook [5],
the data and features are typically stored in files addressed
by names. When trying to scale up to a large database and a
large number of users, this approach is likely to run into data
integrity and performance problems. It is clear that when
large image database come into view, the connection be-
tween CBIR and database management system (DBMS) is
inevitable.

QBIC [4] and Virage [6] systems have taken one step be-
yond the read-only database and extended standard DBMS
for image retrieval. In Ref. [139], a relational database sys-
tem POSTGRES is used for storing and managing digital
images and their associated textual data.
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Making image retrieval as a plug-in module in an exist-
ing DBMS not only solves the image data integrity prob-
lem and allows dynamic updates, but also provides natural
integration with features derived from other sources [15].
A truly integrated CBIR system would require the inte-
gration of content-based similarity, interaction with users,
visualization of image database, database management for
retrieval relevant images, etc. [15].

5.4. Standard image testbed and performance evaluation
model

Though many researchers choose to use Corel images
as test data to evaluate their CBIR systems, there is so far
no standard test bed and different subsets of Corel images
are used in different systems for performance evaluation.
In addition, though precision and recall are often used
to measure retrieval performance, the queries performed
by different researchers are usually different. Hence, it
is hard to compare the performance of different CBIR
systems.

In Ref. [118], using same subset of Corel images and
the same set of performance measures, the authors evaluate
the retrieval performance of same CBIR system in different
ways, by submitting different query images and by setting
different ground truth data. The results show that it is very
easy to get different retrieval performance, even with the
same image collection, the same CBIR system and the same
performance measures. It demonstrated that it is impossible
to objectively compare the performances of different CBIR
systems unless it is clearly stated which images were used as
test data, which were used as queries, and which parameters
have been used to measure performance.

Hence, a standard image database with a query set and
corresponding performance measure model is highly in need
for objective performance evaluation of CBIR systems.

6. Conclusions

Research in content-based image retrieval (CBIR) in the
past has been focused on image processing, low-level fea-
ture extraction, etc. Extensive experiments on CBIR systems
demonstrate that low-level image features cannot always de-
scribe high-level semantic concepts in the users’ mind. It is
believed that CBIR systems should provide maximum sup-
port in bridging the ‘semantic gap’ between low-level visual
features and the richness of human semantics.

This paper provides a comprehensive survey of recent
work towards narrowing down the ‘semantic gap’. We
have identified five major categories of state-of-the-art
techniques: (1) using object ontology to define high-level
concepts; (2) using supervised or unsupervised machine
learning methods to associate low-level features with
query concepts; (3) introducing relevance feedback into
retrieval loop for continuous learning of users’ intention;

(4) generating semantic template to support high-level im-
age retrieval; (5) making use of the textual information on
the Web and the visual content of images for WWW im-
age retrieval. We observe that though significant amount of
work has been done in this area, there is so far no generic
approach for high-level semantic-based image retrieval. In
addition, current systems focus on retrieval at Level 2, and
there is yet no good solution for Level 3 retrieval.

Focusing on the differences between CBIR with high-
level semantics and traditional systems with low-level fea-
tures, this paper also provides useful insights into how to
obtain salient low-level features to facilitate ‘semantic gap’
reduction. In addition, current techniques in image similarity
measure are described. As conventional Minkowski metric-
based similarity measure cannot effectively model human
perception, perceptual image similarity measure is to be
further studied. Test dataset and performance evaluation of
CBIR systems are also discussed. We believe that establish-
ing a standard test set and evaluation model is necessary for
objective performance comparison.

Based on the current technologies available and the de-
mand from practical applications, a few open issues are iden-
tified from system point of view, including query-language
design, integration of image retrieval with database manage-
ment system, high-dimensional image feature indexing, etc.

To implement a full-fledged image retrieval system with
high-level semantics requires the integration of salient low-
level feature extraction, effective learning of high-level se-
matics, friendly user inferface, and efficeint indexing tool.
Most systems understandably limit their contributions to one
or two of these components. A CBIR framework providing
a more balanced view of all the constituent components is
in need.

Acknowledgement

The authors are grateful for the many specific and valuable
comments made by the reviewer.

References

[1] J. Eakins, M. Graham, Content-based image retrieval, Technical
Report, University of Northumbria at Newcastle, 1999.

[2] I.K. Sethi, I.L. Coman, Mining association rules between low-level
image features and high-level concepts, Proceedings of the SPIE
Data Mining and Knowledge Discovery, vol. III, 2001, pp. 279–290.

[3] S.K. Chang, S.H. Liu, Picture indexing and abstraction techniques
for pictorial databases, IEEE Trans. Pattern Anal. Mach. Intell. 6 (4)
(1984) 475–483.

[4] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D.
Petkovic, W. Equitz, Efficient and effective querying by image
content, J. Intell. Inf. Syst. 3 (3–4) (1994) 231–262.

[5] A. Pentland, R.W. Picard, S. Scaroff, Photobook: content-based
manipulation for image databases, Int. J. Comput. Vision 18 (3)
(1996) 233–254.



Y. Liu et al. / Pattern Recognition 40 (2007) 262–282 279

[6] A. Gupta, R. Jain, Visual information retrieval, Commun. ACM 40
(5) (1997) 70–79.

[7] J.R. Smith, S.F. Chang, VisualSeek: a fully automatic content-
based query system, Proceedings of the Fourth ACM International
Conference on Multimedia, 1996, pp. 87–98.

[8] W.Y. Ma, B. Manjunath, Netra: a toolbox for navigating large image
databases, Proceedings of the IEEE International Conference on
Image Processing, 1997, pp. 568–571.

[9] J.Z. Wang, J. Li, G. Wiederhold, SIMPLIcity: semantics-sensitive
integrated matching for picture libraries, IEEE Trans. Pattern Anal.
Mach. Intell. 23 (9) (2001) 947–963.

[10] F. Long, H.J. Zhang, D.D. Feng, Fundamentals of content-based
image retrieval, in: D. Feng (Ed.), Multimedia Information Retrieval
and Management, Springer, Berlin, 2003.

[11] Y. Rui, T.S. Huang, S.-F. Chang, Image retrieval: current techniques,
promising directions, and open issues, J. Visual Commun. Image
Representation 10 (4) (1999) 39–62.

[12] A. Mojsilovic, B. Rogowitz, Capturing image semantics with
low-level descriptors, Proceedings of the ICIP, September 2001,
pp. 18–21.

[13] X.S. Zhou, T.S. Huang, CBIR: from low-level features to high-
level semantics, Proceedings of the SPIE, Image and Video
Communication and Processing, San Jose, CA, vol. 3974, January
2000, pp. 426–431.

[14] Y. Chen, J.Z. Wang, R.Krovetz, An unsupervised learning approach to
content-based image retrieval, IEEE Proceedings of the International
Symposium on Signal Processing and its Applications, July 2003,
pp. 197–200.

[15] A.W.M. Smeulders, M. Worring, A. Gupta, R. Jain, Content-based
image retrieval at the end of the early years, IEEE Trans. Pattern
Anal. Mach. Intell. 22 (12) (2000) 1349–1380.

[16] F. Jing, M. Li, L. Zhang, H.-J. Zhang, B. Zhang, Learning in region-
based image retrieval, Proceedings of the International Conference
on Image and Video Retrieval (CIVR2003), 2003, pp. 206–215.

[17] H. Feng, D.A. Castanon, W.C. Karl, A curve evolution approach
for image segmentation using adaptive flows, Proceedings of the
International Conference on Computer Vision (ICCV’01), 2001,
pp. 494–499.

[18] W.Y. Ma, B.S. Majunath, Edge flow: a framework of boundary
detection and image segmentation, IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 1997, pp. 744–749.

[19] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE
Trans. Pattern Anal. Mach. Intell. (PAMI) 22 (8) (2000) 888–905.

[20] D. Comaniciu, P. Meer, Robust analysis of feature spaces: color image
segmentation, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1997, pp. 750–755.

[21] P.L. Stanchev, D. Green Jr., B. Dimitrov, High level color similarity
retrieval, Int. J. Inf. Theories Appl. 10 (3) (2003) 363–369.

[22] K.A. Hua, K. Vu, J.-H. Oh, SamMatch: a flexible and efficient
sampling-based image retrieval technique for large image databases,
Proceedings of the Seventh ACM International Multimedia
Conference (ACM Multimedia’99), November 1999, pp. 225–234.

[23] Y. Deng, B.S. Manjunath, Unsupervised segmentation of color-texture
regions in images and video, IEEE Trans. Pattern Anal. Mach. Learn.
(PAMI) 23 (8) (2001) 800–810.

[24] H. Feng, T.-S. Chua, A boostrapping approach to annotating large
image collection, Workshop on Multimedia Information Retrieval in
ACM Multimedia, November 2003, pp. 55–62.

[25] Y. Liu, D.S. Zhang, G. Lu, W.-Y. Ma, Region-based image retrieval
with perceptual colors, Proceedings of the Pacific-Rim Multimedia
Conference (PCM), December 2004, pp. 931–938.

[26] C. Carson, S. Belongie, H. Greenspan, J. Malik, Blobworld: image
segmentation using expectation-maximization and its application to
image querying, IEEE Trans. Pattern Anal. Mach. Intell. 8 (8) (2002)
1026–1038.

[27] R. Shi, H. Feng, T.-S. Chua, C.-H. Lee, An adaptive image
content representation and segmentation approach to automatic image

annotation, International Conference on Image and Video Retrieval
(CIVR), 2004, pp. 545–554.

[28] C.P. Town, D. Sinclair, Content-based image retrieval using semantic
visual categories, Society for Manufacturing Engineers, Technical
Report MV01-211, 2001.

[29] J.R. Smith, C.-S. Li, Decoding image semantics using composite
region templates, IEEE Workshop on Content-Based Access of Image
and Video Libraries (CBAIVL-98), June 1998, pp. 9–13.

[30] W.K. Leow, S.Y. Lai, Scale and orientation-invariant texture matching
for image retrieval, in: M.K. Pietikainen (Ed.), Texture Analysis in
Machine Vision, World Scientific, Singapore, 2000.

[31] V. Mezaris, I. Kompatsiaris, M.G. Strintzis, An ontology approach to
object-based image retrieval, Proceedings of the ICIP, vol. II, 2003,
pp. 511–514.

[32] K.N. Plataniotis, A.N. Venetsanopoulos, Color Image Processing and
Applications, Springer, Berlin, 2000.

[33] B.S. Manjunath, et al., Color and texture descriptors, IEEE Trans.
CSVT 11 (6) (2001) 703–715.

[34] J.Z. Wang, J. Li, D. Chan, G. Wiederhold, Semantics-sensitive
retrieval for digital picture libraries, Digital Library Magazine,
vol. 5(11), 1999.

[35] E. Chang, S. Tong, SVMactive-support vector machine active learning
for image retrieval, Proceedings of the ACM International Multimedia
Conference, October 2001, pp. 107–118.

[36] X. Zheng, D. Cai, X. He, W.-Y. Ma, X. Lin, Locality preserving
clustering for image database, Proceedings of the 12th ACM
Multimedia, October 2004.

[37] B.S. Manjunath, et al., Introduction to MPEG-7, Wiley, New York,
2002.

[38] T. Gevers, A. Smeulders, Content-based image retrieval by viewpoint-
invariant color indexing, Image Vision Comput. 17 (1999) 475–488.

[39] W. Wang, Y. Song, A. Zhang, Semantics retrieval by content and
context of image regions, Proceedings of the 15th International
Conference on Vision Interface (VI’2002), May 2002, pp. 17–24.

[40] K.N. Plataniotis, et al., Adaptive fuzzy systems for multichannel
signal processing, Proc. IEEE 87 (9) (1999) 1601–1622.

[41] R. Lukac, et al., Vector filtering for color imaging, IEEE Signal
Process. Mag. (2005) 74–86.

[42] P. Stanchev, Using image mining for image retrieval, IASTED
Conference “Computer Science and Technology,” Cancun, Mexico,
May 2003, pp. 214–218.

[43] H. Tamura, S. Mori, T. Yamawaki, Texture features corresponding
to visual perception, IEEE Trans. Syst. Man Cybern. 8 (6) (1978)
460–473.

[44] F. Liu, R.W. Picard, Periodicity, directionality, and randomness: wold
features for image modeling and retrieval, IEEE Trans. Pattern Anal.
Mach. Intell. 18 (7) (1996) 722–733.

[45] P. Brodatz, Textures, A Photographic Album for Artists & Designers,
Dover, New York, NY, 1966.

[46] Y. Liu, X. Zhou, W.Y. Ma, Extraction of texture features from
arbitrary-shaped regions for image retrieval, International Conference
on Multimedia and Expo (ICME04), Taipei, June 2004, pp.
1891–1894.

[47] P.W. Huang, S.K. Dai, Image retrieval by texture similarity, Pattern
Recognition 36 (2003) 665–679.

[48] R. Mehrotra, J.E. Gary, Similar-shape retrieval in shape data
management, IEEE Comput. 28 (9) (1995) 57–62.

[49] F. Mokhtarian, S. Abbasi, Shape similarity retrieval under affine
transforms, Pattern Recognition 35 (2002) 31–41.

[50] Y. Song, W. Wang, A. Zhang, Automatic annotation and retrieval of
images, J. World Wide Web 6 (2) (2003) 209–231.

[51] A. Mojsilovic, B. Rogowitz, ISee: perceptual features for image
library navigation, Proceedings of the SPIE, Human Vision and
Electronic Imaging, vol. 4662, 2002, pp. 266–277.

[52] S.K. Chang, Q.Y. Shi, C.W. Yan, Iconic indexing by 2D string, IEEE
Trans. Pattern Anal. Mach. Intell. 9 (3) (1987) 413–428.



280 Y. Liu et al. / Pattern Recognition 40 (2007) 262–282

[53] W. Ren, M. Singh, C. Singh, Image retrieval using spatial context,
Ninth International Workshop on Systems, Signals and Image
Processing (IWSSIP’02), Manchester, November, 2002.

[54] D. Androutsos, K.N. Plataniotis, A.N. Venetsanopoulos, Distance
measures for color image retrieval, Proceedings of the International
Conference on Image Processing, vol. 2, 1998, pp. 770–774.

[55] Z. Chen, B. Zhu, Some formal analysis of Rocchio’s similarity-based
relevance feedback algorithm, Inf. Retr. 5 (2002) 61–86.

[56] S. Ardizzoni, I. Bartolini, M. Patella, Windsurf: region-based image
retrieval using wavelets, 10th International Workshop on Database
and Expert Systems Applications, Florence, Italy, 1999, pp. 167–173.

[57] Y. Rubner, C. Tomasi, L. Guibas, A metric for distributions
with applications to image databases, Proceedings of the IEEE
International Conference on Computer Vision (ICCV’98), January
1998, pp. 59–67.

[58] B. Li, E. Chang, C.-T. Wu, DPF-a perceptual function for image
retrieval, Proceedings of the International Conference on Image
Processing (ICIP), vol. II, September 2002, pp. 597–600.

[59] S. Berretti, A.D. Bimbo, P. Pala, Retrieval by shape similarity with
perceptual distance and effective indexing, IEEE Trans. Multimedia
2 (4) (2000) 225–239.

[60] N. Vasconcelos, A. Lippman, A multiresolution manifold distance
for invariant image similarity, IEEE Trans. Multimedia 7 (1) (2005)
127–142.

[61] A. Kushki, et al., Retrieval of image from artistic repositories using
a decision fusion framework, IEEE Trans. Image Process. 13 (3)
(2004) 277–289.

[62] A. Kushki, et al., Query feedback for interactive image retrieval,
IEEE Trans. CSVT 14 (5) (2004) 644–655.

[63] D. Cai, X. He, Z. Li, W.-Y. Ma, J.-R. Wen, Hierachical clustering of
WWW image search results using visual, textual and link information,
Proceedings of the ACM International Conference on Multimedia,
2004.

[64] D. Cai, X. He, W.-Y. Ma, J.-R. Wen, H. Zhang, Organizing WWW
images based on the analysis of page layout and web link structure,
Proceedings of the International Conference on Multimedia and Expo
(ICME), Taipei, 2004.

[65] J. Ren, Y. Shen, L. Guo, A novel image retrieval based
on representative colors, Proceedings of the Image and Vision
Computing, N.Z., November 2003, pp. 102–107.

[66] S. Kulkarni, B. Verma, Fuzzy logic for texture queries in CBIR,
Proceedings of the International Conference on Computational
Intelligence and Multimedia Applications (ICCIMA), Xi’an, China,
2003, pp. 223–226.

[67] C.-Y. Chiu, H.-C. Lin, S.-N. Yang, Texture retrieval with linguistic
descriptors, IEEE Pacific Rim Conference on Multimedia, 2001,
pp. 308–315.

[68] A. Vailaya, M.A.T. Figueiredo, A.K. Jain, H.J. Zhang, Image
classification for content-based indexing, IEEE Trans. Image Process.
10 (1) (2001) 117–130.

[69] L. Zhang, F. Liu, B. Zhang, Support vector machine learning
for image retrieval, International Conference on Image Processing,
October 2001, pp. 7–10.

[70] Y. Zhuang, X. Liu, Y. Pan, Apply semantic template to support
content-based image retrieval, Proceedings of the SPIE, Storage
and Retrieval for Media Databases, vol. 3972, December 1999,
pp. 442–449.

[71] W. Chang, J. Wang, Metadata for multi-level content-based retrieval,
Third IEEE Meta-Data Conference, April 1999.

[72] H. Feng, R. Shi, T.-S. Chua, A bootstrapping framework for
annotating and retrieving WWW images, Proceedings of the ACM
International Conference on Multimedia, 2004.

[73] M. Obeid, B. Jedynak, M. Daoudi, Image indexing and retrieval using
intermediate features, Proceedings of the Ninth ACM International
Conference on Multimedia, Ottawa, Canada, 2001, pp. 531–533.

[74] D.M. Conway, An experimental comparison of three natural language
color naming models, Proceedings of the East–West International

Conference on Human-Computer Interactions, St. Petersburg, Russia,
1992, pp. 328–339.

[75] T. Berk, L. Brownston, A. Kaufman, A new color-naming system
for graphics language, IEEE Comput. Graphics Appl. 2 (3) (1982)
37–44.

[76] A.R. Rao, G.L. Lohse, Towards a texture naming system: identifying
relevant dimensions of texture, IEEE Proceedings of the Fourth
Conference on Visualization, 1993, pp. 220–227.

[77] J. Luo, A. Savakis, Indoor vs outdoor classification of consumer
photographs using low-level and semantic features, International
Conference on Image Processing (ICIP), vol II, October 2001,
pp. 745–748.

[78] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Springer,
New York, 2001.

[79] V.N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
[80] W. Jin, R. Shi, T.-S. Chua, A semi-naı¨ve bayesian method

incorporating clustering with pair-wise constraints for auto image
annotation, Proceedings of the ACM Multimedia, 2004.

[81] S. Tong, E. Chang, Support vector machine active learning for
image retrieval, Proceedings of the ACM International Conference
on Multimedia, Ottawa, Canada, 2001, pp. 107–118.

[82] N. Vasconcelos, A. Lippman, Library-based coding: a representation
for efficient video compression and retrieval, Proceedings of the Data
Compression Conference (DCC97), March 1997, pp. 121–130.

[83] S.D. MacArthur, C.E. Brodley, C.-R. Shyu, Relevance feedback
decision trees in content-based image retrieval, Proceedings of the
IEEE Workshop on Content-Based Access of Image and Video
Libraries (CBAIVL’00), June 2000, pp. 68–72.

[84] W.-C. Low, T.-S. Chua, Color-based relevance feedback for image
retrieval, Proceedings of the International Workshop on Multimedia
DBMS (IM-MMDBMS’98), August 1998, pp. 116–123.

[85] M. Pal, P.M. Mather, Decision tree based classification of remotely
sensed data, Proceedings of the 22nd Asian Conference on
Remote Sensing (ACRS), Singapore, vol. 1, November 2001,
pp. 245–248.

[86] L.O. Hall, N. Chawla, K.W. Bowyer, Decision tree learning on very
large data sets, IEEE International Conference on System, Man and
Cybernetics (SMC) 1998, pp. 187–222.

[87] J.R. Quanlan, Induction of decision tree, Machine Learning, vol. 1,
Kluwer Acedemic Publisher, Boston, 1986, pp. 81–106.

[88] U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-
valued attributes for classification learning, Proceedings of the 13th
International Joint Conference on Artificial Intelligence (IJCAI),
France, 1993, pp. 1022–1027.

[89] U.M. Fayyad, K.B. Irani, On the handling of continuous-valued
attributes in decision tree generation, Mach. Learn. 8 (1992) 87–102.

[90] D. Stan, I.K. Sethi, Mapping low-level image features to semantic
concepts, Proceedings of the SPIE: Storage and Retrieval for Media
Databases, 2001, pp. 172–179.

[91] M. Bilenko, S. Basu, R.J. Mooney, Integrating constraints and
metric learning in semi-supervised clustering, Proceedings of the
21st International Conference on Machine Learning (ICML), July
2004, pp. 81–88.

[92] A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and
an algorithm, Advances in Neural Information Processing Systems,
vol. 14, MIT Press, Cambridge, MA, 2002.

[93] N. Vasconcelos, The design of end-to-end optimal image retrieval
systems, in: Proceedings of the International Conference on ANN,
Istanbul, Turkey, 2003.

[94] N. Vasconcelos, On the efficient evaluation of probabilistic similarity
functions for image retrieval, IEEE Trans. Inf. Theory 50 (7) (2004)
1482–1496.

[95] R. Fergus, P. Perona, A. Zisserman, Object class recognition by
unsupervised scale-invariant learning, Proceedings of the Computer
Vision and Pattern Recognition, 2003.



Y. Liu et al. / Pattern Recognition 40 (2007) 262–282 281

[96] Y. Li, J. Bilmes, L.G. Shapiro, Object class recognition using images
of abstract regions, International Conference on Pattern Recognition,
August 2004.

[97] Y. Li, L.G. Shapiro, J. Bilmes, A generative/discriminative learning
algorithm for image classification, International Conference on
Computer Vision, October 2005.

[98] L. Fei-Fei, R. Fergus, P. Perona, Learning generative visual models
from few training examples: an incremental Bayesian approach tested
on 101 object categories, Computer Vision and Pattern Recognition,
Workshop on Generative-Model Based Vision, 2004.

[99] G. Salton, Automatic Text Processing, Addison-Wesley, Reading,
MA, 1989.

[100] Y. Rui, T.S. Huang, M. Ortega, S. Mehrotra, Relevance feedback:
a power tool for interactive content-based image retrieval, IEEE
Trans. Circuits Video Technol. 8 (5) (1998) 644–655.

[101] Y. Rui, T.S. Huang, Optimizing learning in image retrieval,
Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition, June 2000, pp. 1236–1243.

[102] X.S. Zhu, T.S. Huang, Relevance feedback in image retrieval: a
comprehensive review, Multimedia System 8 (6) (2003) 536–544.

[103] G.-D. Guo, A.K. Jain, W.-Y. Ma, H.-J. Zhang, Learning similarity
measure for natural image retrieval with relevance feedback, IEEE
Trans. Neural Networks 13 (4) (2002) 811–820.

[104] Y. Rui, T.S. Huang, S. Mehrotra, Content-based image retrieval with
relevance feedback in Mars, Proceedings of the IEEE International
Conference on Image Processing, 1997, pp. 815–818.

[105] Z. Chen, B. Zhu, On the complexity of Rocchio’s similarity-based
relevance feedback algorithm, ISAAC, 2005.

[106] F. Jing, et al., Relevance feedback in region-based image retrieval,
IEEE Trans. CSVT 14 (5) (2004) 672–681.

[107] T.S. Huang, X.S. Zhou, M. Nakazato, Y. Wu, I. Cohen, Learning
in content-based image retrieval, International Conference on
Development and Learning (ICDL’02), 2002, pp. 155–162.

[108] Q. Tian, Y. Yu, T.S. Huang, Incorporate discriminant analysis with
EM algorithm in image retrieval, Proceedings of the International
Conference on Multimedia and Expo (ICME), 2000, pp. 299–302.

[109] Y. Lu, C. Hu, X. Zhu, H. Zhang, Q. Yang, A unified framework for
semantics and feature based relevance feedback in image retrieval
systems, ACM International Conference on Multimedia, 2000, pp.
31–37.

[110] A.D. Doulamis, N.D. Doulamis, Generalized nonlinear relevance
feedback for iterative content-based retrieval and organization, IEEE
Trans. CSVT 14 (5) (2004) 656–671.

[111] S.-F. Chang, W. Chen, H. Sundaram, Semantic visual templates:
linking visual features to semantics, International Conference on
Image Processing (ICIP), Workshop on Content Based Video Search
and Retrieval, vol. 3, October 1998, pp. 531–534.

[112] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, K. Miller,
Introduction to Wordnet: an on-line lexical database, Int. J.
Lexicography 3 (1990) 235–244.

[113] G. Qiu, K.-M. Lam, Spectrally layered color indexing, Proceedings
of the International Conference on Image and Video Retrieval
(CIVR), 2002, pp. 100–107.

[114] S. Kim, S. Park, M. Kim, Central object extraction for object-
based image retrieval, International Conference on Image and Video
Retrieval (CIVR), 2003, pp. 39–49.

[115] 〈http://www.corel.com〉.
[116] Z. Yang, C.-C. Jay Kuo, Learning image similarities and categories

from content analysis and relevance feedback, Proceedings of the
ACM Multimedia Workshops, 2000, pp. 175–178.

[117] X.Y. Jin, CBIR: difficulty, challenge, and opportunity, Microsoft
PPT, October 2002.

[118] H. Mueller, S. Marchand-Maillet, T. Pun, The truth about Corel-
evaluation in image retrieval, Proceedings of the International
Conference on Image and Video Retrieval (ICIVR), 2002,
pp. 38–49.

[119] N.V. Shirahatti, K. Barnard, Evaluating image retrieval, Proceedings
of the Computer Vision and Pattern Recognition (CVPR), San Diego,
CA, vol. 1, June 2005, pp. 955–961.

[120] A. Mojsilovic, B. Rogowitz, Capturing image semantics with low-
level descriptors, International Conference on Image Processing
(ICIP), Greece, 2001, pp. 18–21.

[121] J.A. Black, K. Kahol, P. Kuchi, G. Fahmy, S. Panchanathan,
Characterizing the high-level content of natural images using lexical
basis functions, Proceedings of the SPIE, vol. 5007, Human Vision
and Electronic Imaging, Santa Clara, 2003, pp. 378–391.

[122] J. Huang, S. Kuamr, M. Mitra, W.-J. Zhu, R. Zabih, Image indexing
using color correlogram, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’97), 1997, pp.
762–765.

[123] R. Zhao, W.I. Grosky, From feature to semantics: some preliminary
results, Proceedings of the International Conference on Multimedia
and Expo (ICME), 2000, pp. 679–682.

[124] R. Zhao, W.I. Grosky, Negotiating the semantic gap: from feature
maps to semantic landscapes, J. Pattern Recognition 35 (2002)
593–600.

[125] C.P. Town, D. Sinclair, Language-based querying of image
collections on the basis of an extensible ontology, Int. J. Image
Vision Comput. 22 (3) (2004) 251–267.

[126] P.H. Lewis, et al., An integrated content and metadata based retrieval
system for art, IEEE Trans. Image Process. 13 (3) (2004) 302–313.

[127] J.Z. Wang, Y. Du, Scalable integrated region-based image retrieval
using IRM and statistical clustering, IEEE Proceedings of the ACM
and IEEE Joint Conference on Digital Libraries, Roanoke, VA, ACM,
June 2001, pp. 268–277.

[128] J.A. Hartigan, M.A. Wong, Algorithm AS136: a k-means clustering
algorithm, Appl. Stat. 28 (1) (1979) 100–108.

[129] Y. Chahir, L. Chen, Spatialized multi-visual features-based image
retrieval, Int. J. Comput. Appl. 6 (4) (1999) 190–199.

[130] A. Guttman, R-tree: a dynamic index structure for spatial searching,
Proceedings of the ACM SIGMOD International Conference on
Management of Data, Boston, MA, 1984, pp. 47–57.

[131] J. Robinson, The k-d-b-tree: a search structure for large
multidimensional dynamic indexes, Proceedings of the ACM
SIGMOD International Conference on Management of Data, 1981,
pp. 10–18.

[132] R. Finkel, J. Bentley, Quad-tree: a data structure for retrieval on
composite keys, Acta Inf. 4 (1) (1974) 1–9.

[133] H. Yamamoto, H. Iwasa, N. Yokaya, H. Takemura, Content-based
similarity retrieval of images based on spatial color distribution, 10th
International Conference on Image Analysis and Processing, Venice,
Italy, September 1999, pp. 951–956.

[134] R. Weber, H.-J. Schek, S. Blott, A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces, Proceedings of the 24th VLDB Conference, New York, USA,
1998, pp. 194–205.

[135] S. Berchtold, D.A. Keim, H.-P. Kriegel, The X-tree: an index
structure for high-dimensional data, Proceedings of the 22nd VLDB
Conference Mumbai (Bombay), India, 1996, pp. 28–39.

[136] C. Yu, B.C. Ooi, K.-L. Tan, H.V. Jagadish, Indexing the distance:
an efficient method to KNN processing, Proceedings of the 27th
VLDB Conference, Roma, Italy, 2001, pp. 421–430.

[137] A.P. Berman, L.G. Shapiro, Triangle-inequality-based pruning
algorithms with triangle tries. Proceedings of the SPIE Conference
on Storage and Retrieval for Image and Video Databases, January
1999.

[138] I. Bartolini, P. Ciaccia, M. Patella, A sound algorithm for region-
based image retrieval using an index, International Workshop on
Database and Expert Systems Applications (DEXA), 2000, pp.
930–934.

[139] V.E. Ogle, CHABOT-retrieval from a relational database of images,
Computer 28 (9) (1995) 40–48.

http://www.corel.com


282 Y. Liu et al. / Pattern Recognition 40 (2007) 262–282

About the Author—Ms. YING LIU received her B.Sc. and M.Sc. degree from Dept. of Infor. Eng. from Xidian University, China, in 1993 and 1996,
respectively. Then she served as an associate lecturer in the same Dept. for 2 years. She received her M.Eng. degree in Dept. of E.E. from National
University of Singapore in 2000. After this, she worked as a research Engineer in Center for Signal Processing, Nanyang Technological University in
Singapore. Ms. Liu is now a Ph.D. candidate in Gippsland School of Computing and Information Technology, Monash University, Australia.

About the Author—Dr. DENGSHENG ZHANG received B.Sc. in Mathematics and B.A. in English in 1985 and 1987, respectively, both from China. He
spent 12 years on teaching Mathematics and Computing before he was involved in his Ph.D. program in 1999. He received Ph.D. in Computer Technology
from Monash University, Australia, in 2002. He is now a lecturer in Gippsland School of Computing and Information Technology of Monash University.
Dr. Zhang has over 10 years research experience in the area of multimedia and has published over 20 referred international journal and conference papers.

About the Author—Dr. GUOJUN LU obtained his Ph.D. in 1990 from Loughborough University of Technology, and B.Eng. in 1984 from Nanjing
Institute of Technology (now South East University). He is currently an associate professor at Gippsland School of Computing and Information Technology,
Monash University, Australia. He has held positions in Loughborough University of Technology, National University of Singapore, and Deakin University.
Dr. Lu’s main research interests are in multimedia information indexing and retrieval, multimedia data compression, quality of service management, and
multimedia compression. He has published over 50 technical papers in these areas and authored the books Communication and Computing for Distributed
Multimedia Systems (Artech House, 1996), and Multimedia Database Management Systems (Artech House, to appear in 1999). He has over 10 years
research experience in multimedia computing and communications.

About the Author—Dr. WEI-YING MA received his B.S. degree in E.E. from National Tsing Hua University in Taiwan in 1990, and his M.S. and Ph.D.
degrees in E.C.E. from the University of California at Santa Barbara (UCSB) in 1994 and 1997, respectively. From 1994 to 1997 he was engaged in the
Alexandria Digital Library (ADL) project in UCSB while completing his Ph.D. He developed the Netra system which is regarded as one of the most
representative image retrieval systems. From 1997 to 2001, he was with HP Labs working in the field of multimedia adaptation and distributed media
services infrastructure for mobile Internet. He joined Microsoft Research Asia in April 2001 as the Research Manager of the Web Search and Mining
Group, leading the research in the areas of information retrieval, text mining, search, multimedia management, and mobile browsing. He currently serves
as an Editor for the ACM/Springer Multimedia Systems Journal and Associate Editor for the Journal of Multimedia Tools and Applications published by
Kluwer Academic Publishers. He has served on the organizing and program committees of many international conferences including ACM Multimedia,
ACM SIGIR, CVPR, etc.


	A survey of content-based image retrieval with high-level semantics
	Introduction
	The semantic gap
	High-level semantic-based image retrieval

	Low-level image features
	Image segmentation
	Low-level image features
	Color feature
	Texture feature
	Shape
	Spatial location

	Similarity measure

	Reducing the `semantic gap'
	Object-ontology
	Machine learning
	Supervised learning
	Unsupervised learning
	Object recognition techniques for image retrieval

	Relevance feedback (RF)
	Semantic template
	Web image retrieval
	Summary

	Image database and performance evaluation
	Image databases
	Vocabulary
	Performance evaluation

	Research issues
	Query language design
	High-dimensional indexing of image features
	Standard DBMS extended for image retrieval
	Standard image testbed and performance evaluation model

	Conclusions
	Acknowledgement
	References


