
WEB-SCALE SYSTEM FOR IMAGE SIMILARITY SEARCH:
WHEN THE DREAMS ARE COMING TRUE

David Novak, Michal Batko and Pavel Zezula

Masaryk University, Brno, Czech Republic
{david.novak|batko|zezula}@fi.muni.cz

ABSTRACT

Digital images have become a commodity which is searched
on the Web as ordinarily as web pages. However, current
large-scale engines search the images only on the basis of
their annotations, while the content-based similarity systems
do not seem to be ready for such scales. In this paper, we open
the way to Web-scale image similarity search. We present a
flexible system based on the metric space model and on the
peer-to-peer paradigm. It uses M-Chord and M-Tree struc-
tures as its fundamental components and measures the image
similarity by a combination of five MPEG-7 features. The
system has been implemented including a graphical interface
for online demonstrations and it currently indexes 10 million
images crawled from the Web. We propose a novel strategy
for approximate evaluation of similarity queries and we test
its performance by a series of experiments. The results show
that the system provides high-quality answers with response
times around 0.5 second.

1. INTRODUCTION

The massive expansion of information technologies and the
spontaneous growth of the World Wide Web have led to mass
production and publishing of digital images. Currently, the
images on the Web can be retrieved on the basis of their tex-
tual annotations via several large-scale search engines. Al-
though the annotation-based searching is straightforward and
suitable for many scenarios, there is a natural requirement
for searching the images by their content. To the best of
our knowledge, there is no technology for Web-scale content-
based search which would allow a user to say: “Give me im-
ages from the whole Web which are similar to this photo.”

In this paper, we introduce a very general, fully functional
system for content-based similarity search on digital images
which currently indexes 10 million pictures from the Web. Its
distributed architecture adopts the principles of peer-to-peer
(P2P) data structures which proved to be scalable and very
flexible. Unlike majority of other approaches, our system is
based purely on the metric space model [1]. Using this model
is a two-edged sword: (1) It provides us with a unique gen-
erality and almost absolute freedom in defining and combin-

ing the similarity measures. (2) On the other hand, index-
ing techniques have to abandon classic schemas and the met-
ric searching can be less efficient, especially on simple data
domains. For complex data, like the features extracted from
digital images, the classic techniques may loose their perfor-
mance because of high dimensionality and may have prob-
lems with efficient indexing of very large collections. The
relative efficiency of the metric-based approach grows with
the volume and complexity of data and it seems to be a good
solution for the application considered in this work.

The presented system uses the M-Chord [2] and the
M-Tree [3], two efficient metric-based indexing and search-
ing techniques born from a decade of intensive research. Even
with their support, the precise evaluation of similarity queries
may be expensive. In this paper, we seek efficient approx-
imate strategies which would cut high fraction of the costs
while keeping most of the quality of the answer. As our sys-
tem is P2P based, we do the approximation on two levels –
the query is navigated only to the most relevant peers and an
approximate search is used on the peers’ local data. The ex-
periments prove that our approximate strategies are valuable.

Let us summarize the purpose and contribution of the pa-
per and its further organization:

• In Section 2, we describe several related image-search
systems and approaches.

• Section 3 mentions fundamentals of the presented sys-
tem: indexing based on metric space and P2P paradigm.

• In Section 4, we describe particular components of a
scalable system for image similarity search, namely, the
P2P structure M-Chord, the dynamic metric index M-
Tree, and a specific combination of MPEG-7 features.
Section 4.3 comments on the prototype realization of
the system.

• Section 5 provides a set of performance experiments
which focus on the search approximation; the results
prove the efficiency of our algorithms and their on-line
response times. The paper is concluded in Section 6.



2. RELATED WORK

Large-scale searching and indexing methods for digital im-
ages have been the center of attention of many academic and
commercial research groups. In the case of a retrieval based
on annotations or other attributes associated with the images,
large data collections can be managed efficiently because tra-
ditional well-established indexing and searching techniques
can be applied. A number of systems use this approach to
index Web-scale image collections, e.g. Google Images, Ya-
hoo!, ExaLead1, or PicSearch2. Because these systems may
suffer from a lack of trustworthy image annotations, there are
attempts to increase the quality of image labeling via inter-
active public-domain games, e.g. The ESP Game3 or Google
Image Labeler4. Another example of an attribute-based search
application is a photo-searching by the geographic locations
where the images were taken. This functionality is provided,
e.g. by Flickr system5, which allows users to query about 30
million images in this way.

The content-based image retrieval is a an orthogonal ap-
proach where the images are searched according to their vi-
sual content similarity. Such techniques typically extract a
characterization (signature) of the image content, which is
then used for indexing and searching. Recent comprehensive
surveys [4, 5] describe a number of approaches and their ap-
plications. These systems are usually specialized and tuned
for a specific application domain and/or they manage rela-
tively small data collections. The Tiltomo project6 indexes
about 140,000 images from Flicker and searches them by color
and texture characteristics; it also allows to combine it with
“subject” searching. The ImBrowse7 system allows to search
a collection of about 750,000 images by color, texture, shapes
and combinations of these (employing five different search
engines).

Another direction of research is an automatic image anno-
tating based on the analysis of image content. System ALIPR [6]
uses a training set of images which is separated into a num-
ber of concept categories; these categories are annotated. The
indexed images are categorized and annotated by means of
extracting visual features from them and by applying statisti-
cal methods. Searching is then based purely on the assigned
annotations. The ALIPR has a public demo8; its internal func-
tionality is provided by an older system SIMPLIcity [7].

A great research effort is still put into this area, let us men-
tion at least activities integrated in the Chorus9 initiative. To
the best of our knowledge, there is no technology for general

1http://www.exalead.com/
2http://www.picsearch.com/
3http://www.espgame.org/
4http://images.google.com/imagelabeler/
5http://www.flickr.com/map/
6http://www.tiltomo.com/
7http://media-vibrance.itn.liu.se/vinnova/cse.php
8http://www.alipr.com/
9http://www.ist-chorus.org/

image similarity search which would scale to data volumes
comparable to the number of images covered by the Web (tens
of millions to billions).

3. SYSTEM FUNDAMENTALS

Let us describe the fundamental ideas of our system: (1) in-
dexing and searching based on the metric space abstraction
and (2) distributed architecture based on the P2P paradigm.

3.1. Metric Space Approach

The metric space [1] is considered to be the most general data
model for similarity search which can still be indexed and
searched efficiently. The model treats the data as unstructured
objects together with a function which measures proximity of
object pairs. Formally, metric spaceM is a pairM = (D, d),
where D is the domain of objects and d is the total distance
function d : D×D −→ R satisfying the following postulates
for all objects x, y, z ∈ D:

d(x, y) ≥ 0 (non-negativity),
d(x, y) = 0 iff x = y (identity),
d(x, y) = d(y, x) (symmetry),
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The semantics of this concept is: The smaller the distance
between two objects, the more similar they are. The met-
ric space is typically searched by queries which follow the
query-by-example paradigm. A query is formed by an object
q ∈ D and some constraint on the data to be retrieved from
the indexed dataset I ⊆ D. There are two basic types of these
queries: (1) the range query R(q, r), which retrieves all ob-
jects o ∈ I within the range r from q (i.e. {o|d(q, o) ≤ r}),
and (2) the nearest neighbors query kNN (q, k), which returns
the k objects from I with the smallest distances to q.

Generality of Metric Space

A great advantage of the metric space model is its generality
– there are no constraints on the data types, only the distance
function is restricted by the metric postulates, which are quite
natural. In an n-dimensional vector space, the basic family of
metric distances are the Minkowski Distances (or Lp metrics);
for an integer parameter p, they are defined as follows:

Lp[(x1, . . . , xn), (y1, . . . , yn)] =

(
n∑

i=1

|xi − yi|p
) 1

p

.

The L2 metric is the classic Euclidean distance. There is a
number of other metric functions for vectors, for instance,
Quadratic Form [1] distance or the Earth Mover’s Distance [8].
These measures express more complicated relationships and
are important for, e.g., color histogram comparison. We can
also define metric functions on non-vector data. A typical



way of measuring proximity of two strings is by Edit dis-
tance (Levenshtein distance). The Jaccard’s Coefficient or
Hausdorff Distance can be used to measure the dissimilarity
of two sets. For more examples of metric functions see the
recent books [1, 9].

Indexing and Searching

In general, the metric-searching problem can be defined as
follows: Given a finite dataset I ⊆ D, preprocess or struc-
ture I so that similarity queries are answered efficiently. The
indexing and searching techniques can only view the data as
a metric space – the objects have no visible structure and the
distance measure d is a “black-box” function.

The general purpose of any index or data structure is to
partition the data space into segments so that not all of them
have to be searched at query time. In the metric space, the
partitioning can only be defined with the aid of some desig-
nated objects (pivots) from the domain D. See specialized
literature [1] for details on metric-based partitioning, filtering
and searching mechanisms.

3.2. Structured Peer-to-Peer Networks

In the current era of digital explosion, the scalability of search-
ing techniques is very important. In practice, it means that
they should adapt to increasing data volumes and number of
users without significant performance degradation. Since any
centralized architecture is limited by the hardware infrastruc-
ture which cannot be boosted boundlessly, a natural solution
is to shift towards distributed computing.

The peer-to-peer (P2P) paradigm was established in or-
der to define fully decentralized, highly scalable and virtually
limitless environment. The P2P network consists of peers –
nodes participating in the network – which provide their re-
sources to the network in exchange for the access to the net-
work services. Every peer can contact any other peer directly,
provided it knows the destination peers’ identification.

To build a distributed index, a variant of the P2P paradigm
called structured peer-to-peer networks can be used. Each
peer manages a part of the overall dataset and maintains a
navigation information which allows to route a query from
any peer to the one with relevant data. In the case of metric
similarity indices, there are usually several peers that hold the
data which satisfies a query. Therefore, a query is routed to
multiple peers which search their local data and compute par-
tial answers. The originating peer then gathers all the partial
answers and merges them into the total result of the query.

4. SYSTEM ARCHITECTURE AND SETTINGS

In this section, we describe the architecture and settings of
the presented system for image similarity search. The data
and the similarity measure are described in Section 4.1 and

they form a metric space. We use the above-described P2P
approach to build a very flexible distributed data structure;
namely we use a system called M-Chord [2] to distribute the
data among individual peers and to evaluate similarity queries.
Each peer organizes the data locally in a metric-based index
structure M-Tree [3]. Details about these structures are pro-
vided in Section 4.2. Section 4.3 says a few words about the
system implementation and current configuration.

4.1. Measuring Image Similarity

In our system, the similarity of images is measured by virtue
of several of MPEG-7 features [10] extracted from the im-
ages. As the individual features with their distance func-
tions [11] form metric spaces, we can combine them into
a single metric function by a weighted sum of the individ-
ual feature distances. The following table summarizes the
MPEG-7 features we use, their respective distance measures,
and their weights in the aggregate metric function.

MPEG-7 Feature Metric Weight
Scalable Color L1 metric 2
Color Structure L1 metric 3
Color Layout sum of L2 metrics 2
Edge Histogram special [11] 4
Homogeneous Texture special [11] 0.5

The weights have been determined experimentally trying
to reflect human notion of similarity for general images. In
this scenario, the weights are fixed but our technology also
enables user-specified weights and thus tuning of the similar-
ity measure for various image types [12]. The computation of
the aggregate distance function takes approximately 0.01 ms
on a standard CPU and the five-features image representation
requires about 1 kB of memory (the features together form a
vector of more than 280 dimensions).

4.2. Scalable Similarity Indexing

This section is devoted to the M-Chord and the M-Tree struc-
tures – the fundamental components of the introduced system.

4.2.1. M-Chord

The M-Chord [2] is a scalable distributed data structure for
indexing and similarity searching in metric data. It is based
on the concept of structured P2P networks introduced in Sec-
tion 3.2. The system has been inspired by a centralized vector-
based method called iDistance [13] – they both map the data
space into a one-dimensional domain in a similar way. The
M-Chord then applies one-dimensional P2P protocol, for in-
stance Chord [14] or Skip Graphs [15], in order to divide the
data among the peers and to provide navigation within the sys-
tem. The M-Chord search algorithms navigate the similarity
queries to the relevant peers.



C2

p1

p2

q
r

(a) (b)
*c *c0 c2*c 3*c0

0

p2

p1

c 2 3

C

C1

p

0

0

C

C2

C1

p

0

(mchord)

Fig. 1. M-Chord mapping and search principles.

The M-Chord mapping, schematically depicted in Fig-
ure 1a, works basically as follows: Several reference points
are selected from the sample dataset – we call these objects
pivots and are denoted as pi. The data space is partitioned in
a Voronoi-like manner into clusters (Ci). Following the iDis-
tance idea, the one-dimensional mapping of the data objects
is defined according to their distances from the cluster’s pivot.
Having a separation constant c, the M-Chord key for an object
x ∈ Ci is calculated as

mchord(x) = d(pi, x) + i · c.

To evaluate a range query R(q, r), the data space to be searched
is specified by mchord domain intervals in clusters which in-
tersect the query region – see an example in Figure 1b.

Having the data space mapped into the mchord domain,
every active node of the system takes over responsibility for
an interval of keys. The range queries are routed to peers
overlapping with the relevant intervals as seen in Figure 1b.
Processing of a nearest neighbors query kNN (q, k) consists
of two phases: (1) The query is evaluated locally on “the most
promising peer(s)”; in this way, we obtain an upper bound rk

on the distance to the kth nearest object from q. (2) Range
query R(q, rk) is executed and the k nearest objects from the
result are returned. There is a tradeoff between the costs of the
first phase and the precision of the rk estimation and, thus,
cost of the second phase. We use an experimentally tuned
settings which visits several peers in the first phase.

The experiments [2, 16] prove the M-Chord efficiency and
scalability but the precise similarity searching is inherently
expensive. The largest part of the costs is paid for the precise-
ness of the answer, which is not necessarily required in real
applications. Therefore, we propose an approximate strat-
egy of kNN queries evaluation. The algorithm is adjustable
and the basic idea is to explore only the “most promising”
parts of the “most promising” clusters. The distance between
the query object q and the cluster pivot d(q, pi) is taken as a
heuristic of the quality of the cluster, so the algorithm visits
only a specified number of clusters in the order of this dis-
tance. Within a cluster Ci, the query is first navigated to a
peer responsible for key d(pi, q) + i · c, which is the most
promising spot on the mchord domain for cluster Ci. This

peer searches its local data, returns the partial answer to the
originator, and the query is sent to some number of its adja-
cent peers within the cluster. The efficiency of this algorithm
and its variants is studied in Section 5.

4.2.2. M-Tree

The M-Tree [3] is a popular dynamic disk-oriented structure
for metric data indexing. Similarly to B-Trees and R-Trees,
it is a balanced tree built in a bottom-up fashion by splitting
overfilled nodes. Each entry of the M-Tree internal node con-
tains a pivot and a covering radius which specify a sphere-like
region of the space covering by the entry and its sub-tree. The
leaf nodes store data objects together with their distances to
the pivot in the parent node. The internal nodes keep dis-
tances to the parent node’s pivot as well. All these values
are utilized in order to achieve pruning effect for the search
algorithms [3].

The M-Tree can evaluate standard similarity queries – the
range query and the kNN query. The latter can be processed
also in an approximate fashion. The approximate algorithm
follows the generic scheme [1]: It maintains a dynamic queue
of M-Tree nodes sorted according to a heuristic which ensures
that the “most promising” entries are processed first. If the
currently processed entry is an internal node, its child nodes
are re-inserted into the queue; the leaf nodes are processed
according to standard kNN algorithm. The processing can be
stopped at any time according to a predefined condition; in
our implementation, the approximate search is stopped when
a certain portion of data has been searched.

A number of M-Tree extensions have been published [1].
We implement the Pivoting M-Tree (PM-Tree) extension [17],
which employs additional filtering and pruning by means of
precomputed distances between the indexed objects and a fixed
set of pivots. We use the same set of pivots as the M-Chord
and thus the object-pivot distances are computed only once
during the insert operation. The M-Tree is used as a local in-
dex at each peer of the M-Chord network. The overall system
is schematically depicted in Figure 2.

4.3. Implementation and Settings

The presented system has a fully functional prototype imple-
mentation. We have exploited the Metric Similarity Search
Implementation Framework (MESSIF) [18], which supports
the implementation and integration of individual components
of the system. The whole system is written in Java.

The dataset is composed of 10 million images (photos
and other graphics) downloaded from a photo-sharing sys-
tem Flickr10. The data is distributed among 500 M-Chord
peers (each managing approximately 20,000 images in its lo-
cal PM-Tree storage). The M-Chord uses twenty pivots and

10http://www.flickr.com/



M
−

T
re

e

M
−

T
re

e

M
−

T
re

e

M
−

T
re

e
M

−
T

re
eM

−
T

re
e

M
−

T
re

e

que
ry

response

Fig. 2. Schema of the distributed system.

shares these pivots with the PM-Trees. Although the PM-
Tree is a disk-oriented structure, we currently try to keep all
the data in main memory – all the peers require around 50 GB
of memory including the Java overhead.

In the current configuration, the peers share a hardware
infrastructure with sixteen CPUs and 64 GB RAM in total.
Because each of the peers is a self-standing Java process and
peers communicate via standard protocols from the IP fam-
ily, migration of the system to practically any infrastructure is
a straightforward process. The distributed structure indexes
the extracted features together with a unique identifier of the
corresponding image. The similarity queries then return these
identifiers, so the actual images can be retrieved from an ex-
ternal source and displayed by the graphical user interface.
An example of the interface is shown in Figure 3. The query
objects are either taken from the system image collection or
can be external images downloaded from the Web – in the lat-
ter case the features have to be extracted before the query can
be processed.

5. PERFORMANCE EVALUATION

This section is devoted to the performance analysis of our sys-
tem. We focus on the aspects important for the practical use
of the system: the quality and costs of the approximate kNN
queries. The experiments do not refer to the query throughput
of the system but it directly depends on the number of CPUs
the system uses.

5.1. Experiments Description

In the experiments, we focus on various settings of the M-
Chord approximate algorithm for kNN queries. Let us recall
that it has two free variables: number of clusters to visit and
number of nodes to access within each cluster. We first vary

Fig. 3. Example of a result of kNN (q, 10) query.

these values and search for an optimal setting. Then we pro-
pose an adaptive algorithm to determine the number of clus-
ters and we compare it with the optimal fixed setting deduced
from the first two experiments.

We measure the quality of approximate results by recall
and error on position. The recall is the fraction of the precise
kNN answer which is retrieved by the approximate query. In
this case, the recall is equal to the precision. The error on po-
sition [1] assesses the accuracy of the approximate search by
measuring the discrepancy between the ordered list of answer
objects returned by the approximate and the precise evalua-
tions. Having an approximate kNN (q, k) answer and the set
I of all objects indexed by the system, the relative error on
position is measured as:

EP =
∑k

i=1(I(oi)− i)
k · |I|

where I(oi) is the position of the i-th object from the approx-
imate answer in the list of all objects form I ordered by their
distance from object q.

The costs of the search are measured by the query re-
sponse time, the messages sent during the query processing,
the number of peers contacted by a particular query, and by
the number of computations of the distance function d. If not
specified otherwise, the results are for k = 30 and are taken
as an average over 50 query objects selected from the indexed
dataset.

5.2. Fixed Approximation: Number of Peers in Clusters

Data from every M-Chord cluster is spread among a certain
number of adjacent peers. In the first experiment, we vary
the number of peers involved in query processing within each
cluster and try to find a suitable setting. The queries visit all
clusters, that means 20, in our setting. As the clusters are
not all of the same size, we specify the peers visited per clus-
ter relatively as a “percentage of peers in a particular cluster”.
This requires that we estimate the number of peers in the clus-
ter. Recall that the M-Chord pivots are selected from a given



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100
visited nodes per cluster [%]

Recall

full local search
30% local search

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0  20  40  60  80  100
visited nodes per cluster [%]

Relative error on position

full local search
30% local search

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0  20  40  60  80  100
visited nodes per cluster [%]

Response time

full local search
30% local search

re
ca

ll 
[%

]

re
sp

on
se

 ti
m

e 
[s

]

(a) (b) (c)

7
re

l. 
er

ro
r 

on
 p

os
. *

 1
0

Fig. 4. Approximate search: varying percentage of visited peers per cluster for all 20 clusters.

 0  5  10  15  20
 0

 20

 40

 60

 80

 100

full local search
30% local search

Recall

 0
 5

 10
 15
 20
 25
 30

 0  5  10  15  20

full local search
30% local search

Response time

clusters visited clusters visited clusters visited

re
sp

on
se

 ti
m

e 
[s

]

(b) (c)(a)

Relative error on position
re

l. 
er

ro
r 

on
 p

os
. *

 1
0

7

re
ca

ll 
[%

]

 0

 2

 4

 6

 8

 10

 0  5  10  15  20

full local search
30% local search

Fig. 5. Approximate search: varying number of visited clusters; number of peers visited per cluster fixed at 40 %.

sample set (before the system is built). In this phase, we can
calculate the percentage distribution of the data in individual
clusters. Having this knowledge and having the total number
of peers in the system, each peer can estimate the number of
peers in its cluster. The current number of peers in the system
can be sent along with each query.

Figure 4 shows the results of this experiment. As each
peer organizes its local data in an PM-Tree, which provides
an approximate search strategy, we present all results for pre-
cise local search at every peer and also for approximate search
with a 30% threshold (experimentally estimated to have the
best performance/costs ratio). We can see that the recall, pre-
sented in graph (a), grows very fast up to some 40 % where it
is about 90 %. The strategy with local approximation exhibits
the same trend and does not degrade the recall significantly.
This is confirmed by the error on position in graph (b) which
very soon gets near zero. Note that values presented in this
graph are not divided by the size for the indexed dataset (107).
Let us find a word-interpretation of the error on position, e.g.
for 40 % which is about value of 2: The approximated result
misses some objects so that each object in the result is, on
average, “shifted by two positions higher”.

The average query response times are shown in graph (c).
We can see that the values increase linearly for both variants
of the local search, however, the 30% local approximation is
significantly faster. The growth is caused by the fact that the
500-peers system shares 16 CPUs – note that visiting all clus-
ters and 100 % peers per cluster means that all peers actually

search their local data. The conclusion from this experiment
is twofold: (1) The local approximation spares a significant
portion of the costs while preserving high quality of the an-
swer; (2) visiting about 40 % of nodes in the cluster is a rea-
sonable tradeoff between the gain on the quality and the costs.

5.3. Fixed Approximation: Number of Clusters

In the second experiment, we fix the percentage of peers ac-
cessed in each cluster at 40 % and we vary the number of
clusters visited by a query. The results are shown in Figure 5
again for both the full and the approximated local search. We
can see that visiting one cluster gives results with quite a low
recall around 65 % and a rather high error on position. How-
ever, visiting only one additional cluster improves the results
significantly. The quality does not further improve for more
than five clusters. In correspondence with the previous exper-
iment, the recall cannot get over 90 % because every query
visits only 40 % of peers in each cluster.

The response times exhibit an expected behavior: They
increase linearly with the number of clusters visited, since
more peers need to search their local data and they compete
for the 16 CPUs. We can see that visiting five clusters with the
full local search takes around 2 seconds. This can be consid-
ered an on-line response with a very good accuracy: Almost
90 % results of the precise answer shifted by no more than
three positions are retrieved. By visiting five clusters with
a local approximation, we reach only slightly worse quality
with response times of less than one second.



 0

 1

 2

 3

 4

 5

 0  20  40  60  80  100

Response time

fixed (full local)
fixed (30% local)
adaptive (full local)
adaptive (30% local)

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0  20  40  60  80  100

Relative error on position

fixed (full local)
fixed (30% local)
adaptive (full local)
adaptive (30% local)

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

Recall

fixed (full local)
fixed (30% local)
adaptive (full local)
adaptive (30% local)

re
ca

ll 
[%

]

re
sp

on
se

 ti
m

e 
[s

]

re
l. 

er
ro

r 
on

 p
os

. *
 1

0
7

k (a) k (b) k (c)

Fig. 6. Fixed vs. adaptive approximate kNN (q, k) search for variable k.

5.4. Adaptive Approximation

In the previous experiments, we have searched for an average
optimal setting for the approximation algorithm – number of
clusters and peers accessed in each cluster. Now we define a
heuristic that determines the number of clusters individually
for every query and we compare this approach with the opti-
mal fixed setting. The heuristic takes the clusters in the order
of distances between their pivots and the actual query point
d(pi, q). Cluster C0 is always visited and then, in a loop,
the next cluster Ci+1 is marked to be visited if d(pi+1, q) ≤
b·d(pi, q), where b is an experimentally-tuned constant. Value
of b is, naturally, greater than one and it is gradually decreased
as i grows. The value was determined so that queries visit
about 1–7 clusters.

In the last experiment, we compare this adaptive algo-
rithm with the algorithm which always visits five clusters.
Both algorithms access 40 % of peers in each cluster. We
vary k, the number of nearest neighbors to be retrieved by
kNN (q, k). The results for both precise and 30%-approximate
local search are presented in Figure 6. If we compare the pre-
cise and the approximate variants separately, we can see that
the recall and the error on position are almost identical for
smaller k. The differences slightly grow up to 3 % (in recall)
and 5 · 10−7 (in the relative error on position) for k = 100.
This proves that the objects missed by the approximation are
not within the most similar objects, which is important for the
user. Even if we compare the fixed algorithm with full lo-
cal search and the adaptive algorithm with approximate local
search, the answer qualities are very close.

The average response times of the adaptive algorithm are
roughly one half, compared to the fixed algorithm. This is due
to the fact that the adaptive algorithm visited only 2.5 clusters
on average (in fact, half of the queries hit only one cluster).
We also report on the other – more detailed – cost measures.
The number of messages interchanged between peers indicate
the load of the underlying network. The pure CPU costs can
be estimated by the number of computations of the distance
function d, because this is by far the most expensive opera-
tion. The parallel distance computations then represent the
maximal costs at individual peers. Table 1 summarizes these
values (again, averaged over 50 queries) for the adaptive and

the fixed approximation algorithms with k = 30 and with
30% local approximation. To establish a baseline, we show
the costs of the precise kNN .

kNN Adaptive Fixed Precise
Contacted peers 29.6 57.4 253.1
Total dist. comp. 166, 885 326, 418 1, 731, 418
Parallel dist. comp. 5, 993 6, 277 17, 744
Messages sent 73 141 589
Response time (ms) 562 985 3, 373

Table 1. Adaptive and fixed approximation and precise kNN .

We can see that the adaptive algorithm contacts practically
half the number of peers compared with the fixed approxima-
tion. On this account, the adaptive algorithm accesses less
data and the total number of distance computation is lower.
The parallel costs are practically equal. Since the accessed
peers compete for the shared pool of CPUs, the response times
are nearly two times higher for the fixed approximation. Also
the network is twice as much loaded. Note that at the naviga-
tion always needs at least two messages per peer whose local
index is consulted (one to contact it and one to return the par-
tial answer). In particular, the adaptive algorithm needs about
13 messages (73− 2 · 29.6) for additional query routing.

We can conclude that the adaptive algorithm with the local
approximation exhibits superior response times of about 0.5 s
and beats the fixed strategy also in all other cost measures.
The quality of its answers is slightly worse but the degradation
is tolerable and it is negligible for smaller values of k.

6. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a general distributed system
for content-based similarity search in large image collections.
The system is based purely on the metric space model and it
uses the P2P structure M-Chord and the dynamic metric index
M-Tree. The similarity of the images is measured by a met-
ric which combines five MPEG-7 features. The system has
been implemented including a graphical interface for demon-
strations and it currently indexes 10 million digital images
downloaded from the Web.



We have conducted a set of experiments to measure the
performance of the system. We focused on the response times
and the quality of our approximate search. The results prove
that, comparing to the precise similarity search, our approach
cuts major part of the costs while preserving a high quality
of the answer. The search response of the system is online.
The architecture of the system is very flexible and migrating
to another hardware infrastructure is straightforward.

The scalability of the architecture was confirmed when we
shifted from 1 million images to 10 million practically with-
out any performance degradation. In the future, we plan to
scale up to 100 million objects; at the moment we have pre-
liminary experience with 50 million images. Other directions
of our current and future work cover setting some theoretical
guarantees on the approximation and improving the perfor-
mance of both the precise and the approximation algorithms.

7. ACKNOWLEDGEMENTS

This research was supported by EU IST FP6 project 45128
(SAPIR), by national research project 1ET100300419, and
by Czech Science Foundation projects No. 201/06/1338 and
201/08/P507. The images were crawled and the features ex-
tracted by ISTI-CNR11, Pisa, Italy – a SAPIR project partner.
We are also grateful to project MetaCenter12 for providing the
hardware infrastructure.

8. REFERENCES

[1] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and
Michal Batko, Similarity Search: The Metric Space
Approach, vol. 32 of Advances in Database Systems,
Springer-Verlag, 2006.

[2] David Novak and Pavel Zezula, “M-Chord: A scalable
distributed similarity search structure,” in Proceedings
of INFOSCALE ’06, Hong Kong. 2006, ACM Press.

[3] Paolo Ciaccia, Marco Patella, and Pavel Zezula, “M-
Tree: An efficient access method for similarity search
in metric spaces.,” in Proceedings of VLDB’97, August
25–29, 1997, Athens, Greece, 1997, pp. 426–435.

[4] Remco C. Veltkamp and Mirela Tanase, “Content-based
image retrieval systems: A survey,” Tech. Rep. UU-CS-
2000-34, Department of CS, Utrecht University, 2002.

[5] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang,
“Image retrieval: Ideas, influences, and trends of the
new age,” ACM Computing Surveys, 2008, To appear.

[6] Jia Li and James Z. Wang, “Real-time computerized an-
notation of pictures,” in Proceedings of MULTIMEDIA
’06, New York, 2006, pp. 911–920, ACM Press.

11http://www.isti.cnr.it/
12http://meta.cesnet.cz/

[7] James Z. Wang, Jia Li, and Gio Wiederhold, “SIMPLIc-
ity: Semantics-sensitive integrated matching for picture
libraries,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 23, no. 9, pp. 947–963, 2001.

[8] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas,
“A metric for distributions with applications to image
databases,” in Proceedings of ICCV ’98, Washington,
DC, 1998, pp. 59–67, IEEE Computer Society.

[9] Hanan Samet, Foundations of Multidimensional and
Metric Data Structures, Computer Graphics and Ge-
ometric Modeling. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2005.

[10] MPEG-7, “Multimedia content description interfaces.
Part 3: Visual,” ISO/IEC 15938-3:2002, 2002.

[11] B.S. Manjunath, Phillipe Salembier, and Thomas
Sikora, Eds., Introduction to MPEG-7: Multimedia
Content Description Interface, John Wiley & Sons, Inc.,
New York, NY, USA, 2002.

[12] Michal Batko, Petra Kohoutková, and Pavel Zezula,
“Combining metric features in large collections,” in
Proceedings of SISAP ’08, 2008, To appear.

[13] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu,
and Rui Zhang, “iDistance: An adaptive B+-tree based
indexing method for nearest neighbor search,” ACM
TODS 2005, vol. 30, no. 2, pp. 364–397, 2005.

[14] Ion Stoica, Robert Morris, David R. Karger, Frans M.
Kaashoek, and Hari Balakrishnan, “Chord: A scalable
peer-to-peer lookup service for internet applications,” in
Proceedings of SIGCOMM 2001, San Diego, CA, Au-
gust 27–31, 2001. 2001, pp. 149–160, ACM Press.

[15] James Aspnes and Gauri Shah, “Skip graphs,” in Four-
teenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 2003, pp. 384–393.

[16] Michal Batko, David Novak, Fabrizio Falchi, and Pavel
Zezula, “On scalability of the similarity search in the
world of peers,” in Proceedings of INFOSCALE 2006,
Hong Kong, New York, 2006, pp. 1–12, ACM Press.

[17] Tomás Skopal, Jaroslav Pokorný, and Václav Snášel,
“PM-tree: Pivoting metric tree for similarity search in
multimedia databases,” in Proceedings of ADBIS, Bu-
dapest, Hungary, 2004.

[18] Michal Batko, David Novak, and Pavel Zezula, First
International DELOS Conference, Pisa, Italy, Febru-
ary 13-14, 2007, Revised Selected Papers, vol. 4877 of
LNCS, chapter MESSIF: Metric Similarity Search Im-
plementation Framework, pp. 1–10, Springer, 2007.


