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First-order interpretations

Definition

Given a (colored) graph G and a symmetric binary formula ¢(x, y),
we denote by ¢(G) the ¢-interpretation of G, that is, a graph
obtained from G by redefining edge relation such that

uv € E(¢(G)) <= G = ¢(u,v).

d(x,y) = x and y are
both green, and they
share a red neighbor
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First-order transductions

A (non-copying) transduction Given a graph G, we denote by
T is a composition of the 7(G) the class of graphs that
following operations: can be obtained from G using 7.
A class C is FO-transducible from
a class D if there is a

transduction 7 such that
e take an induced subgraph - U{r(G)|G € D}.

PP IEEL

e color vertices arbitrarily

e apply fixed interpretation
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Locality

e FO is local — recall the theorems of Gaifman and Hanf

= every FO transduction can be split into local and global part
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e FO is local — recall the theorems of Gaifman and Hanf

= every FO transduction can be split into local and global part

Definition (Local part) Definition (Glocal part)

A transduction 7 is strongly A graph H is a k-flip of a
r-local if it does not create edges graph G if H can be obtained
between vertices x, y at distance by coloring G using k colors
greater than r, and the existence  and possibly flipping

of an edge between x and y adjacency (edges became
depends only on the union of non-edges and vice versa)
r-neighborhoods of x and y. between some color classes.
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Locality

e FO is local — recall the theorems of Gaifman and Hanf

= every FO transduction can be split into local and global part

Definition (Local part) Definition (Glocal part)

A transduction 7 is strongly A graph H is a k-flip of a
r-local if it does not create edges graph G if H can be obtained
between vertices x, y at distance by coloring G using k colors
greater than r, and the existence  and possibly flipping

of an edge between x and y adjacency (edges became
depends only on the union of non-edges and vice versa)
r-neighborhoods of x and y. between some color classes.

Theorem (Ne3etfil, Ossona de Mendez, Siebertz)

If a graph class C is FO-transducible from a class D (without
copying), then there are number k and r, and a strongly r-local
transduction T such that C is contained in a k-flip of 7(D).
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Planar Product Structure Theorem

Definition (Strong product G X H of graphs G and H)
o ey * V(GEH) = V(G) x V(H)
- Tt -~ e [g1, m][g2, ho] € E(GXH) if one of the
I following conditions holds:
oy e g1 =g and hihy € E(H),
¢ } ,'I e gig» € E(G) and hy = hy, or
\ A o g8 € E(G) and hihy € E(H)
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Planar Product Structure Theorem

Definition (Strong product G X H of graphs G and H)
o eo—o—e * V(GXH)=V(G) x V(H)
St e [g1, h]lg2, h2] € E(GXH) if one of the
following conditions holds:
e g1 — & and h1h2 € E(H),
e gig» € E(G) and hy = hy, or
e gig» € E(G) and hi1hy € E(H).

Definition (Product structure)

A graph class C admits product structure if there is a constant k
such that every graph G € C is a subgraph of the strong product
P X M of a path P and a graph M of tree-width at most k.
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Planar Product Structure Theorem

Definition (Strong product G X H of graphs G and H)

‘o —_eo—o—e ® V(GXH)=V(G)x V(H)
o -="" o [g1, h][g2, h] € E(GRH) if one of the
following conditions holds:

e g1 =g and hihy € E(H),

e gig» € E(G) and hy = hy, or

e g1 € E(G) and hihy € E(H).

Definition (Product structure)

A graph class C admits product structure if there is a constant k
such that every graph G € C is a subgraph of the strong product
P X M of a path P and a graph M of tree-width at most k.

Theorem (Dujmovic, Joret, Micek, Morin, Ueckerdt, Wood)

Planar graphs as well as graphs embeddable on a fixed surface
admit product structure.
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Dense analogue of product structure

Definition (Product structure)

A graph class C admits product structure if there is a constant k
such that every graph G € C is a subgraph of the strong product
P X M of a path P and a graph M of tree-width at most k.

Definition (Product structure for dense graphs)

A graph class C admits hereditary product structure if there is a
constant k such that every graph G € C is an induced subgraph of
the strong product P XI M of a path P and a graph M of
clique-width at most k.
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Dense analogue of product structure

Definition (Product structure)

A graph class C admits product structure if there is a constant k
such that every graph G € C is a subgraph of the strong product
P X M of a path P and a graph M of tree-width at most k.

Definition (Product structure for dense graphs)

A graph class C admits hereditary product structure if there is a
constant k such that every graph G € C is an induced subgraph of
the strong product P Xl M of a path P and a graph M of
clique-width at most k.

Theorem

Let C be a graph class admitting product structure, and let D be a
graph class FO-transducible from C. Then, D is a flip of some
graph class D' which admits hereditary product structure.
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Product structure — another view
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Hereditary product structure = H-clique-width

A graph G has clique-width at most k if there is a
k-expression valued G.

k-expression: k colors and the following operations:
e Given c € [k], create a graph having single vertex with
color ¢
e Take disjoint union
e Given a pair of colors ¢; # ¢p, add edges between every
pair of vertices u, v satisfying that:
e color of u is ¢, and
e color of v is ¢

e Recolor ¢; to ¢
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Hereditary product structure = H-clique-width

A graph G has H-clique-width at most k if there is a loop
graph H € H and a (H,k)-expression valued G. If no such
expression exists, then we say that H-Clique-Width is co.
(H.k)-expression: k colors and the following operations:
e Given c € [k] and p € V/(H), create a graph having single
vertex with color ¢ and parameter vertex p € V(H)
e Take disjoint union
e Given a pair of colors ¢; # ¢p, add edges between every
pair of vertices u, v satisfying that:

e color of u is ¢, and
e color of v is ¢, and
e the parameter vertices of v and v are adjacent in H

e Recolor ¢; to ¢ without changing parameter vertices
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Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":
¢ ¢ ¢ ¢ & ¢ ¢ & & ...
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Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":
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Petr Hling&ny, Jan Jedelsky Transductions of Graph Classes Admitting Product Structure



Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":
¢ ¢ ¢ ¢ & ¢ ¢ & & ...
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Example: 2D grid
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Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":
¢ ¢ ¢ ¢ & ¢ ¢ & & ...
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Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":
¢ ¢ ¢ ¢ & ¢ ¢ & & ...
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Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":
¢ ¢ ¢ ¢ & ¢ ¢ & & ...
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Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":
¢ ¢ ¢ ¢ & ¢ ¢ & & ...
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Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":
¢ ¢ ¢ ¢ & ¢ ¢ & & ...
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Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":
¢ ¢ ¢ ¢ & ¢ ¢ & & ...
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Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":

¢ ¢ ¢ ¢ @ ¢ ...

&
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Example: 2D grid

2D grid has P°-clique-width at most 5
Create path colored “modulo 2":
D ¢

&

¢

Qoo
999%

@ @ o—©
Cr id:

e O 0 O 0 O ©
—O—"~0 O oO—@0
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Example: 2D grid

2D grid has P°-clique-width at most 5
Create path colored “modulo 2":
¢ ¢ ¢ ¢ ¢

¢

!

& & ...

Create a grid:

fodod
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O
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Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":
¢ ¢ ¢ ¢ ¢

o
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Create a grid:

o
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Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":
¢ ¢ ¢ ¢ ¢

o

&
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Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":
¢ ¢ ¢ ¢ ¢
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Example: 2D grid

2D grid has P°-clique-width at most 5
Create path colored “modulo 2":
¢ ¢ ¢ ¢ & ¢ ¢ & & ...

Create a grid:

08808884
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Example: 2D grid

2D grid has P°-clique-width at most 5
Create path colored “modulo 2":
¢ ¢ ¢ ¢ ¢

¢

B

Create a grid:

”E
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Example: 2D grid

2D grid has P°-clique-width at most 5
Create path colored “modulo 2":
¢

¢ ¢ ¢ ¢ & ¢ ¢

Create a grid:

i
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Example: 2D grid

2D grid has P°-clique-width at most 5
Create path colored “modulo 2":
¢

¢ ¢ ¢ ¢ & ¢ ¢

Create a grid:
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Example: 2D grid

2D grid has P°-clique-width at most 5
Create path colored “modulo 2":
¢

¢

HH

¢ ¢ ¢ ¢ @
e O 0 O

Create a grid:
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Example: 2D grid

2D grid has P°-clique-width at most 5
Create path colored “modulo 2":

¢ ¢ ¢ ¢ @
o O ©

Create a grid:

© 60 °
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Example: 2D grid

2D grid has P°-clique-width at most 5
Create path colored “modulo 2":

¢ ¢ ¢ ¢ @
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Example: 2D grid

2D grid has P°-clique-width at most 5

Create path colored “modulo 2":
& & ...

L

¢ ¢ ¢ ¢ @
o O ©

Create a grid:

O

- O
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Main result (again and more generally)

Let Q be a class of bounded degree simple graphs. We denote by
Q7 the reflexive closure of the r-th power of Q.

Definition

A graph class C admits Q-product structure if there is a constant k
such that every graph G € C is a subgraph of the strong product
QX M of a graph Q € Q and a graph M of tree-width at most k.

Theorem

Let C be a graph class admitting Q-product structure (such as that
class of planar graphs). Let D be a graph class FO-transducible
from C. Then, there are constants k, ¢, and r such that D is
contained in a k-flip (global path) of a class with Qf-clique-width
at most { (local part).
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Going there and back again

Definition (Product structure for dense graphs)

A graph class C admits hereditary product structure if there is a
constant k such that every graph G € C is an induced subgraph of
the strong product P XI M of a path P and a graph M of
clique-width at most k.

Theorem

Let D be a class of bounded stable clique-width (stable = does not
FO-transduce all half-graphs). Let C be a class admitting
hereditary product structure such that, the graph M from the
above definition can be chosen from D. Then, there is a class G
admitting (the classical) product structure such that C is
FO-transducible from G.
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Corollaries — 3D grids

The class of all 3D grids is not FO-transducible from planar graphs.

e Any balanced bipartiton A, B (|A| < 2|B| < 4|A|) of ax ax a
grid Gaxaxas induces a matching of size Q(az)

e G,yxaxa has diameter ©(a)

e If ais large enough, then any k-flip of G,x.xa contains a large
induced subgraph H of diameter d € Ok(a) such that any
balanced bipartiton of H induces a matching or anti-matching
of size m € Qx(a?)

e Suppose that there is (P, £)-expression ¢ valued H

e Some node of ¢ corresponds to balanced bipartition A, B but
the maximum size of both matching and anti-matching at
every node is at most O(¢ - d) = Oy(a)
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Corollaries — adding shortcuts to grids

Consider class C of graphs G obtained from a3 x a° grid by adding

vertices as follows:

Observe that G contains a? disjoint subgrids of size a® x a°.

For each such subgrid H C G, we add a single new vertex vy.
For each /,j, we add an edge between vy and the vertex of H
which lies in the intersections of ai-th row and aj-th column.

Theorem

The class C is not — I
FO-transducible from -
planar graphs.

Observation —

The class C admits slice -
decomposition.
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Corollaries — adding shortcuts to grids

Consider class C of graphs G obtained from a® x a3 grid by adding

vertices as follows:
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Corollaries — adding shortcuts to grids

Consider class C of graphs G obtained from a® x a3 grid by adding
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Corollaries — adding shortcuts to grids

Consider class C of graphs G obtained from a® x a3 grid by adding
vertices as follows:
Observe that G contains a® disjoint subgrids of size a
For each such subgrid H C G, we add a single new vertex vy.
For each /,j, we add an edge between vy and the vertex of H
which lies in the intersections of ai-th row and aj-th column.

2 x a2

Theorem

The class C is not ==
FO-transducible from
planar graphs.

Observation

The class C admits slice
decomposition.
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Conclusions

e Transductions of graph classes admitting product structure
(subgraphs of Path X Small Tree-Width) are k-flips of a class
admitting hereditary product structure (induced subgraphs of
Path X Small Clique-Width)

e (C admits hereditary product structure <= C has bounded
Path°-clique-width
e Using (H, k)-expressions, it is easy to prove some

non-transducibility results — eq. 3D grids are not transducible
from planar graphs
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