First-order transduction hierarchy among sparse graph classes

Jan Jedelský

Based on joint work with Jakub Gajarský, Jeremi Gładkowski, Michał Pilipczuk, and Szymon Toruńczyk

CSGT 2025, Hluboká May 27

First-order transductions

- Transduction = encoding one class of graphs into another such that we can decode the original class using logic
- ► **Input**: colored graph G
- ► **Step 1:** nondeterministically add colors G⁺
- ► **Step 2:** redefine edge relation *H*

$$uv \in E(H) \iff G^+ \models \phi(u, v)$$

where $\phi(x, y)$ is a first-order (FO) formula

Output: any induced subgraph of H

Transduction hierarchy

- ▶ A class $\mathscr C$ is *transducibile* from a class $\mathscr D$ if there is a transduction τ such that $\mathscr C \subseteq \tau(\mathscr D) = \{\tau(G) | G \in \mathscr D\}$
- ► Transducibility is quasi-order (= hierarchy) on graph classes
- How does the transduction hierarchy look like?
 - Showing transducibility = finding transduction
 - How to show non-transducibility?
 - Counting
 - Transduction ideals
 - Combinatorially describing transductions

Showing non-transducibility: Counting

- \mathcal{G}_d := class of all *d*-dimensional grids
- ▶ $N_G^r(v)$:= set of all vertices at distance at most r in G
- ▶ graph $G \in \mathscr{G}_d$, vertex $v \in V(G) \implies |N_G^r(v)| \leqslant \mathcal{O}(r^d)$
- ▶ large graph $G \in \mathcal{G}_d$ and vertex $v \in V(G)$ "deep inside G" $\implies |N_G^r(v)| \geqslant \Omega(r^d)$
- first-order transduction can be split into
 - ▶ local part only creates edges between nearby vertices; and
 - global part perturbation select k sets of vertices and flip adjacency inside each set
- $\implies \mathscr{G}_d$ does not transduce \mathscr{G}_{d+1}

Showing non-transducibility: Transduction ideals

- ▶ TW_k := class of graphs of tree-width k
- $CW_k :=$ class of graphs of clique-width k
- $G_d :=$ class of all d-dimensional grids
- Example: tree-width and 2D grids
 - ▶ For every k and every FO/MSO transduction τ there is a constant ℓ such that $\tau(TW_k) \subseteq CW_\ell$
 - ▶ The class G_2 has unbounded clique-width
 - $\implies \mathcal{G}_2$ is not transducible from TW_k for any k

Showing non-transducibility: Transduction ideals

- $ightharpoonup TW_k :=$ class of graphs of tree-width k
- $CW_k :=$ class of graphs of clique-width k
- $G_d :=$ class of all d-dimensional grids
- Example: planarity and 3D grids
 - ▶ Planar graphs are subgraphs of the strong product of a path and a graph of tree-width ≤ 8

Showing non-transducibility: Transduction ideals

- $ightharpoonup TW_k := \text{class of graphs of tree-width } k$
- $ightharpoonup CW_k :=$ class of graphs of clique-width k
- $G_d :=$ class of all d-dimensional grids
- Example: planarity and 3D grids
 - Planar graphs are subgraphs of the strong product of a path and a graph of tree-width ≤ 8
 - Jakub Gajarský, Michał Pilipczuk, Filip Pokrývka (2025):
 - Transductions of planar graphs admit (up to perturbations) a slice decomposition – each graph admits a layering where bounded number of consecutive layers induces a subgraph of bounded clique-width
 - ▶ 3D grids do not admit slice decomposition
 - \implies Planar graphs do not transduce \mathcal{G}_3
 - Petr Hliněný, Jan Jedelský (2025):
 - Transductions of planar graphs are (up to perturbations) induced subgraphs of a path and a graph of bounded clique-width
 - 3D grids are not induced subgraphs of such a product
 - \Longrightarrow Planar graphs do not transduce \mathcal{G}_3

Beyond transduction ideals – combinatorially describing transductions (for sparse graphs) – definitions

- $\alpha: V(H) \rightarrow 2^{V(G)}$ is a minor model of H in G if
 - ▶ for each vertex $v \in V(H)$, the *branch set* $\alpha(v)$ of v induces a connected subgraph of G, and
 - for each edge $uv \in E(H)$, the minimum distance in G between the branch sets $\alpha(u)$ and $\alpha(v)$ of u and v is at most 1
- Minor model \(\alpha \) has congestion at most \(k \) if it holds for all vertices \(v \) of \(G \) that the number of branch sets containing \(v \) is at most \(k \)
- Minor model α is r-shallow if each branch set has radius at most r in G

Beyond transduction ideals – combinatorially describing transductions (for sparse graphs) – definitions

- ▶ Consider a graph G and a linear order \leq on its vertex set. A vertex v is distance-r weakly reachable from a vertex u if there is a path P between u and v in G of length at most r such that $\forall p \in V(P).v \leq p$.
- ▶ Distance-r weak coloring number $wcol_r(G)$ of a graph G is the minimum over all vertex orders \leq of the maximum over all vertices $u \in V(G)$ of the number of distance-r weakly reachable vertices from u w.r. to \leq .

Beyond transduction ideals – combinatorially describing transductions (for sparse graphs)

- Jakub Gajarský, Jeremi Gładkowski, Jan Jedelský, Michał Pilipczuk, and Szymon Toruńczyk (2025, arXiv:2505.15655):
 - Let $\mathscr D$ be a weakly sparse graph class first-order transducible from a class $\mathscr C$ of bounded expansion. Then, there is $k\in\mathbb N$ such that, every graph $G\in\mathscr D$ is k-congested k-shallow minor of a graph H° obtained from some $H\in\mathscr C$ by adding a universal vertex.
 - ▶ Both operations of adding universal vertex and taking k-congested k-shallow minors preserve the degree of the distance-r weak coloring numbers as a polynomial in r.

Using the description

- ▶ TW_k := class of graphs of tree-width k
- $wcol_r(TW_k) = {r+k \choose k} = \Theta(r^k)$
- $\implies TW_k$ does not transduce TW_{k+1}
 - ▶ 𝒯 := class of planar graphs
 - $wcol_r(\mathscr{P}) \leqslant \mathcal{O}(r^3)$
- $\implies \mathscr{P}$ does not transduce TW_4
 - ► Conjecture by Gwenaël Joret, Piotr Micek (2022): $wcol_r(\mathscr{P}) \leq \mathcal{O}(r^2 \log r)$
 - ▶ If true, then \mathscr{P} transduces TW_k if and only if $k \leq 2$
 - ▶ Ø := class of outerplanar graphs
 - $wcol_r(\mathcal{O}) = \Theta(r \log r)$
- $\implies \mathscr{O}$ does not transduce TW_2

Using the description

- Question: Does the class of planar graphs transduce the class of toroidal graphs?
- ▶ Observation: Suppose that the class $\mathscr C$ of maximum degree $\leqslant d$ toroidal graphs is transducible from planar graphs. Then, there are constants ℓ and k such that every graph $G \in \mathscr C$ has subset $X \subseteq V(G)$ of vertices of size $|X| \leqslant \ell$ such that G X is k-planar.
- Question: Are all bounded degree toroidal graphs k-planar after removal of bounded number of vertices?

Overall picture

```
\mathsf{Paths} \overset{\mathsf{FO}}{\sqsubseteq} \mathsf{PW}_1 \overset{\mathsf{FO}}{\sqsubseteq} \mathsf{PW}_2 \overset{\mathsf{FO}}{\sqsubseteq} \dots \overset{\mathsf{FO}}{\sqsubseteq} \mathsf{PW}_k \overset{\mathsf{FO}}{\sqsubseteq} \dots \overset{\mathsf{FO}}{\sqsubseteq} \mathsf{OPlanar} \overset{\mathsf{FO}}{\sqsubseteq} \mathsf{TW}_2 \overset{\mathsf{FO}}{\sqsubseteq} \mathsf{TW}_3 \overset{\mathsf{FO}}{\sqsubseteq} \dots \overset{\mathsf{FO}}{\sqsubseteq} \mathsf{TW}_k \\ \mathsf{PW}_1 \overset{\mathsf{FO}}{\sqsubseteq} \mathsf{Trees} \overset{\mathsf{FO}}{\sqsubseteq} \mathsf{TW}_1 \overset{\mathsf{FO}}{\sqsubseteq} \qquad \mathsf{OPlanar} \overset{\mathsf{FO}}{\sqsubseteq} \mathsf{TW}_2 \overset{\mathsf{FO}}{\sqsubseteq} \qquad \mathsf{Planar}
```

Overall picture

```
Paths \stackrel{\text{FO}}{\sqsubseteq} PW<sub>1</sub> \stackrel{\text{FO}}{\sqsubseteq} PW<sub>2</sub> \stackrel{\text{FO}}{\sqsubseteq} ... \stackrel{\text{FO}}{\sqsubseteq} PW<sub>k</sub> \stackrel{\text{FO}}{\sqsubseteq} ... \stackrel{\text{FO}}{\sqsubseteq} OPlanar \stackrel{\text{FO}}{\sqsubseteq} TW<sub>2</sub> \stackrel{\text{FO}}{\sqsubseteq} TW<sub>3</sub> \stackrel{\text{FO}}{\sqsubseteq} ... \stackrel{\text{FO}}{\sqsubseteq} TW<sub>k</sub> FOWA

PW<sub>1</sub> \stackrel{\text{FO}}{\sqsubseteq} Trees \stackrel{\text{FO}}{\sqsubseteq} TW<sub>1</sub> \stackrel{\text{FO}}{\sqsubseteq} OPlanar \stackrel{\text{FO}}{\sqsubseteq} TW<sub>2</sub> \stackrel{\text{FO}}{\sqsubseteq} Planar
```

Thank you!