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H-Clique-Width

Motivation

Generalization of clique-width

Captures more classes of graphs:

A graph G has Planar Product Structure =⇒ G has bounded
P◦-Clique-Width, where P◦ is the class of all reflexive paths

Allows us to use “clique-width like” arguments in proofs:

Bounded P◦-Clique-Width =⇒ does not transduce (using FO
logic) the class of all 3D grids (work-in-progress)



H-Clique-Width

Definition

A graph G has Clique-Width at most k if there is a
k-expression valued G .

If no such expression exists, then we
say that H-Clique-Width is ∞.

k-expression: k colors and the following operations:

create vertex(c): Create a new vertex colored by c ∈ [k]

with
a parameter vertex p ∈ V (H)

disjoint union(ψ1, ψ2)

add edges(ψ1, c1 6= c2): Add edges between every pair of
vertices u, v satisfying that:

color of u is c1, and
color of v is c2

, and
the parameter vertices of u and v are adjacent in H

recolor(ψ1, c1 → c2)



H-Clique-Width

Definition

A graph G has H-Clique-Width at most k if there is a loop
graph H ∈ H and a (H,k)-expression valued G . If no such
expression exists, then we say that H-Clique-Width is ∞.

(H,k)-expression: k colors and the following operations:

create vertex(c , p): Create a new vertex colored by c ∈ [k]
with a parameter vertex p ∈ V (H)

disjoint union(ψ1, ψ2)

add edges(ψ1, c1 6= c2): Add edges between every pair of
vertices u, v satisfying that:

color of u is c1, and
color of v is c2, and
the parameter vertices of u and v are adjacent in H

recolor(ψ1, c1 → c2)
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Example: 2D grid

2D grid has P◦-clique-width at most 5

φ: create path colored “modulo 2”:
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create a grid:
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H-Clique-Width

Some Properties

cw(G ) = {K ◦1 }-cw(G )

{K1}-cw(G ) <∞ ⇐⇒ G has no edges

{H}-cw(G ) ≤ 2, where G is H without loops

Deciding whenever {K3}-cw(G ) <∞ is NP-hard.

{H}-cw(G ) <∞ ⇐⇒ ∃ homomorphism from G to H.

(∃f .∀G . cw(G ) ≤ f (H-cw(G ))) ⇐⇒ H has
component-bounded total neighbourhood diversity

total neighbourhood type of x : set of neighbourhood of x
including x if it has self-loop
total neighbourhood diversity: number of different total
neighbourhood types
component-bounded total neighbourhood diversity: maximum
total neighbourhood diversity over all connected components

H has maximum degree at most ∆ =⇒ local clique-width of
any graph G is bounded by a function of H−cw(G ) and ∆
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H-Clique-Width

Relation to Planar Product Structure

Strong product of two graphs G � H:
V (G � H) = V (G )× V (H)
(u, x)(v , y) ∈ E (G � H) ⇐⇒

(u = v ∨ uv ∈ E (G )) ∧ (x = y ∨ xy ∈ E (H))

Dujmovic, Esperet, Joret, Walczak, and Wood: Every planar
graph is isomorphic to a subgraph of P � H, where P is a
path and H has tree-width at most 8 (later improved to 6).

Let H◦ be a reflexive loop graph. Let G be a simple graph.
Then, G has {H◦}-clique-width at most ` iff G is isomorphic
to an induced subgraph of H �M, where H is obtained from
H◦ by removing all loops and M has clique-width at most `.

Let G be a subgraph of P � H, where P is a path and H has
tree-width at most k . Then, G has P◦-clique-width at most
6(k + 1) · 8k+1. Moreover, G is an induced subgraph of
P � H, where P is a path and H has tree-width at most
6(k + 1) · 8k+1.
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Proof Idea
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Open Questions

Can one approximate P◦-clique-width in FPT time
parameterized by the solution value?

Is it the case that, for every graph H there is a graph H ′ such
that, for every graph G , {H ′}-clique-width of G is bounded by
a fixed function of {H}-clique-width of the complement of G?

For which classes H does the following hold: For every
transduction τ there is a function f and a transduction σ such
that, for every integer k and every graph G of H-clique-width
at most k, it holds that σ(H)-clique-width of τ(G ) is at most
f (k)?

Is there a function f such that the following holds? Let G be
a Kt,t-free graph of P◦-clique-width at most `. Then, G is
isomorphic to a subgraph of P � H, where P is a path and H
has tree-width at most f (`).
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