\mathcal{H} -Clique-Width

Petr Hliněný Jan Jedelský

Masaryk University

Friday 7th June, 2024

Motivation

- Generalization of clique-width
- Captures more classes of graphs:
 - A graph G has Planar Product Structure $\implies G$ has bounded \mathcal{P}° -Clique-Width, where \mathcal{P}° is the class of all reflexive paths
- Allows us to use "clique-width like" arguments in proofs:
 - Bounded \mathcal{P}° -Clique-Width \implies does not transduce (using FO logic) the class of all 3D grids (work-in-progress)

Definition

- A graph G has Clique-Width at most k if there is a k-expression valued G.
- *k*-expression: *k* colors and the following operations:
 - ullet create_vertex(c): Create a new vertex colored by $c \in [k]$
 - disjoint_union (ψ_1, ψ_2)
 - add_edges($\psi_1, c_1 \neq c_2$): Add edges between every pair of vertices u, v satisfying that:
 - color of u is c_1 , and
 - color of v is c_2
 - recolor $(\psi_1, c_1 \rightarrow c_2)$

Definition

- A graph G has \mathcal{H} -Clique-Width at most k if there is a loop graph $H \in \mathcal{H}$ and a (H,k)-expression valued G. If no such expression exists, then we say that \mathcal{H} -Clique-Width is ∞ .
- (H,k)-expression: k colors and the following operations:
 - create_vertex(c, p): Create a new vertex colored by $c \in [k]$ with a parameter vertex $p \in V(H)$
 - disjoint_union (ψ_1, ψ_2)
 - add_edges($\psi_1, c_1 \neq c_2$): Add edges between every pair of vertices u, v satisfying that:
 - color of u is c_1 , and
 - color of v is c_2 , and
 - the parameter vertices of u and v are adjacent in H
 - recolor($\psi_1, c_1 \rightarrow c_2$)

- ullet 2D grid has \mathcal{P}° -clique-width at most 5
- ϕ : create path colored "modulo 2":
- create a grid:

- ullet 2D grid has \mathcal{P}° -clique-width at most 5
- ϕ : create path colored "modulo 2":
- create a grid:

- ullet 2D grid has \mathcal{P}° -clique-width at most 5
- ϕ : create path colored "modulo 2":

- ullet 2D grid has \mathcal{P}° -clique-width at most 5
- ϕ : create path colored "modulo 2":
- create a grid:

- ullet 2D grid has \mathcal{P}° -clique-width at most 5
- ϕ : create path colored "modulo 2":

- ullet 2D grid has \mathcal{P}° -clique-width at most 5
- ϕ : create path colored "modulo 2":
- create a grid:

- ullet 2D grid has \mathcal{P}° -clique-width at most 5
- ϕ : create path colored "modulo 2":
- create a grid:

- 2D grid has \mathcal{P}° -clique-width at most 5
- ϕ : create path colored "modulo 2":
- create a grid:

- ullet 2D grid has \mathcal{P}° -clique-width at most 5
- ϕ : create path colored "modulo 2":
- create a grid:

- ullet 2D grid has \mathcal{P}° -clique-width at most 5
- ϕ : create path colored "modulo 2":
- create a grid:

- ullet 2D grid has \mathcal{P}° -clique-width at most 5
- ϕ : create path colored "modulo 2":
- create a grid:

ullet 2D grid has \mathcal{P}° -clique-width at most 5

ullet 2D grid has \mathcal{P}° -clique-width at most 5

ullet 2D grid has \mathcal{P}° -clique-width at most 5

ullet 2D grid has \mathcal{P}° -clique-width at most 5

ullet 2D grid has \mathcal{P}° -clique-width at most 5

ullet 2D grid has \mathcal{P}° -clique-width at most 5

ullet 2D grid has \mathcal{P}° -clique-width at most 5

 \bullet 2D grid has $\mathcal{P}^{\circ}\text{-clique-width}$ at most 5

 \bullet 2D grid has $\mathcal{P}^{\circ}\text{-clique-width}$ at most 5

 \bullet 2D grid has $\mathcal{P}^{\circ}\text{-clique-width}$ at most 5

ullet 2D grid has \mathcal{P}° -clique-width at most 5

 \bullet 2D grid has $\mathcal{P}^{\circ}\text{-clique-width}$ at most 5

ullet 2D grid has \mathcal{P}° -clique-width at most 5

- $\bullet \ \mathsf{cw}(G) = \{ \mathsf{K}_1^{\circ} \} \text{-} \mathsf{cw}(G)$
- $\{K_1\}$ -cw $(G) < \infty \iff G$ has no edges
- $\{H\}$ -cw $(G) \le 2$, where G is H without loops
- Deciding whenever $\{K_3\}$ -cw $(G) < \infty$ is NP-hard.
- $\{H\}$ -cw $(G) < \infty \iff \exists$ homomorphism from G to H.
- $(\exists f. \forall G. \ \mathsf{cw}(G) \leq f(\mathcal{H}\text{-}\mathsf{cw}(G))) \iff \mathcal{H}$ has component-bounded total neighbourhood diversity
 - total neighbourhood type of x: set of neighbourhood of x including x if it has self-loop
 - total neighbourhood diversity: number of different total neighbourhood types
 - component-bounded total neighbourhood diversity: maximum total neighbourhood diversity over all connected components
- \mathcal{H} has maximum degree at most $\Delta \Longrightarrow$ local clique-width of any graph G is bounded by a function of $\mathcal{H}-cw(G)$ and Δ

- $cw(G) = \{K_1^{\circ}\} cw(G)$
- $\{K_1\}$ -cw $(G) < \infty \iff G$ has no edges
- $\{H\}$ -cw $(G) \le 2$, where G is H without loops
- Deciding whenever $\{K_3\}$ -cw $(G) < \infty$ is NP-hard.
- $\{H\}$ -cw $(G) < \infty \iff \exists$ homomorphism from G to H.
- $(\exists f. \forall G. \text{ cw}(G) \leq f(\mathcal{H}\text{-cw}(G))) \iff \mathcal{H}$ has component-bounded total neighbourhood diversity
 - total neighbourhood type of x: set of neighbourhood of x including x if it has self-loop
 - total neighbourhood diversity: number of different total neighbourhood types
 - component-bounded total neighbourhood diversity: maximum total neighbourhood diversity over all connected components
- \mathcal{H} has maximum degree at most $\Delta \Longrightarrow$ local clique-width of any graph G is bounded by a function of $\mathcal{H}-cw(G)$ and Δ

- $cw(G) = \{K_1^{\circ}\} cw(G)$
- $\{K_1\}$ -cw $(G) < \infty \iff G$ has no edges
- $\{H\}$ -cw $(G) \le 2$, where G is H without loops
- Deciding whenever $\{K_3\}$ -cw $(G) < \infty$ is NP-hard.
- $\{H\}$ -cw(G) < $\infty \iff \exists$ homomorphism from G to H.
- $(\exists f. \forall G. cw(G) \leq f(\mathcal{H}-cw(G))) \iff \mathcal{H}$ has component-bounded total neighbourhood diversity
 - total neighbourhood type of x: set of neighbourhood of x including x if it has self-loop
 - total neighbourhood diversity: number of different total neighbourhood types
 - component-bounded total neighbourhood diversity: maximum total neighbourhood diversity over all connected components
- \mathcal{H} has maximum degree at most $\Delta \implies$ local clique-width of any graph G is bounded by a function of $\mathcal{H}-cw(G)$ and Δ

- $cw(G) = \{K_1^{\circ}\} cw(G)$
- $\{K_1\}$ -cw $(G) < \infty \iff G$ has no edges
- $\{H\}$ -cw $(G) \le 2$, where G is H without loops
- Deciding whenever $\{K_3\}$ -cw $(G) < \infty$ is NP-hard.
- $\{H\}$ -cw $(G) < \infty \iff \exists$ homomorphism from G to H.
- $(\exists f. \forall G. cw(G) \leq f(\mathcal{H}\text{-cw}(G))) \iff \mathcal{H}$ has component-bounded total neighbourhood diversity
 - total neighbourhood type of x: set of neighbourhood of x including x if it has self-loop
 - total neighbourhood diversity: number of different total neighbourhood types
 - component-bounded total neighbourhood diversity: maximum total neighbourhood diversity over all connected components
- $m \mathcal{H}$ has maximum degree at most $\Delta \implies$ local clique-width of any graph G is bounded by a function of $\mathcal{H}-cw(G)$ and Δ

- $\bullet \ \mathsf{cw}(G) = \{ \mathsf{K}_1^{\circ} \} \text{-} \mathsf{cw}(G)$
- $\{K_1\}$ -cw $(G) < \infty \iff G$ has no edges
- $\{H\}$ -cw $(G) \le 2$, where G is H without loops
- Deciding whenever $\{K_3\}$ -cw $(G) < \infty$ is NP-hard.
- $\{H\}$ -cw $(G) < \infty \iff \exists$ homomorphism from G to H.
- $(\exists f. \forall G. cw(G) \leq f(\mathcal{H}\text{-}cw(G))) \iff \mathcal{H}$ has component-bounded total neighbourhood diversity
 - total neighbourhood type of x: set of neighbourhood of x including x if it has self-loop
 - total neighbourhood diversity: number of different total neighbourhood types
 - component-bounded total neighbourhood diversity: maximum total neighbourhood diversity over all connected components
- \mathcal{H} has maximum degree at most $\Delta \Longrightarrow$ local clique-width of any graph G is bounded by a function of $\mathcal{H}-cw(G)$ and Δ

- $\bullet \ \mathsf{cw}(G) = \{ \mathsf{K}_1^{\circ} \} \text{-} \mathsf{cw}(G)$
- $\{K_1\}$ -cw $(G) < \infty \iff G$ has no edges
- $\{H\}$ -cw $(G) \le 2$, where G is H without loops
- Deciding whenever $\{K_3\}$ -cw $(G) < \infty$ is NP-hard.
- $\{H\}$ -cw $(G) < \infty \iff \exists$ homomorphism from G to H.
- $(\exists f. \forall G. cw(G) \leq f(\mathcal{H}\text{-cw}(G))) \iff \mathcal{H}$ has component-bounded total neighbourhood diversity
 - total neighbourhood type of x: set of neighbourhood of x including x if it has self-loop
 - total neighbourhood diversity: number of different total neighbourhood types
 - component-bounded total neighbourhood diversity: maximum total neighbourhood diversity over all connected components
- \mathcal{H} has maximum degree at most $\Delta \implies$ local clique-width of any graph G is bounded by a function of $\mathcal{H}-cw(G)$ and Δ

- $cw(G) = \{K_1^{\circ}\} cw(G)$
- $\{K_1\}$ -cw $(G) < \infty \iff G$ has no edges
- $\{H\}$ -cw $(G) \le 2$, where G is H without loops
- Deciding whenever $\{K_3\}$ -cw $(G) < \infty$ is NP-hard.
- $\{H\}$ -cw(G) < $\infty \iff \exists$ homomorphism from G to H.
- $(\exists f. \forall G. \operatorname{cw}(G) \leq f(\mathcal{H}-\operatorname{cw}(G))) \iff \mathcal{H}$ has component-bounded total neighbourhood diversity
 - total neighbourhood type of x: set of neighbourhood of x including x if it has self-loop
 - total neighbourhood diversity: number of different total neighbourhood types
 - component-bounded total neighbourhood diversity: maximum total neighbourhood diversity over all connected components
- \mathcal{H} has maximum degree at most $\Delta \implies$ local clique-width of any graph G is bounded by a function of $\mathcal{H}-cw(G)$ and Δ

- Strong product of two graphs $G \boxtimes H$:
 - $V(G \boxtimes H) = V(G) \times V(H)$
 - $(u,x)(v,y) \in E(G \boxtimes H) \iff$

- $(u = v \lor uv \in E(G)) \land (x = y \lor xy \in E(H))$ Dujmovic, Esperet, Joret, Walczak, and Wood: Every planar
- graph is isomorphic to a subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most 8 (later improved to 6).
- Let H° be a reflexive loop graph. Let G be a simple graph. Then, G has $\{H^{\circ}\}$ -clique-width at most ℓ iff G is isomorphic to an induced subgraph of $H \boxtimes M$, where H is obtained from H° by removing all loops and M has clique-width at most ℓ .
- Let G be a subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most k. Then, G has \mathcal{P}° -clique-width at most $6(k+1) \cdot 8^{k+1}$. Moreover, G is an induced subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most $6(k+1) \cdot 8^{k+1}$.

- Strong product of two graphs $G \boxtimes H$:
 - $V(G \boxtimes H) = V(G) \times V(H)$
 - $(u,x)(v,y) \in E(G \boxtimes H) \iff$

$$(u = v \lor uv \in E(G)) \land (x = y \lor xy \in E(H))$$

- Dujmovic, Esperet, Joret, Walczak, and Wood: Every planar graph is isomorphic to a subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most 8 (later improved to 6).
- Let H° be a reflexive loop graph. Let G be a simple graph. Then, G has $\{H^{\circ}\}$ -clique-width at most ℓ iff G is isomorphic to an induced subgraph of $H \boxtimes M$, where H is obtained from H° by removing all loops and M has clique-width at most ℓ .
- Let G be a subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most k. Then, G has \mathcal{P}° -clique-width at most $6(k+1) \cdot 8^{k+1}$. Moreover, G is an induced subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most $6(k+1) \cdot 8^{k+1}$.

- Strong product of two graphs $G \boxtimes H$:
 - $V(G \boxtimes H) = V(G) \times V(H)$
 - $(u,x)(v,y) \in E(G \boxtimes H) \iff$

$$(u = v \lor uv \in E(G)) \land (x = y \lor xy \in E(H))$$

- Dujmovic, Esperet, Joret, Walczak, and Wood: Every planar graph is isomorphic to a subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most 8 (later improved to 6).
- Let H° be a reflexive loop graph. Let G be a simple graph. Then, G has $\{H^{\circ}\}$ -clique-width at most ℓ iff G is isomorphic to an induced subgraph of $H \boxtimes M$, where H is obtained from H° by removing all loops and M has clique-width at most ℓ .
- Let G be a subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most k. Then, G has \mathcal{P}° -clique-width at most $6(k+1) \cdot 8^{k+1}$. Moreover, G is an induced subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most

- Strong product of two graphs $G \boxtimes H$:
 - $V(G \boxtimes H) = V(G) \times V(H)$
 - $(u,x)(v,y) \in E(G \boxtimes H) \iff$

$$(u = v \lor uv \in E(G)) \land (x = y \lor xy \in E(H))$$

- Dujmovic, Esperet, Joret, Walczak, and Wood: Every planar graph is isomorphic to a subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most 8 (later improved to 6).
- Let H° be a reflexive loop graph. Let G be a simple graph. Then, G has $\{H^{\circ}\}$ -clique-width at most ℓ iff G is isomorphic to an induced subgraph of $H \boxtimes M$, where H is obtained from H° by removing all loops and M has clique-width at most ℓ .
- Let G be a subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most k. Then, G has \mathcal{P}° -clique-width at most $6(k+1) \cdot 8^{k+1}$. Moreover, G is an induced subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most $6(k+1) \cdot 8^{k+1}$.

- Strong product of two graphs $G \boxtimes H$:
 - $V(G \boxtimes H) = V(G) \times V(H)$
 - $(u,x)(v,y) \in E(G \boxtimes H) \iff$

$$(u = v \lor uv \in E(G)) \land (x = y \lor xy \in E(H))$$

- Dujmovic, Esperet, Joret, Walczak, and Wood: Every planar graph is isomorphic to a subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most 8 (later improved to 6).
- Let H° be a reflexive loop graph. Let G be a simple graph. Then, G has $\{H^{\circ}\}$ -clique-width at most ℓ iff G is isomorphic to an induced subgraph of $H \boxtimes M$, where H is obtained from H° by removing all loops and M has clique-width at most ℓ .
- Let G be a subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most k. Then, G has \mathcal{P}° -clique-width at most $6(k+1) \cdot 8^{k+1}$. Moreover, G is an induced subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most $6(k+1) \cdot 8^{k+1}$.

Proof Idea

Open Questions

- Can one approximate \mathcal{P}° -clique-width in FPT time parameterized by the solution value?
- Is it the case that, for every graph H there is a graph H' such that, for every graph G, {H'}-clique-width of G is bounded by a fixed function of {H}-clique-width of the complement of G?
- For which classes $\mathcal H$ does the following hold: For every transduction τ there is a function f and a transduction σ such that, for every integer k and every graph G of $\mathcal H$ -clique-width at most k, it holds that $\sigma(\mathcal H)$ -clique-width of $\tau(G)$ is at most f(k)?
- Is there a function f such that the following holds? Let G be a $K_{t,t}$ -free graph of \mathcal{P}° -clique-width at most ℓ . Then, G is isomorphic to a subgraph of $P \boxtimes H$, where P is a path and H has tree-width at most $f(\ell)$.