Twin-width and Transductions of Proper k-Mixed-Thin Graphs

Jakub Balabán, Petr Hliněný, Jan Jedelský

Masaryk University

Wednesday 27th July, 2022

Overview

Twin-width Graph parameter describing similarity to cographs

Proper k-Thin Generalization of proper interval graphs

Proper k-Mixed-Thin Our generalization of proper k-mixed graphs

- Twin-width linear in k
- A subclass (inversion-free) transduction equivalent to posets of bounded width

Conclusions

Twin-width

- Twin-width I: tractable FO model checking by Bonnet et al.
- Twin-width using symmetric contraction sequences of adjacency matrices
- Symmetric *k*-contraction sequence:
 - mismatched entries replaced by r
 - row and the corresponding column contractions performed simultaneously
 - number of entries r in any row or column $\leq k$

(Proper) k-Thin

- The stable set problem and the thinness of a graph by Mannino et al.
- On the thinness and proper thinness of a graph by Flavia and Estrada
- Graph G = (V, E), k-partition $(V_1, V_2, ..., V_k)$ of V, and linear order \leq on V
- For all $u \leq v \leq w$ if $\exists i(u, v \in V_i)$ and $uw \in E$ then $vw \in E$ proper if $\exists i(v, w \in V_i)$ and $uw \in E$ then $uv \in E$

- Graph G = (V, E), k-partition (V_1, V_2, \dots, V_k) of V, a linear order \leq_{ij} on $V_i \cup V_j$, and a choice of $E_{ij} \in \{E, \overline{E}\}$
- Restriction of \leq_{ij} to V_i (resp. V_j) is aligned with \leq_{ii} (\leq_{jj})
- For all $1 \le i, j \le k$ and all $u \le_{ij} v \le_{ij} w$ if $(u, v \in V_i, w \in V_j \text{ or } u, v \in V_j, w \in V_i)$ and $uw \in E_{ij}$ then $vw \in E_{ij}$ proper if $(u \in V_i, v, w \in V_i \text{ or } u \in V_i, v, w \in V_i)$ and $uw \in E_{ij}$

proper if $(u \in V_j, v, w \in V_i \text{ or } u \in V_i, v, w \in V_j)$ and $uw \in E_{ij}$ then $uv \in E_{ij}$

• Inversion-free if the restriction of \leq_{ij} to V_i (resp. V_j) is equal to \leq_{ii} (resp. \leq_{jj})

Proper k-Mixed-Thin Graphs I

Simple cases

- proper 1-mixed thin = proper 1-thin = proper interval
- proper 2-mixed thin = proper 2-thin \supseteq proper interval
- proper 3-mixed thin ⊋ proper 3-thin

Proper k-Mixed-Thin Graphs II

Proposition 3 and Theorem 4

- Let $d \ge 1$ be an arbitrary integer. Both d-dimensional grids and d-dimensional full grids are inversion-free proper 3^{d-1} -mixed-thin.
- Every tree T is inversion-free proper 3-mixed-thin.

Proposition 2 (Mannino et al., Bonomo and de Estrada)

- b) The $(r \times r)$ -grid has thinness linear in r.
- c) The thinness of the complete m-ary tree (m > 1) is linear in its height.

Proper k-Mixed-Thin Graphs III

Theorem 5

Let G = (V, E) be a proper intersection graph of paths in some subdivision of a fixed connected graph H with m edges, and let k be the number of (all) distinct paths in H. Then G is a proper (m^2k) -mixed-thin graph.

Linear Twin-width - Upper Bound

Theorem 6

Let G be a proper k-mixed-thin graph. Then the twin-width of G is at most 9k. The corresponding contraction sequence for G can be computed in polynomial time from the vertex partition (V_1, \ldots, V_k) and the orders \leq_{ij} for G

		-	D		
В	0	1	0	1	0
\mathbf{C}	1	0	1	0	0
D	0	1	0	0	1
A	1	0	0	0	1
\mathbf{E}	0	0	1	1	0

Linear Twin-width – Upper Bound

- Uses the red-potential method developed in Twin-Width is Linear in the Poset Width by Balabán and Hliněný
- Matrix ordering: Parts arbitrarily, within part V_i use \leq_{ii}
- Submatrices given by parts $V_i \times V_j$ can be split by diagonal boundaries into uniform parts (exception the main diagonal)
- Red entries only next to the boundaries $\to \mathcal{O}(kn)$ red entries possible \to there is a contraction with $\mathcal{O}(k)$ red entries
- We can "repair" the boundaries after contractions

			D		
В	0	1	0 1 0	1	0
\mathbf{C}	1	0	1	0	0
D	0	1	0	0	1
A	1	0	0	0	1
\mathbf{E}	0	0	1	1	0

BC	r	r	r	0
D	r	0	0	1
A	r	0	0	1
\mathbf{E}	0	1	1	0

BCD	r	r
AE	r	r

Linear Twin-width – Lower Bound – Proof

Proposition 10

For every integer $k \ge 1$, there exists an inversion-free proper (2k+1)-mixed-thin graph G such that the twin-width of G is at least k.

Non-Copying First-Order Transductions – Definition

- Start with a relational structure $\sigma = (V, R_1, \dots, R_n)$ on domain V with relations R_i
- Add a fixed number of colors (unary relations) arbitrarily
- Fix FO-formulas $\phi_1(x_1, \ldots, x_{ar_1}), \ldots, \phi_m(x_m, \ldots, x_{ar_m})$ and $\psi(x)$ using the colors and relational symbols R_i
- The result is relational structure $\sigma' = (V', R'_1, \dots, R'_m)$ where $v \in V' \subseteq V$ iff $\sigma \models \psi(x)$ and for all $i = 1, \dots, m$ $(x_i, \dots, x_{ar_i}) \in R'_i \subseteq (V')^{arity(R'_i)}$ iff $\sigma \models \phi_i(x_i, \dots, x_{ar_i})$

Transductions: Encoding Inversion-Free Proper Mixed-Thin Graphs in Posets of Bounded Width

- Any inversion-free proper k-mixed-thin graph encoded using poset of width at most $5 \cdot {k \choose 2} + 5k$
- The poset can be computed in polynomial time given the partition and the orderings

a, 1, 2, b, 3, c

Transductions: Encoding Posets of Bounded Width in Inversion-Free Proper Mixed-Thin Graphs

- Poset of width k encoded using inversion-free proper 2k + 1-mixed-thin graph
- The graph can be computed in polynomial time

Conclusions

We have ...

 \dots defined the class of proper k-mixed-thin graphs

... and showed that ...

- ... it contains certain natural graph classes (trees, grids) as subclasses
- \dots its twin-width is linear in k
- ... its inversion-free subclass is transduction equivalent to posets of bounded-width

Going forward, we ask ...

- ... if the inversion-freeness is necessary in the transduction equivalence
- ... how to recognize proper k-mixed-thin graphs
- ... what are the necessary and sufficient conditions to use the red-potential method (elsewhere)