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1 Definitions

In this TED talk, we will talk about the relation between Kullback-Leibler divergence and the total variation
distance between probability distributions. We will focus on discrete probability distributions only. Let’s start
with some definitions and assumed theorems first:

Definition 1.1. S is a sample space, A = 2°. A probability distribution P : A — [0,1] is a probability
distribution. P satisfies Kolmogorov axioms of probability.

For s € S, we also use the shorthand notation P(s) := P({s}).

Definition 1.2. The Kullback-Leibler divergence between two probability distributions P(z) and Q(z) from
discrete probability spaces defined over the same S is

P(z)
Q(z)

Definition 1.3. The Manhattan distance (L; metric) between two probability distributions P(z) and Q(x)
from discrete probability spaces defined over the same S is

1P =Qlh =) IP(x) - Q(x)|- (2)
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Dk (P||Q) = ) P(x)log
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Definition 1.4. The total variation distance between two probability distributions P(z) and Q(z) from discrete
probability spaces defined over the same S is

0(P, Q) = max [P(A) — Q(A)]. 3)
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Theorem 1.5. Jensen’s inequality.

For a convex function f, and reals py,...,p, > 0 such that Y. p; = 1 it holds that:

2 Lower Bound

Theorem 2.1. Pinsker’s inequality. For two probability distributions P(z) and Q(z) from discrete probability
spaces defined over the same S, it holds that

I|1P = @Il < v2Dki(P||Q).

The equivalent inequality is that
1
Die(PlIQ) > 1P~ QI

Proof. Bernoulli distributions case.

Let’s denote by P and @ Bernoulli distribution over S = {0,1}. Also, denote:
p=P(0),1-p=P(1)
q=@Q(0),1-¢=Q(1)



We can see that

|P=Qli=p—ql+1—-p—1+¢q|=2-|p—q
|IP—Qll} =4(p — q)?

Let’s define f(p,q) = DkL(P||Q) — 3||P — Q||?. We will analyse the behaviour of the function using basic
calculus.
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We see that with g # %, the sign of the partial derivative depends only on the sign of ¢ — p. Therefore, % is
negative for ¢ < p, positive for ¢ > p and 0 for ¢ = p. That means that for q # %, q = p is the minimum of

f(p,q).
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That means that for ¢ # %7 f(p, ¢) is non-negative and the Pinsker’s inequality holds.

We now analyze
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For p € (0,1), the denominator of the second derivative is always positive and therefore the sign depends only on
the nominator. As the nominator is also non-negative for p € (0, 1), the second derivative is always non-negative
and the first derivative is therefore a non-decreasing function.
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The figure sums up our analysis:
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Therefore, the Pinsker’s inequality holds for two arbitrary Bernoulli distributions. For the general case, we will
need the log sum inequality and the information processing inequality:

Lemma 2.2. Log sum inequality Let p1,p2,....Pn,q1,92,--.,qn € R(J{ be non-negative real numbers. Let
n n
b= Zi:1 p; and ¢ = Zi:l q;- Then

S pilogZh > plog .
g q
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Proof. Set f(x) = zlogx. Notice that f is a convex function. Then,
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Lemma 2.3. Information processing inequality.
For any function f : S — S’ and probability distributions X : 2% — [0,1] and YV : 25 — [0, 1] defined over S,
define

X" 25 = 0,1],
Y’ : 2% 5 [0,1].

For every i € S’, define

If X’ and Y’ are probability distributions, then
Dkr(X']|Y") < Dk (X|]Y).

Proof.

D (X[Y) = 3 X(w) w;
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= Dk (X'[|]Y").
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Proof. Pinsker’s inequality. Given probability distributions P(z) and Q(x) from discrete probability spaces
defined over the same S, define f: S — {0,1}

_ )1 Pw) < Qw),
Jw) = {o P(w) > Q(uw).



Define probability distributions P, Q" : 2{01} — [0,1] for i € {0,1} as

Pi)=P @)= Y Pw),

wef1(i)
QM =QU @)= > Qu),
we f=1(i)
P'(0) = > P(w),
{wes | P(w)>Q(w)}
Q'(0) = > Q(w),
{wes | P(w)>Q(w)}
P'(1) = > P(w),
{wes | P(w)<Q(w)}
Q'(1) = > Q(w).

{wes | P(w)<Q(w)}

From this follows that P’(0) > Q’(0) and P’(1) < Q’'(1).

As P and @’ are Bernoulli distributions, we know that Dxr,(P'[|Q") > %||P’ — Q'||? by Pinsker’s inequality for
Bernoulli distributions.

Also,
1P =Qllh =) [Pw) — Q(w)]
weS
= Y (Pw)-Qw)+ Y. (Qw)—Pw))
wef=1(0) wef=1(1)

= P'(0) - Q'(0) +Q'(1) — P'(1)
= [P'(0) = Q'(0)| + [P'(1) — Q'(1))]
= [|P" = Q1.

Therefore, Dxr,(P'||Q") > 1||P — Q|3

By information processing inequality, we know that

Dxi(P'[|Q") < Dkw(P]|Q).

And that is all, folks!
1 1
Die(PIIQ) = Die(P1Q) = LIP' ~ QI = 11P — Q%

3 Upper Bound

There does not exist such a nice lower bound for KL divergence for a simple reason.

3.1 A counterexample

Theorem 3.1. Kullback-Leibler divergence is not upper bounded by the L; metric. Formally, for every € > 0,
there exist probability distributions P. and @ such that:

IIP = Q|1 < e, but Dxi(P||Q) = occ.

Proof. Define P(x) and @ as
S ={a,b}
Qa) =0,Q(b) =1

3 9
Pe(a)zi,PE(b):].fi



Then,
1P =QllL =,

g
DxL(P[|Q) = 5 ' log

(=3I

3.2 A proof

Theorem 3.2. For two probability distributions P(z) and Q(z) that are defined over the same S, it holds that
1
Dir(P||Q) < =—||P - Q|3
KL( HQ)—ZaQH Qllr,

where

aq = min Q(z).

4 Misc

4.1 Total variation distance vs L; norm

Theorem 4.1. Scheffé’s lemma.

For two probability distributions P(z) and Q(z) that are defined over the same S, it holds that
1
5(P.Q) = 5IP ~ @l

Proof. Let’s refresh the definition of the total variation distance:

(P, Q) = max [P(A) — Q(A)]. ()
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Denote by G = {z € S | P(z) > Q(z)}. Try to find A C S such that P(A) — Q(A) is maximized. Intuitively, it
is the case when A = G.
Now, try to find A’ C S such that Q(A) — P(A) is maximized. Intuitively, it is the case when A’ = S\ G.
Therefore, the subset A in §(P, Q) = max gcqs |P(A) — Q(A)] is either A = G or A’ = S\ G. We will show that
the maximum is obtained at both A and A”:
P(G)-Q(G)=(1-P(S\G) - (1 -Q(S\G)) =Q(S\G) — P(S\G).

So if A maximizes P(X) — Q(X), A" maximizes Q(X) — P(X) and if A" maximizes P(X) — Q(X), then A
maximizes Q(X) — P(X).

Now,

1P = Qlh =) |P(x) - Q(a)|

T€S

= (P(x) - Q)+ Y. (Qz) - P(x))
z€qG z€S\G

=46(P,Q) +46(P,Q)



4.2 Inverse Pinsker inequality

Let P and @ be probability distributions on the finite set A.Let A, = {a : @(a) = 0} and let
0g = ming. 4, Q(a).

How to prove that if D{P||@) < oo then

d*(P,Q)

D(PIIQ) < T

where d( P, @) is the variational distance of distributions P and @, ie.,
d(P,Q) = 3 .ca |P(a) — Q(a)].
I was given a hint that first should prove that:
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asked Mar 1, 2020 at 1525

What did vou trv, and where are vou stuck? Can 5.'1}11 pnwe the ]:mrl:ed inequality? Can vou conclude the
argnment assuming the hint? — stochastichoy327 Mar 5, 2020 2t 40

swer Sored by-| Highest score (default)

For the Hint from the right hand side to the middle is easy, hint distract the squared expression.

Pla) Pla) P(a) 1 Pfa)
Y Tz (o ~ V= s X P@emplingoy) 1> gresn(Y Plalin(gos) ~ 1

acAy Q[ﬂ] acA acd,

= exp(D(P||Q)) — 1
=14 D(P||Q) — 1= D(P||Q)

For the reversed pinker's;
|P(a) — Q(a)*
D(P||Q) < E e
<L 3 |P{-u} — Q(a)P . mar.e,hlP{u} = Qa)|. X oca, [Pla) — Q(a)] - d*(P, Q)
In2 eyl mtnﬂ€A+Q{g} QQJRQ ﬂQ.Iﬂﬂ

The last inequality you can deduce it after nsing scheffe's theorem for variational distance.
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