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1 Definitions

In this TED talk, we will talk about the relation between Kullback-Leibler divergence and the total variation
distance between probability distributions. We will focus on discrete probability distributions only. Let’s start
with some definitions and assumed theorems first:

Definition 1.1. S is a sample space, A = 2S . A probability distribution P : A → [0, 1] is a probability
distribution. P satisfies Kolmogorov axioms of probability.

For s ∈ S, we also use the shorthand notation P (s) := P ({s}).

Definition 1.2. The Kullback-Leibler divergence between two probability distributions P (x) and Q(x) from
discrete probability spaces defined over the same S is

DKL(P ||Q) =
∑
x∈S

P (x) log
P (x)

Q(x)
. (1)

Definition 1.3. The Manhattan distance (L1 metric) between two probability distributions P (x) and Q(x)
from discrete probability spaces defined over the same S is

||P −Q||1 =
∑
x∈S

|P (x)−Q(x)|. (2)

Definition 1.4. The total variation distance between two probability distributions P (x) and Q(x) from discrete
probability spaces defined over the same S is

δ(P,Q) = max
A∈2S

|P (A)−Q(A)|. (3)

Theorem 1.5. Jensen’s inequality.

For a convex function f , and reals p1, . . . , pn ≥ 0 such that
∑n

i=1 pi = 1 it holds that:

f

(
n∑

i=1

pixi

)
≤

n∑
i=1

pif(xi) (4)

2 Lower Bound

Theorem 2.1. Pinsker’s inequality. For two probability distributions P (x) and Q(x) from discrete probability
spaces defined over the same S, it holds that

||P −Q||1 ≤
√

2DKL(P ||Q).

The equivalent inequality is that

DKL(P ||Q) ≥ 1

2
||P −Q||21.

Proof. Bernoulli distributions case.

Let’s denote by P and Q Bernoulli distribution over S = {0, 1}. Also, denote:

p = P (0), 1− p = P (1)

q = Q(0), 1− q = Q(1)
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We can see that

||P −Q||1 = |p− q|+ |1− p− 1 + q| = 2 · |p− q|
||P −Q||21 = 4(p− q)2

Let’s define f(p, q) = DKL(P ||Q) − 1
2 ||P − Q||21. We will analyse the behaviour of the function using basic

calculus.

f(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
− 2(p− q)2

∂f

∂q
= p · q

p
· −p

q2
+ (1− p) · 1− q

1− p
· (1− p)

−1

(1− q)2
· (−1)− 4(p− q) · (−1)

= −p

q
+

1− p

1− q
+ 4(p− q)

=
−p+ pq + q − pq

q(1− q)
− 4(q − p)

= (q − p)

[
1

q(1− q)
− 4

]

We see that with q ̸= 1
2 , the sign of the partial derivative depends only on the sign of q − p. Therefore, ∂f

∂q is

negative for q < p, positive for q > p and 0 for q = p. That means that for q ̸= 1
2 , q = p is the minimum of

f(p, q).

f(p, p) = p log
p

p
+ (1− p) log

1− p

1− p
− 2(p− p)2

= 0.

That means that for q ̸= 1
2 , f(p, q) is non-negative and the Pinsker’s inequality holds.

We now analyze

g(p) = f

(
p,

1

2

)
= p · log(2p) + (1− p) · log(2− 2p)− 2 ·

(
p− 1

2

)2

g′(p) = log(2p) + p · 1

2p
· 2 + (−1) · log(2− 2p) + (1− p) · 1

2− 2p
· (−2)− 4 · (p− 1

2
)

= log(2p) + 1− log(2− 2p)− 1− 4p+ 2

= log(2p)− log(2− 2p)− 4p+ 2.

g′′(p) =
1

2p
· 2− 1

2− 2p
· (−2)− 4

=
1

p
+

1

1− p
− 4 =

1− p+ p− 4p+ 4p2

p · (1− p)

=
4p2 − 4p+ 1

p− p2
=

4
(
p− 1

2

)2
p · (1− p)

.

For p ∈ (0, 1), the denominator of the second derivative is always positive and therefore the sign depends only on
the nominator. As the nominator is also non-negative for p ∈ (0, 1), the second derivative is always non-negative
and the first derivative is therefore a non-decreasing function.

g′
(
1

2

)
= log 1− log 1− 2 + 2 = 0

g

(
1

2

)
=

1

2
· log 1 + 1

2
· log 1− 0 = 0

g(0) = 0 · log 0 + 1 · log 2 = ∞
g(1) = 1 · log 2 + 0 · log 0 = ∞



The figure sums up our analysis:

Therefore, the Pinsker’s inequality holds for two arbitrary Bernoulli distributions. For the general case, we will
need the log sum inequality and the information processing inequality:

Lemma 2.2. Log sum inequality Let p1, p2, . . . , pn, q1, q2, . . . , qn ∈ R+
0 be non-negative real numbers. Let

p =
∑n

i=1 pi and q =
∑n

i=1 qi. Then

n∑
i=1

pi log
pi
qi

≥ p log
p

q
.



Proof. Set f(x) = x log x. Notice that f is a convex function. Then,

n∑
i=1

pi log
pi
qi

=

n∑
i=1

pi
qi
qi

log
pi
qi

=

n∑
i=1

qif

(
pi
qi

)

= q

n∑
i=1

qi
q
f

(
pi
qi

)

≥ q · f

(
n∑

i=1

qi
q
· pi
qi

)

= q · f

(
1

q

n∑
i=1

pi

)
= q · f

(
p

q

)
= q · p

q
· log p

q

= p log
p

q
.

Lemma 2.3. Information processing inequality.

For any function f : S → S′ and probability distributions X : 2S → [0, 1] and Y : 2S → [0, 1] defined over S,
define

X ′ : 2S
′
→ [0, 1],

Y ′ : 2S
′
→ [0, 1].

For every i ∈ S′, define

X ′(i) = X(f−1(i)) =
∑

w∈f−1(i)

X(w),

Y ′(i) = Y (f−1(i)) =
∑

w∈f−1(i)

Y (w).

If X ′ and Y ′ are probability distributions, then

DKL(X
′||Y ′) ≤ DKL(X||Y ).

Proof.

DKL(X||Y ) =
∑
w∈S

X(w) log
X(w)

Y (w)

=
∑
i∈S′

∑
w∈f−1(i)

X(w) log
X(w)

Y (w)

≥
∑
i∈S′

X ′(i) log
X ′(i)

Y ′(i)

= DKL(X
′||Y ′).

Proof. Pinsker’s inequality. Given probability distributions P (x) and Q(x) from discrete probability spaces
defined over the same S, define f : S → {0, 1}

f(w) =

{
1 P (w) ≤ Q(w),

0 P (w) > Q(w).



Define probability distributions P ′, Q′ : 2{0,1} → [0, 1] for i ∈ {0, 1} as

P ′(i) = P (f−1(i)) =
∑

w∈f−1(i)

P (w),

Q′(i) = Q(f−1(i)) =
∑

w∈f−1(i)

Q(w),

P ′(0) =
∑

{w∈S | P (w)>Q(w)}

P (w),

Q′(0) =
∑

{w∈S | P (w)>Q(w)}

Q(w),

P ′(1) =
∑

{w∈S | P (w)≤Q(w)}

P (w),

Q′(1) =
∑

{w∈S | P (w)≤Q(w)}

Q(w).

From this follows that P ′(0) > Q′(0) and P ′(1) ≤ Q′(1).

As P ′ and Q′ are Bernoulli distributions, we know that DKL(P
′||Q′) ≥ 1

2 ||P
′ −Q′||21 by Pinsker’s inequality for

Bernoulli distributions.

Also,

||P −Q||1 =
∑
w∈S

|P (w)−Q(w)|

=
∑

w∈f−1(0)

(P (w)−Q(w)) +
∑

w∈f−1(1)

(Q(w)− P (w))

= P ′(0)−Q′(0) +Q′(1)− P ′(1)

= |P ′(0)−Q′(0)|+ |P ′(1)−Q′(1)|
= ||P ′ −Q′||1.

Therefore, DKL(P
′||Q′) ≥ 1

2 ||P −Q||21.
By information processing inequality, we know that

DKL(P
′||Q′) ≤ DKL(P ||Q).

And that is all, folks!

DKL(P ||Q) ≥ DKL(P
′||Q′) ≥ 1

2
||P ′ −Q′||21 =

1

2
||P −Q||21.

3 Upper Bound

There does not exist such a nice lower bound for KL divergence for a simple reason.

3.1 A counterexample

Theorem 3.1. Kullback-Leibler divergence is not upper bounded by the L1 metric. Formally, for every ε > 0,
there exist probability distributions Pε and Q such that:

||P −Q||1 ≤ ε, but DKL(P ||Q) = ∞.

Proof. Define P (x) and Q as
S = {a, b}

Q(a) = 0, Q(b) = 1

Pε(a) =
ε

2
, Pε(b) = 1− ε

2



Then,
||P −Q||1 = ε,

DKL(P ||Q) =
ε

2
· log

ε
2

0
= ∞.

3.2 A proof

Theorem 3.2. For two probability distributions P (x) and Q(x) that are defined over the same S, it holds that

DKL(P ||Q) ≤ 1

2αQ
||P −Q||21,

where
αQ = min

x∈S
Q(x).

4 Misc

4.1 Total variation distance vs L1 norm

Theorem 4.1. Scheffé’s lemma.

For two probability distributions P (x) and Q(x) that are defined over the same S, it holds that

δ(P,Q) =
1

2
||P −Q||1.

Proof. Let’s refresh the definition of the total variation distance:

δ(P,Q) = max
A∈2S

|P (A)−Q(A)|. (5)

Denote by G = {x ∈ S | P (x) ≥ Q(x)}. Try to find A ⊂ S such that P (A)−Q(A) is maximized. Intuitively, it
is the case when A = G.

Now, try to find A′ ⊂ S such that Q(A)− P (A) is maximized. Intuitively, it is the case when A′ = S \G.

Therefore, the subset A in δ(P,Q) = maxA∈2S |P (A)−Q(A)| is either A = G or A′ = S \G. We will show that
the maximum is obtained at both A and A′:

P (G)−Q(G) = (1− P (S \G))− (1−Q(S \G)) = Q(S \G)− P (S \G).

So if A maximizes P (X) − Q(X), A′ maximizes Q(X) − P (X) and if A′ maximizes P (X) − Q(X), then A
maximizes Q(X)− P (X).

Now,

||P −Q||1 =
∑
x∈S

|P (x)−Q(x)|

=
∑
x∈G

(P (x)−Q(x)) +
∑

x∈S\G

(Q(x)− P (x))

= δ(P,Q) + δ(P,Q)

= 2 · δ(P,Q)



4.2 Inverse Pinsker inequality
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