Relations Between Probability Measures

IV125, Adam Ivora

June 5, 2022

1 Definitions

In this TED talk, we will talk about the relation between Kullback-Leibler divergence and the total variation distance between probability distributions. We will focus on discrete probability distributions only. Let's start with some definitions and assumed theorems first:

Definition 1.1. S is a sample space, $\mathcal{A}=2^{S}$. A probability distribution $P: \mathcal{A} \rightarrow[0,1]$ is a probability distribution. P satisfies Kolmogorov axioms of probability.

For $s \in S$, we also use the shorthand notation $P(s):=P(\{s\})$.
Definition 1.2. The Kullback-Leibler divergence between two probability distributions $P(x)$ and $Q(x)$ from discrete probability spaces defined over the same S is

$$
\begin{equation*}
\mathrm{D}_{\mathrm{KL}}(P \| Q)=\sum_{x \in S} P(x) \log \frac{P(x)}{Q(x)} . \tag{1}
\end{equation*}
$$

Definition 1.3. The Manhattan distance (L_{1} metric) between two probability distributions $P(x)$ and $Q(x)$ from discrete probability spaces defined over the same S is

$$
\begin{equation*}
\|P-Q\|_{1}=\sum_{x \in S}|P(x)-Q(x)| \tag{2}
\end{equation*}
$$

Definition 1.4. The total variation distance between two probability distributions $P(x)$ and $Q(x)$ from discrete probability spaces defined over the same S is

$$
\begin{equation*}
\delta(P, Q)=\max _{A \in 2^{S}}|P(A)-Q(A)| . \tag{3}
\end{equation*}
$$

Theorem 1.5. Jensen's inequality.
For a convex function f, and reals $p_{1}, \ldots, p_{n} \geq 0$ such that $\sum_{i=1}^{n} p_{i}=1$ it holds that:

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \leq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \tag{4}
\end{equation*}
$$

2 Lower Bound

Theorem 2.1. Pinsker's inequality. For two probability distributions $P(x)$ and $Q(x)$ from discrete probability spaces defined over the same S, it holds that

$$
\|P-Q\|_{1} \leq \sqrt{2 \mathrm{D}_{\mathrm{KL}}(P \| Q)}
$$

The equivalent inequality is that

$$
\mathrm{D}_{\mathrm{KL}}(P \| Q) \geq \frac{1}{2}\|P-Q\|_{1}^{2}
$$

Proof. Bernoulli distributions case.
Let's denote by P and Q Bernoulli distribution over $S=\{0,1\}$. Also, denote:

$$
\begin{aligned}
& p=P(0), 1-p=P(1) \\
& q=Q(0), 1-q=Q(1)
\end{aligned}
$$

We can see that

$$
\begin{aligned}
& \|P-Q\|_{1}=|p-q|+|1-p-1+q|=2 \cdot|p-q| \\
& \|P-Q\|_{1}^{2}=4(p-q)^{2}
\end{aligned}
$$

Let's define $f(p, q)=\mathrm{D}_{\mathrm{KL}}(P \| Q)-\frac{1}{2}\|P-Q\|_{1}^{2}$. We will analyse the behaviour of the function using basic calculus.

$$
\begin{aligned}
f(p, q) & =p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q}-2(p-q)^{2} \\
\frac{\partial f}{\partial q} & =p \cdot \frac{q}{p} \cdot \frac{-p}{q^{2}}+(1-p) \cdot \frac{1-q}{1-p} \cdot(1-p) \frac{-1}{(1-q)^{2}} \cdot(-1)-4(p-q) \cdot(-1) \\
& =-\frac{p}{q}+\frac{1-p}{1-q}+4(p-q) \\
& =\frac{-p+p q+q-p q}{q(1-q)}-4(q-p) \\
& =(q-p)\left[\frac{1}{q(1-q)}-4\right]
\end{aligned}
$$

We see that with $q \neq \frac{1}{2}$, the sign of the partial derivative depends only on the sign of $q-p$. Therefore, $\frac{\partial f}{\partial q}$ is negative for $q<p$, positive for $q>p$ and 0 for $q=p$. That means that for $q \neq \frac{1}{2}, q=p$ is the minimum of $f(p, q)$.

$$
\begin{aligned}
f(p, p) & =p \log \frac{p}{p}+(1-p) \log \frac{1-p}{1-p}-2(p-p)^{2} \\
& =0
\end{aligned}
$$

That means that for $q \neq \frac{1}{2}, f(p, q)$ is non-negative and the Pinsker's inequality holds.
We now analyze

$$
\begin{aligned}
g(p) & =f\left(p, \frac{1}{2}\right)=p \cdot \log (2 p)+(1-p) \cdot \log (2-2 p)-2 \cdot\left(p-\frac{1}{2}\right)^{2} \\
g^{\prime}(p) & =\log (2 p)+p \cdot \frac{1}{2 p} \cdot 2+(-1) \cdot \log (2-2 p)+(1-p) \cdot \frac{1}{2-2 p} \cdot(-2)-4 \cdot\left(p-\frac{1}{2}\right) \\
& =\log (2 p)+1-\log (2-2 p)-1-4 p+2 \\
& =\log (2 p)-\log (2-2 p)-4 p+2 . \\
g^{\prime \prime}(p) & =\frac{1}{2 p} \cdot 2-\frac{1}{2-2 p} \cdot(-2)-4 \\
& =\frac{1}{p}+\frac{1}{1-p}-4=\frac{1-p+p-4 p+4 p^{2}}{p \cdot(1-p)} \\
& =\frac{4 p^{2}-4 p+1}{p-p^{2}}=\frac{4\left(p-\frac{1}{2}\right)^{2}}{p \cdot(1-p)}
\end{aligned}
$$

For $p \in(0,1)$, the denominator of the second derivative is always positive and therefore the sign depends only on the nominator. As the nominator is also non-negative for $p \in(0,1)$, the second derivative is always non-negative and the first derivative is therefore a non-decreasing function.

$$
\begin{aligned}
g^{\prime}\left(\frac{1}{2}\right) & =\log 1-\log 1-2+2=0 \\
g\left(\frac{1}{2}\right) & =\frac{1}{2} \cdot \log 1+\frac{1}{2} \cdot \log 1-0=0 \\
g(0) & =0 \cdot \log 0+1 \cdot \log 2=\infty \\
g(1) & =1 \cdot \log 2+0 \cdot \log 0=\infty
\end{aligned}
$$

The figure sums up our analysis:

Therefore, the Pinsker's inequality holds for two arbitrary Bernoulli distributions. For the general case, we will need the log sum inequality and the information processing inequality:

Lemma 2.2. Log sum inequality Let $p_{1}, p_{2}, \ldots, p_{n}, q_{1}, q_{2}, \ldots, q_{n} \in \mathbb{R}_{0}^{+}$be non-negative real numbers. Let $p=\sum_{i=1}^{n} p_{i}$ and $q=\sum_{i=1}^{n} q_{i}$. Then

$$
\sum_{i=1}^{n} p_{i} \log \frac{p_{i}}{q_{i}} \geq p \log \frac{p}{q}
$$

Proof. Set $f(x)=x \log x$. Notice that f is a convex function. Then,

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i} \log \frac{p_{i}}{q_{i}} & =\sum_{i=1}^{n} p_{i} \frac{q_{i}}{q_{i}} \log \frac{p_{i}}{q_{i}} \\
& =\sum_{i=1}^{n} q_{i} f\left(\frac{p_{i}}{q_{i}}\right) \\
& =q \sum_{i=1}^{n} \frac{q_{i}}{q} f\left(\frac{p_{i}}{q_{i}}\right) \\
& \geq q \cdot f\left(\sum_{i=1}^{n} \frac{q_{i}}{q} \cdot \frac{p_{i}}{q_{i}}\right) \\
& =q \cdot f\left(\frac{1}{q} \sum_{i=1}^{n} p_{i}\right)=q \cdot f\left(\frac{p}{q}\right) \\
& =q \cdot \frac{p}{q} \cdot \log \frac{p}{q} \\
& =p \log \frac{p}{q}
\end{aligned}
$$

Lemma 2.3. Information processing inequality.
For any function $f: S \rightarrow S^{\prime}$ and probability distributions $X: 2^{S} \rightarrow[0,1]$ and $Y: 2^{S} \rightarrow[0,1]$ defined over S, define

$$
\begin{aligned}
X^{\prime}: 2^{S^{\prime}} & \rightarrow[0,1], \\
Y^{\prime}: 2^{S^{\prime}} & \rightarrow[0,1] .
\end{aligned}
$$

For every $i \in S^{\prime}$, define

$$
\begin{aligned}
& X^{\prime}(i)=X\left(f^{-1}(i)\right) \\
&=\sum_{w \in f^{-1}(i)} X(w) \\
& Y^{\prime}(i)=Y\left(f^{-1}(i)\right)
\end{aligned}=\sum_{w \in f^{-1}(i)} Y(w) . ~ \$
$$

If X^{\prime} and Y^{\prime} are probability distributions, then

$$
\mathrm{D}_{\mathrm{KL}}\left(X^{\prime} \| Y^{\prime}\right) \leq \mathrm{D}_{\mathrm{KL}}(X \| Y)
$$

Proof.

$$
\begin{aligned}
\mathrm{D}_{\mathrm{KL}}(X \| Y) & =\sum_{w \in S} X(w) \log \frac{X(w)}{Y(w)} \\
& =\sum_{i \in S^{\prime}} \sum_{w \in f^{-1}(i)} X(w) \log \frac{X(w)}{Y(w)} \\
& \geq \sum_{i \in S^{\prime}} X^{\prime}(i) \log \frac{X^{\prime}(i)}{Y^{\prime}(i)} \\
& =\mathrm{D}_{\mathrm{KL}}\left(X^{\prime} \| Y^{\prime}\right)
\end{aligned}
$$

Proof. Pinsker's inequality. Given probability distributions $P(x)$ and $Q(x)$ from discrete probability spaces defined over the same S, define $f: S \rightarrow\{0,1\}$

$$
f(w)= \begin{cases}1 & P(w) \leq Q(w) \\ 0 & P(w)>Q(w)\end{cases}
$$

Define probability distributions $P^{\prime}, Q^{\prime}: 2^{\{0,1\}} \rightarrow[0,1]$ for $i \in\{0,1\}$ as

$$
\begin{aligned}
& P^{\prime}(i)=P\left(f^{-1}(i)\right)=\sum_{w \in f^{-1}(i)} P(w), \\
& Q^{\prime}(i)=Q\left(f^{-1}(i)\right)=\sum_{w \in f^{-1}(i)} Q(w), \\
& P^{\prime}(0)=\sum_{\{w \in S \mid P(w)>Q(w)\}} P(w), \\
& Q^{\prime}(0)=\sum_{\{w \in S \mid P(w)>Q(w)\}} Q(w), \\
& P^{\prime}(1)=\sum_{\{w \in S \mid P(w) \leq Q(w)\}} P(w), \\
& Q^{\prime}(1)=\sum_{\{w \in S \mid P(w) \leq Q(w)\}} Q(w) .
\end{aligned}
$$

From this follows that $P^{\prime}(0)>Q^{\prime}(0)$ and $P^{\prime}(1) \leq Q^{\prime}(1)$.
As P^{\prime} and Q^{\prime} are Bernoulli distributions, we know that $\mathrm{D}_{\mathrm{KL}}\left(P^{\prime} \| Q^{\prime}\right) \geq \frac{1}{2}\left\|P^{\prime}-Q^{\prime}\right\|_{1}^{2}$ by Pinsker's inequality for Bernoulli distributions.
Also,

$$
\begin{aligned}
\|P-Q\|_{1} & =\sum_{w \in S}|P(w)-Q(w)| \\
& =\sum_{w \in f^{-1}(0)}(P(w)-Q(w))+\sum_{w \in f^{-1}(1)}(Q(w)-P(w)) \\
& =P^{\prime}(0)-Q^{\prime}(0)+Q^{\prime}(1)-P^{\prime}(1) \\
& =\left|P^{\prime}(0)-Q^{\prime}(0)\right|+\left|P^{\prime}(1)-Q^{\prime}(1)\right| \\
& =\left\|P^{\prime}-Q^{\prime}\right\|_{1} .
\end{aligned}
$$

Therefore, $\mathrm{D}_{\mathrm{KL}}\left(P^{\prime} \| Q^{\prime}\right) \geq \frac{1}{2}\|P-Q\|_{1}^{2}$.
By information processing inequality, we know that

$$
\mathrm{D}_{\mathrm{KL}}\left(P^{\prime} \| Q^{\prime}\right) \leq \mathrm{D}_{\mathrm{KL}}(P \| Q)
$$

And that is all, folks!

$$
\mathrm{D}_{\mathrm{KL}}(P \| Q) \geq \mathrm{D}_{\mathrm{KL}}\left(P^{\prime} \| Q^{\prime}\right) \geq \frac{1}{2}\left\|P^{\prime}-Q^{\prime}\right\|_{1}^{2}=\frac{1}{2}\|P-Q\|_{1}^{2} .
$$

3 Upper Bound

There does not exist such a nice lower bound for KL divergence for a simple reason.

3.1 A counterexample

Theorem 3.1. Kullback-Leibler divergence is not upper bounded by the L_{1} metric. Formally, for every $\varepsilon>0$, there exist probability distributions P_{ε} and Q such that:

$$
\|P-Q\|_{1} \leq \varepsilon, \text { but } \mathrm{D}_{\mathrm{KL}}(P \| Q)=\infty
$$

Proof. Define $P(x)$ and Q as

$$
\begin{gathered}
S=\{a, b\} \\
Q(a)=0, Q(b)=1 \\
P_{\varepsilon}(a)=\frac{\varepsilon}{2}, P_{\varepsilon}(b)=1-\frac{\varepsilon}{2}
\end{gathered}
$$

Then,

$$
\begin{gathered}
\|P-Q\|_{1}=\varepsilon, \\
\mathrm{D}_{\mathrm{KL}}(P \| Q)=\frac{\varepsilon}{2} \cdot \log \frac{\frac{\varepsilon}{2}}{0}=\infty .
\end{gathered}
$$

3.2 A proof

Theorem 3.2. For two probability distributions $P(x)$ and $Q(x)$ that are defined over the same S, it holds that

$$
\mathrm{D}_{\mathrm{KL}}(P \| Q) \leq \frac{1}{2 \alpha_{Q}}\|P-Q\|_{1}^{2}
$$

where

$$
\alpha_{Q}=\min _{x \in S} Q(x)
$$

4 Misc

4.1 Total variation distance vs L_{1} norm

Theorem 4.1. Scheffé's lemma.
For two probability distributions $P(x)$ and $Q(x)$ that are defined over the same S, it holds that

$$
\delta(P, Q)=\frac{1}{2}\|P-Q\|_{1}
$$

Proof. Let's refresh the definition of the total variation distance:

$$
\begin{equation*}
\delta(P, Q)=\max _{A \in 2^{S}}|P(A)-Q(A)| \tag{5}
\end{equation*}
$$

Denote by $G=\{x \in S \mid P(x) \geq Q(x)\}$. Try to find $A \subset S$ such that $P(A)-Q(A)$ is maximized. Intuitively, it is the case when $A=G$.
Now, try to find $A^{\prime} \subset S$ such that $Q(A)-P(A)$ is maximized. Intuitively, it is the case when $A^{\prime}=S \backslash G$.
Therefore, the subset A in $\delta(P, Q)=\max _{A \in 2^{S}}|P(A)-Q(A)|$ is either $A=G$ or $A^{\prime}=S \backslash G$. We will show that the maximum is obtained at both A and A^{\prime} :

$$
P(G)-Q(G)=(1-P(S \backslash G))-(1-Q(S \backslash G))=Q(S \backslash G)-P(S \backslash G)
$$

So if A maximizes $P(X)-Q(X), A^{\prime}$ maximizes $Q(X)-P(X)$ and if A^{\prime} maximizes $P(X)-Q(X)$, then A maximizes $Q(X)-P(X)$.

Now,

$$
\begin{aligned}
\|P-Q\|_{1} & =\sum_{x \in S}|P(x)-Q(x)| \\
& =\sum_{x \in G}(P(x)-Q(x))+\sum_{x \in S \backslash G}(Q(x)-P(x)) \\
& =\delta(P, Q)+\delta(P, Q) \\
& =2 \cdot \delta(P, Q)
\end{aligned}
$$

4.2 Inverse Pinsker inequality

Let P and Q be probability distributions on the finite set A. Let $A_{+}=\{a: Q(a)>0\}$ and let $\alpha_{Q}=\min _{a \in \Lambda_{+}} Q(a)$.

How to prove that if $D(P \| Q)<\infty$ then

$$
D(P \| Q) \leq \frac{d^{2}(P, Q)}{\alpha_{q} \cdot \ln 2}
$$

where $d(P, Q)$ is the variational distance of distributions P and Q, i.e., $d(P, Q)=\sum_{a \in A}|P(a)-Q(a)|$.

I was given a hint that first should prove that:

$$
D(P \| Q) \leq \sum_{a \in A_{+}} \frac{P(a)}{\ln 2}\left(\frac{P(a)}{Q(a)}-1\right)=\frac{1}{\ln 2} \sum_{a \in A_{+}} \frac{|P(a)-Q(a)|^{2}}{Q(a)} .
$$

```
statistics information-theory
```

Share Cite Follow

```
asked Mar 1, 2020 at 15:25
lumen tefodos139
```

What did you try, and where are you stuck? Can you prove the hinted inequality? Can you conclude the argument assuming the hint? - stochasticboy321 Mar 5, 2020 at 4:07

Add a comment
swer Sorted by:

Highest score (default) *

For the Hint from the right hand side to the middle is easy, hint distract the squared expression.

$$
\begin{gathered}
\sum_{a \in A_{+}} \frac{P(a)}{\ln 2}\left(\frac{P(a)}{Q(a)}-1\right)=\frac{1}{\ln 2} \sum_{a \in A_{+}} P(a) \exp \left(\ln \frac{P(a)}{Q(a)}\right)-1 \geqslant \frac{1}{\ln 2} \exp \left(\sum_{a \in A_{+}} P(a) \ln \left(\frac{P(a)}{Q(a)}\right)\right)-1 \\
\geqslant \exp (D(P \| Q))-1 \\
\geqslant 1+D(P \| Q)-1=D(P \| Q)
\end{gathered}
$$

For the reversed pinker's;

$$
\begin{gathered}
D(P \| Q) \leqslant \frac{1}{\ln 2} \sum_{a \in A_{+}} \frac{|P(a)-Q(a)|^{2}}{Q(a)} \\
\leqslant \frac{1}{\ln 2} \sum_{a \in A_{+}} \frac{|P(a)-Q(a)|^{2}}{\min _{a \in A_{+}} Q(a)} \leqslant \frac{m a x_{a \in A_{+}}|P(a)-Q(a)| \cdot \sum_{a \in A_{+}}|P(a)-Q(a)|}{\alpha_{Q} \cdot \ln 2} \leqslant \frac{d^{2}(P, Q)}{\alpha_{Q} \cdot \ln 2}
\end{gathered}
$$

The last inequality you can deduce it after using scheffe's theorem for variational distance.

