
FACULTY OF INFORMATICS

Securing the mod system of
BeamNG.drive

Master’s Thesis

BC. ADAM IVORA

Brno, Fall 2023

FACULTY OF INFORMATICS

Securing the mod system of
BeamNG.drive

Master’s Thesis

BC. ADAM IVORA

Advisor: doc. RNDr. Petr Švenda, Ph.D.

Department of Computer Systems and Communications

Brno, Fall 2023

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Bc. Adam Ivora

Advisor: doc. RNDr. Petr Švenda, Ph.D.

iii

Acknowledgements

I’m in. (Hacker – MC Ride)

My most immense appreciation goes to doc. RNDr. Petr Švenda,
Ph.D. who broughtmany fruitful remarks and ideas about the thesis to
the table. Due to his support and encouragement, I managed to write
a big chunk of the thesis more than a few days before the deadline,
which is impressive. Thank you so much, Petr.

I could not have gotten this far withoutmy family, and I am grateful
to them. Appreciations to my mother, sister, brother-in-law, and my
little niece, who support all my endeavours. They are the still point of
the ever-turning world for me. I will love you always.

Big thanks to everyone who had enough courage to befriend me,
and I am sorry I have been unavailable lately; will make it up to you
real soon. I will not even try to list you this time for data protection
and personal laziness reasons. Special credit belongs to the group chat,
my primary source of serotonin.

Last but not least, thanks to all the people representing the Faculty
of Informatics and to the institution as a whole for the impact it had
on my life during the past six years and the opportunities it provided.
With how formative these years have been for me, I should call it the
Faculty of Formatics instead .

Don’t cry because it happened. Smile because it’s over.
(On Writing Final Theses – Author unknown)

iv

Abstract

We delve into how videogames are modified by the community, a pro-
cess known as “modding”. Then, we scrutinise the security problem
of safeguarding the modding system of a videogame, which is akin to
protecting against the effects of executing untrusted code.

Our focus is the vehicle simulator BeamNG.drive, which includes
modding support in the Lua language. Thus, we analyse the Lua
ecosystem from the perspective of both attackers and defenders, ex-
ploring the possibilities of running malicious code using Lua and the
software mitigations that guard against these exploits.

The state of videogame security is analysed by creating the Game
Malware Survey – a survey of 51 popular videogames with modding
support and the history of relevant related malware incidents.

Furthermore, we probe into various approaches tomitigate the Lua
exploits, concerned about the performance and efficacy of the mitiga-
tions. For that purpose, we developed the EMO (Exploit-Mitigation-
Overhead) Test Bench application, enabling automated analysis of
mitigation effectiveness on Lua implementations and performance
overhead on BeamNG.drive.

We propose a short-term and a long-term strategy for securing the
mod system based on our findings. We also released the Lua Exploit-
Mitigation part of the EMO Test Bench to the open-source community.

Keywords

sandboxing, sandbox, Lua, LuaJIT, videogames, malware, process
isolation, modding

v

Contents

1 Introduction 1

2 Glossary 3

3 Game Malware Survey 5
3.1 Attacker Motivation . 5
3.2 Case Studies . 6

3.2.1 BeamNG.drive 6
3.2.2 Roblox . 8
3.2.3 Minetest . 9
3.2.4 Factorio . 9
3.2.5 Other Lua Games 10
3.2.6 Minecraft . 10
3.2.7 Cities: Skylines 11

3.3 Summary Table . 11
3.3.1 Methodology . 12

3.4 Statistics and Takeaways 16

4 Security in the Lua Ecosystem 17
4.1 Lua . 17
4.2 LuaJIT . 18
4.3 Luau . 18
4.4 Exploit Methods . 18
4.5 Using Bytecode . 19
4.6 Using FFI . 20
4.7 Using the Standard Library 20
4.8 Exploits: Summary . 21

5 Prevention and Mitigations 22
5.1 Lua-specific Solutions . 22

5.1.1 Disabling Loading Bytecode 23
5.1.2 Disabling FFI . 23
5.1.3 Language Level Sandboxes 26
5.1.4 Source Code Level Sandboxes 26

5.2 Sandboxing Software . 27
5.2.1 Windows Sandbox 27

vi

5.2.2 Sandboxie . 28
5.3 Enforcing Limits Using the Operating System 28

5.3.1 AppContainer Isolation 28
5.3.2 Process Mitigation Policies 29

5.4 Summary . 30

6 The EMO Test Bench 31
6.1 Requirements . 31
6.2 Lua Implementations . 32
6.3 Exploits . 33
6.4 Mitigations . 36
6.5 Exploit-Mitigation Benchmark 37
6.6 Overhead . 38
6.7 Mitigation-Overhead Benchmark 40

6.7.1 AppContainer Obstacles 42

7 Benchmark Evaluation 43
7.1 Exploit-Mitigation: Mitigation Efficacy 43
7.2 Mitigation-Overhead: Performance under Mitigations . 44
7.3 Mitigation Assessment 47
7.4 Proposed Solution . 48

8 Conclusion 50

A Attachments 52
A.1 The EMO Test Bench . 52
A.2 Additional Data . 52
A.3 Video Showcase . 53

B Benchmark Parameters 54

Bibliography 56

vii

List of Tables

4.1 Comparison of the different exploit methods. 21
5.1 Comparison of the different sandboxing technologies in

the scope of sandboxing mods of BeamNG.drive. 30
7.1 The list of implementations/mitigations andwhether they

succeeded to mitigate the exploits. 45
7.2 The mean framerates of the median runs, their corre-

sponding standard deviations, and overhead compared
to no mitigation. 46

viii

1 Introduction

Security vulnerabilities in videogames are not an uncommon thing: for
example, remote code execution in Dark Souls [1] and also a recent ex-
ample of a partial remote code execution bug being actively exploited
in the computer game Grand Theft Auto V [2, 3]. Videogames often
include an official way of extending the game’s functionality, such as
adding new maps, vehicles, or additional custom behaviour. These
extensions are called ”mods”, meaningmodifications, and the persons
who make them are called modders. Even though some games do
not provide official support for modding, the modders often devise a
way of producing mods, as in Minecraft [4]. The work of modders, in
general, adds content of high value that could not be obtained without
modding communities [5].

BeamNG.drive is a game with official modding support. It is a
realistic driving simulator with a real-time soft-body physics engine.
It has been in development since 2012. The user base is extensive, with
around 16 thousand daily players on the Steam platform [6]. Also, the
modding community is quite alive, with the most popular mods being
downloaded more than two million times [7]. Therefore, a popular
mod including malware could seriously impact the user base and the
company.

The work aims to protect BeamNG.drive players from malicious
code that can be included in the mod files. The official mod repository
is curated and checked for malicious code. However, detecting all
possible malicious code is a non-trivial task. Also, unofficial websites
with mod files exist, and the developers cannot curate content on these
platforms.

The structure of the thesis is the following: Chapter 2 describes
a few key terms used throughout the work in a high-level sense.
Readers knowledgeable with the meaning of terms like modding, Lua,
BeamNG.drive, or sandboxing, feel free to skip this chapter. In Chapter 3,
we survey popular games with modding support, focusing on past
malware incidents. We also thoroughly analyse selected games as case
studies, discussing the “state of the art” of videogame security related
to modding. Chapter 4 reviews the security of the Lua ecosystem,
focusing on different Lua interpreters. Concrete examples of ways to

1

1. Introduction

achieve malicious behaviour of Lua code are provided. We use the
language’s features and exploits, which get around the limitations of
a secured Lua environment (sandbox escapes). Chapter 5 provides a
list of the mitigations we can implement to protect us against these
codes, including Lua-specific methods and protection on the process
and operating-system level. The Exploit-Mitigation-Overhead (EMO)
Test Bench, implemented in Python as part of the thesis, is described
in Chapter 6, including its design needs, choices, architecture and
setup. Chapter 7 is concerned with interpreting the EMO Test Bench
run results and suggests a set of mitigations that fit BeamNG.drive
requirements. Chapter 8 summarises our findings from the Game
Malware Survey and the EMO Test Bench.

2

2 Glossary

The chapter is a short introduction to the key terms used throughout
the work intended for those without a videogame or cybersecurity
background.

Modding

Modding is a commonly used videogame-slang word, a shorthand for
“modifying”. Modding, in the more general sense, is the modification
of hardware or software to extend its behaviour for the needs of the
modder or other individuals. In the context of the thesis, we always
use the word modding in the meaning of “computer game modding”.
Computer game modding is changing a game using programming
and other software tools to add features not included in the game or
to fix issues with the game. Modding is not done by the developers
but by the players with the incentive and needed technical skills [8].

Some of the videogame mods change the experience of the game
immensely, and there are examples of mods which became more pop-
ular than the original game (Counter-Strike as a mod of Half-Life,
DoTA as a mod of Warcraft 3).

Lua

Lua is a self-proclaimed [9], powerful, efficient, lightweight, embed-
dable scripting language. It was implemented and is maintained by
a team from the Pontifical Catholic University of Rio de Janeiro in
Brazil.

Lua is a dynamically typed language. The original implementation
(called Lua, or also PUC Lua) is the most popular, although there
are a lot of reimplementations and languages based on Lua [10]. We
discuss the differences between PUC Lua, LuaJIT and Luau from the
security point of view in Chapter 4.

3

2. Glossary

BeamNG.drive

BeamNG.drive is a dynamic soft-body physics vehicle simulator avail-
able on Steam1 since 2015. The game includes a high level of customi-
sation and modding capabilities [11]. BeamNG.drive uses Lua for
most of the game’s logic, including the modding system. The Lua
implementation used is a customised version of LuaJIT [12].

BeamNG.drive is a primarily Windows application2. Therefore,
we limit our analysis to the Windows operating system. Analysis of
sandboxing methods for Linux is left as a potential future work.

Sandbox

In the context of this work, sandboxing is a security mechanism for
separating running programs and limiting their behaviour.

The term “sandboxing” was introduced in 1993 as a technique to
provide isolation against faults in extension code [13]. For our means,
we can follow the definition of sandboxing by Goldberg et al.: “the
concept of confining a helper application to a restricted environment,
within which it has free reign” [14].

All modern web browsers use a form of sandboxing, such as the
sandbox in Chromium [15]. The Android platform also uses a kernel-
level Application Sandbox enforcing security between apps and the
system [16]. Apple has a similar way of sandboxing applications for
macOS and iOS [17]. Software solutions which provide a sandbox
environment for arbitrary applications also exist (more in Section 5.2).

1. A videogame digital distribution service.
2. Linux support is in an experimental phase.

4

3 Game Malware Survey

The chapter analyses the state of the art of some of the most popular
games in the modding community, focusing on games using Lua as
the language of mods, as BeamNG is using Lua for the mod system.
The chapter also includes a table comparing 51 popular games, their
malicious mod mitigation techniques and security incidents in the
past. We analyse the state of selected case studies from the ecosystem
regarding malware incidents and protection in Section 3.2. We start
by discussing the motivations of malware attacks using the modding
systems of various computer games.

3.1 Attacker Motivation

Kaspersky, a cybersecurity company, publishedmultiple reports about
gaming-related cyber threats [18, 19, 20]. By reading the reports, we
can extract the motivation of the attackers. Kaspersky report from
2022 [19] contains the top ten threats distributed worldwide under
the guise of popular games. The most prevalent malware families
are downloaders, adware and trojans. The leading malware family
in the same report is Trojan-PSW.MSIL.Reline/RedLine, a credential
and cryptocurrency-stealing software. Be aware that the report does
not describe malware found in mods but all malware “branded” as
belonging to one of the popular videogames, including phishing sites
and fake cracks1. Therefore, not surprisingly, the primarymotivation of
the attackers is monetary. The attackers gain money either by stealing
the cryptocurrency of the infected players or by mining it on their
machines. Also, extorting the players with ransomware is a common
technique for making money off malware.

However, the gaming industry also attracts another type of attacker
who is not writing malware for financial gain. There have been cases
where a reputed creator of mods for Cities: Skylines, a city-building
videogame started packing malicious code with his mods, breaking
mods by other creators on purpose, as discussed in Section 3.2.7. Also,

1. Illegally modified executables bypassing the anti-copying protection.

5

3. Game Malware Survey

some exploits only try to be as loud as possible to let the developers
know an exploit is available and urge them to fix it (Section 3.2.5).

The execution of untrusted code in computer games that allows
modding is a wide attack vector. Some of these modding systems
include auto-updating, which would allow an easy spread of a ma-
licious update to many players in case a famous modder’s account
got compromised. Gaming computer hardware is better suited for
intensive CPU/GPU tasks, and therefore, gaming computers are also
a beneficial addition to botnet mining cryptocurrencies.

The popular malware payloads used are cryptocurrency miners,
keyloggers, remote access trojans and ransomware. The definitions
and explanations of the different types of malware are not in the
scope of this thesis; more information is available in the Malwarebytes
glossary [21] or other sources.

3.2 Case Studies

We describe the different situations of securing player-supplied code
for selected games, focusing primarily on Lua mods and multiplayer
code (Roblox, Factorio, Starbound, Garry’s Mod). We also describe
other popular games with mods, such as Minecraft and Cities: Sky-
lines.

3.2.1 BeamNG.drive

BeamNG.drive is a vehicle simulation game; for a brief introduction,
see Chapter 2. It uses a custom fork of LuaJIT, which is tweaked to
sandbox the following features:

• file access is through a virtual filesystem, which only allows
access to the game and user folder,

• loading external DLLs2 through package.loadlib and similar
functions is disabled,

• dangerous functions such as os.execute are replacedwith empty
implementations inside the source code,

2. Dynamic-link libraries.

6

3. Game Malware Survey

• other parts of LuaJIT are sandboxed.

The in-game mod repository of BeamNG.drive is shown in Fig-
ure 3.1. Installing mods is done by simply clicking the “ ” button; no
knowledge of Lua or security is needed to install the mod. Therefore,
establishing a properly secure environment where the mods can run
is essential.

Figure 3.1: The BeamNG.drive mod repository.

BeamNG has a mod system that allows it to enhance the gaming
experience with new vehicles, maps, or other features. The mods
can be downloaded in-game and from the official mod repository
website [7].

The mods are written in Lua, a dynamic programming language.
For executing Lua code, BeamNG.drive uses LuaJIT [12], a just-in-time
(JIT) compiler. Lua provides features to sandbox environments [22],
but it is tricky to do it properly. Moreover, LuaJIT includes the FFI
library, which allows calling external C functions and using C data
structures from pure Lua code and is labelled as inherently unsafe by
the developer of LuaJIT [23]. FFI is used heavily in BeamNG.drive.

7

3. Game Malware Survey

3.2.2 Roblox

Roblox is an online game and game creation platform with over 66
million daily active users [24]. The players participate in “experiences”
created by the community. Experience in Roblox is a collection of
maps players can play through, including custom objects and scripting
logic [25]. The concept of experiences is the same as that of mods, so
experiences suffer from the same security problems.

The experiences are scripted using Luau [26], a gradually typed
embeddable scripting language derived from Lua 5.1. The experience
code runs on every user’s computer, so proper sandboxing is crucial.

During the early Roblox days, Luau (Section 4.3) had not been
created yet, and the language used for the experiences was Lua 5.1.
The 2012 blog post “Bye Bye Bytecode” [27] is an example of a Lua
5.1 vulnerability affecting the game, as Roblox developers had to turn
off the loading of bytecode as it led to arbitrary code execution.

Luau tries to solve the Lua 5.1 sandboxing problems by [28]:

1. removing parts of the standard Lua library,

• io library: file manipulation,

• package library: facilities for loading and buildingmodules,

• file and environment access functions from the os library,

• most of the debug library, which contains functions for de-
bugging or profiling,

• the dofile and loadfile functions, which parse Lua code;

2. removing access to function bytecode,

3. reducing the functionality of the garbage collector API.

The developers also focus on high performance and implement
various optimisations to the Lua interpreter and compiler [29]; they
do not use JIT compilation in contrast with LuaJIT. Themain reason for
no JIT is that there is an extra risk involved in JITs, which is supported
by some existing attacks [30].

8

3. Game Malware Survey

3.2.3 Minetest

Minetest is an open-source voxel game engine and also a game with
the same name [31]. Minetest has a modding API in Lua (uses either
PUC-Lua 5.1 or LuaJIT, depending on the compilation configuration),
an official modding repository called ContentDB [32] and supports
multiplayer, where the mods of the server are being downloaded to
the clients. Minetest tries to provide a sandboxed environment for the
mods.

The mitigations that were already implemented are [33]:

• blocking direct access to the filesystem, only letting Lua access a
VFS3,

• not loading the io library,

• not loading the package library,

• not allowing access to the debug library,

• only allowing access to safe functions in the os library.

The mitigations are still a work in progress. The to-do list of the
sandbox features to implement, as of November 2023, includes:

• limiting how much data can be stored in mod storage,

• disabling LuaJIT and JIT compilation,

• a permission system for mods.

Although there is effort put into sandboxing the environment,
multiple vulnerabilities were found in Minetest in the past, including
a remote code execution issue [34].

3.2.4 Factorio

Factorio uses Lua 5.2.1 to implement its mod system. To allow deter-
minism and improve security, it removes the loadfile and dofile
functions. Factorio also removes the coroutine., io. and os. libraries

3. Virtual file system.

9

3. Game Malware Survey

and provides its version of the package. library [35]. A prior remote
code execution in Factorio was caused by the package.cpath table be-
ing exposed [36] and writable. The table exposure allowed the attack-
ers to loadDLLs fromarbitrary locations. Factorio allowsmods towrite
files fromLua to amod-specific folder. By changing the package.cpath
to point at that mod-specific folder, the attacker (in this case, the mod
creator) could run arbitrary code.

3.2.5 Other Lua Games

Examples of other games supporting modding in Lua are Starbound
and Garry’s Mod. We did not find any traces of historical Starbound
exploits, but Garry’s Mod has been a target of remote code execution
attacks before [37, 38]. Although the exploit was not part of a mod
per se (it was malicious Lua code sent by clients to a server), the
underlying principles and mitigations are the same. The incident is
intriguing as the malicious code only spammed the players with the
message “fix it vinh”, trying to draw attention to the remote code
execution issue [38].

A similar non-Lua case is that of Dark Souls 3 [1], where the mal-
ware creator interrupted a famous player’s stream to crash his game.
According to the article, the malware creator tried to contact the de-
veloper about the issue, but he was ignored, so he hacked streamers
to draw attention to the problem.

We continue with the analysis of two other popular games that do
not use Lua as their modding language.

3.2.6 Minecraft

Minecraft is a sandbox4 infinite-generated world exploration game.
Minecraft support formodding is not official; playerswanting to down-
load and use mods have to download Minecraft modding API called
MinecraftForge [39].

Although it is unofficial, the modding community of Minecraft
is one of the largest ones, with over 100, 000 mods available on the
mod repository CurseForge [40]. The mods are written in Java, and

4. Sandbox game is a game without any predetermined goal. Sandbox games are
not related to sandboxing as defined in Chapter 2.

10

3. Game Malware Survey

any sandboxing whatsoever is missing, ironically, despite the sandbox
genre of the game. That makes including malware code in Minecraft
trivial; the distribution of such malicious mod becomes the greatest
obstacle for the attackers.

3.2.7 Cities: Skylines

Cities: Skylines is a single-player, open-ended city-building simulation
published by Paradox Interactive. Distribution of the mods is done
through the Steam Workshop, a standard method to distribute mods
of games supporting the Steam platform. The mods are written in
C# and use the Unity framework APIs. They are not sandboxed in
any way, and there have already been cases of malicious mods being
distributed on the platform [41, 42]. The game has an official modding
API. However, the official wiki page contains a disclaimer that the
mods are not executed in a sandbox and that caution is recommended
when running mods [43].

SteamWorkshop is considered to be one of the safe places to down-
load mods. As we see with Cities: Skylines and also other games (for
example, Dota 2 [44]), there have been cases in the past where Steam
Workshop mods included remote code execution malware, which was
distributed to the players.

3.3 Summary Table

A table of 51 games and their cybersecurity-related incident follows.
We focus on games that include some support for modding, but we
do not limit ourselves to security incidents related to malicious mods.
Some of these allowed remote code execution using the multiplayer
feature, an even more severe attack vector, as no user interaction is
usually needed other than playing the game.

It serves as an overview of how others in the industry “do it”. The
table does not try to be exhaustive and include all the existing mod
repositories or issues. Still, it should provide a good overview of what
security problems arise in computer games supporting mods.

11

3. Game Malware Survey

3.3.1 Methodology

We combined several popular services distributing videogame mods:
Steam Workshop, NexusMods, and CurseForge.

For the Steam Workshop games, we took the top 20 most-played
Steam Workshop games from the SteamDB website [45]. Note that
not all games that have support for Steam Workshop support a fully-
fledged modding experience – for example, Dota 2 has support only
for new 3D models of existing content and no support for scripts
changing the game’s behaviour. For NexusMods, we took the top 20
games sorted by the number of downloads [46]. For CurseForge, we
took the top ten games sorted by the number of different mods, as
the information about downloads is unavailable [40]. We removed
duplicates and the game WildStar, which was shut down in 2018.

We added four other games with their custom self-hosted mod
repository: BeamNG.drive (subject of the work), Factorio, Roblox, and
Minetest. This process results in a table of 51 games.

For all the games in the list, we searched the Internet for phrases
such as “<GAME> exploit”, “<GAME> malware”, and similar terms.
These results were thenmanually verified to search for exploits related
either to the mod system or multiplayer. Links to relevant articles and
sources are provided in the table. The table is also included as an
attachment of the thesis in the CSV format (Appendix A.2).

Columns Description

• Game: Name of the game. If the name is bold, the game uses
Lua for modding support.

• Mods: The number of mods found during the data-gathering
phase. This number is a lower bound for the available mods.
With games in multiple studied mod repositories, we use the
repository with the highest number of mods.

• Supp: 3 if the game officially supports the modding and the
modding APIs are exposed, or official modding tools are avail-
able, 3 5 with a footnote if official modding tools are not pro-

5. Like this.

12

3. Game Malware Survey

vided, but modding is endorsed by the game creators, 7 if mod-
ding is purely unofficial.

• MP: Whether the game has online multiplayer capability. Multi-
player can be used as the means of delivering malware, some-
times with the use of mod synchronisation among players.

• Mitigations / Tools / Notes: The mitigations that the game
uses for protecting against malware or other notes about the
game’s security. If empty, it does not mean that mitigations are
not in place but that we found no information about them. It
also mentions official tools for modding for some of the games.

• Exploits: Links to the game’s publicly disclosed vulnerabilities/-
exploits related to mods or multiplayer code. 7 means that no
reports of vulnerabilities/exploits were found, which does not
mean these vulnerabilities/exploits do not exist. 3 means that
although we found no reports of malware in these games, we ex-
pect that writing exploits for the game is possible, as we suspect
no sandboxing features are implemented.

13

3. Game Malware Survey
G
am

e
M
od

s
Su

pp
M
P

M
iti
ga

tio
ns

/
To

ol
s
/
N
ot
es

Ex
pl
oi
ts

1
R
ob

lo
x

>
40

,0
00

,0
00

3
3

Lu
au

(S
ec

tio
n
4.
3)

[4
7]

6

2
G
ar
ry
’s
M
od

1,
72

2,
35

2
3

3
[3

8]
3

C
ou

nt
er
-S
tr
ik
e:

G
lo
ba

lO
ffe

ns
iv
e

38
4,
45

4
7

3
[4

8]
4

C
iti

es
:S

ky
lin

es
31

8,
24

8
3

7
M

od
sr

un
ar

bi
tr
ar

y
C
#
co

de
.

[4
2]

5
M

in
ec

ra
ft

12
7,
12

7
7

3
M

od
sr

un
ar

bi
tr
ar

y
Ja
va

co
de

.
[4

9]
6

Le
ft

4
D
ea

d
2

12
0,
63

1
7

3
[5

0]
7

Ru
st

10
3,
44

0
3

7
3

7
8

U
nt

ur
ne

d
93

,8
87

3
3

7
9

Sk
yr

im
69

,5
00

3
7

7
10

Sk
yr

im
Sp

ec
ia
lE

di
tio

n
60

,0
00

3
7

7
11

Fa
llo

ut
4

48
,1
00

3
7

7
12

H
ea

rt
so

fI
ro

n
IV

42
,1
76

3
7

[5
2]

13
D
ot
a
2

41
,3
57

3
3

[4
4]

14
D
ay

Z
38

,0
74

3
3

7
15

Te
am

Fo
rt
re
ss

2
34

,5
90

7
3

C
os

m
et
ic

ite
m

m
od

so
nl
y.

[5
0]

16
O
bl
iv
io
n

31
,0
00

3
7

7
17

Ri
m
W

or
ld

30
,0
39

3
7

M
od

sr
un

ar
bi
tr
ar

y
C
#
co

de
.

3
18

Fa
llo

ut
N
ew

Ve
ga

s
29

,0
00

3
7

G
ar
de

n
of

Ed
en

C
re
at
io
n
K
it
to
ol
.

7
19

St
el
la
ris

26
,4
00

3
3

7
20

Be
am

N
G
.d
ri
ve

21
,4
95

3
7

V
irt

ua
lfi

le
sy

st
em

,L
ua

pa
tc
he

s.
7

21
Eu

ro
Tr

uc
k
Si
m
ul

at
or

2
18

,0
17

3
3

7
22

Pr
oj
ec
tZ

om
bo

id
16

,7
22

3
3

N
o
m
en

tio
ns

of
sa

nd
bo

xi
ng

fo
un

d.
7

23
Fa

llo
ut

3
16

,0
00

3
7

7
24

A
RK

:S
ur

vi
va

lE
vo

lv
ed

15
,8
42

3
7

7
25

St
ar
de

w
Va

lle
y

11
,3
00

7
3

M
od

sr
un

ar
bi
tr
ar

y
C
#
co

de
.

3
26

W
or
ld

of
W
ar
cr
af
t

10
,7
50

3
3

7

6.
Vu

ln
er
ab

ili
ty

w
as

no
ti
ns

id
e
th

e
m
od

sy
st
em

,b
ut

in
si
de

th
e
cr
ea

to
rs
’t
oo

lb
ox

.
7.

M
od

di
ng

gu
id

el
in
es

ar
e
pu

bl
is
he

d
[5

1]
.

14

3. Game Malware Survey
27

M
or

ro
w
in
d

10
,2
00

3
7

7

28
Th

e
Si
m
s4

9,
22

5
3

8
7

7
29

Si
d
M

ei
er
’s

C
iv
ili
za

tio
n
V
I

7,
40

8
3

3
7

30
Bl

ad
e
&

So
rc
er

y
5,
90

0
3

3
Ba

sS
D
K
,m

od
sr

un
cu

st
om

C
#
co

de
.

3
31

Th
e
W

itc
he

r3
5,
90

0
3

7
Th

e
M

od
ki
tt

oo
l.

7
32

C
yb

er
pu

nk
20

77
5,
80

0
3

7
Th

e
RE

D
m
od

to
ol
.

[5
4]

33
Fa

ct
or
io

5,
70

5
3

3
By

te
co

de
ex

ec
ut

io
n
pa

tc
he

s[
55

].
[3

6]
34

M
on

st
er

H
un

te
r:
W

or
ld

5,
10

0
7

7
7

35
Te

rr
ar

ia
5,
03

3
3

3
Th

e
tM

od
Lo

ad
er

to
ol
,c

us
to
m

C
#
co

de
.

[5
6]

36
M

ou
nt

&
Bl

ad
e
II

4,
28

0
3

3
M

od
di

ng
K
it
to
ol
,a

rb
itr

ar
y
C
#
co

de
.

3
37

D
ra
go

n
A
ge

:O
rig

in
s

3,
40

0
3

7
D
ra
go

n
A
ge

To
ol
se

t.
7

38
D
ra
go

n
A
ge

:I
nq

ui
si
tio

n
2,
90

0
7

3
7

39
St
ar

C
ra
ft

II
2,
28

8
3

3
St
ar

C
ra
ft

II
Ed

ito
r–

on
ly

a
m
ap

ed
ito

r.
7

40
Bl

ad
e
&

So
rc
er

y:
N
om

ad
2,
10

0
3

7
Ba

sS
D
K
,m

od
sr

un
cu

st
om

C
#
co

de
.

3

41
K
er
ba

lS
pa

ce
Pr

og
ra
m

2,
07

5
3

7
9

M
od

sr
un

ar
bi
tr
ar

y
C
#
co

de
.

[5
7]

42
M
in
et
es
t

1,
92

9
3

3
V
irt

ua
lfi

le
sy

st
em

,l
im

its
lib

ra
rie

s[
33

].
[3

4]
43

M
on

st
er

H
un

te
rR

is
e

1,
90

0
7

3
7

44
Va

lh
ei
m

1,
80

0
7

3
M

od
su

pp
or

ta
t“

ow
n
ris

k”
[5

8]
.

[5
9]

45
D
ra
go

n
A
ge

2
1,
40

0
7

7
7

46
A
m
er
ic
an

Tr
uc

k
Si
m
ul

at
or

1,
24

9
3

3
7

47
W

ar
fr
am

e
79

8
7

3
C
os

m
et
ic

ite
m

m
od

so
nl
y.

7
48

Su
bn

au
tic

a
66

6
7

7
M

od
sr

un
ar

bi
tr
ar

y
C
#
co

de
.

3
49

Ro
ck

et
Le

ag
ue

52
4

7
3

M
od

sn
ot

su
pp

or
te
d,

bu
ta

llo
w
ed

[6
0]

.
7

50
W

or
ld

of
Ta

nk
s

43
1

3
3

[6
1]

51
M

in
ec

ra
ft

Be
dr

oc
k

31
9

3
3

“A
dd

-o
ns

”
w
ith

lim
ite

d
pr

iv
ile

ge
s.

7

8.
Su

pp
or

ts
a
fr
am

ew
or

k
th

at
m
ak

es
in
st
al
lin

g
m
od

se
as

ie
r[

53
].

9.
A
n
un

offi
ci
al

m
ul

tip
la
ye

rm
od

ex
is
ts
.

15

3. Game Malware Survey

3.4 Statistics and Takeaways

Seven of the 51 (13.7%) games included in the survey use Lua for
modding support. Four out of the seven mentioned have had security
issues in the past. If we count Steam Workshop and games with their
mod repositories, we have 24 games using “official modding reposito-
ries”. Nevertheless, 38 games (74.5%) have official modding support
or endorsement from the developers, which means that third-party
mod repositories such as NexusMods or CurseForge are also often
accepted as a go-to mod distribution platform by developers.

We found historical malware incidents in 16 out of the 51 games
(31.4%) in the Game Malware Survey. These incidents are related
either to the mod system or to the multiplayer. Both of these cases
are interesting for our study, as the prevention against them is similar.
In addition to these 16 games, there are at least six more (11.8%)
games with “suspected exploitability” – that is, no information about
sandboxing is provided, and these games usually allow running of
arbitrary C# code. Out of the 16 + 6 = 22 games, 15 have official
modding support/endorsement; thus, the incidents are not limited
only to unofficial modding.

We can summarise our findings as follows. There are popular
games with mod support that are not concerned about mod security.
On the other hand, there are also a lot of security-positive examples
where the developers are trying to sandbox the system somehow.
However, proper sandboxing is not trivial, and incidents or sandbox
escapes still happen in games that are trying to create a secure mod-
ding environment (Minetest andGarry’sMod are two examples of that
phenomenon). Roblox took a different path by creating a new custom
Lua interpreter called Luau focused on security which proved mean-
ingful for the use case of Roblox. However, the performance difference
between Luau and LuaJIT can be an issue if maximal performance is
sought.

16

4 Security in the Lua Ecosystem

We discuss the security protections against running untrusted code of
standard Lua implementations used in the videogame industry: the
pristine implementation (Lua, or PUC-Lua), LuaJIT, and Luau.

Petr Adámek’s bachelor thesis [62] overviews different ways to
construct a Lua sandbox. Paul Florence and Lucien Menassol explore
(in French) the attack surface of the modding APIs in videogames,
with a heavy focus on Lua in their study [63]. Scientific literature about
the chapter’s topic is scarce, as is the case in general with cybersecurity
in the gaming industry. Continuing with the chapter, we discuss the
concrete methods of exploiting Lua in Section 4.4: using bytecode, the
FFI library, and the Lua standard library.

Lua is often used for modding computer games because it is em-
beddable but still performant, small, and portable. The simplicity and
low overhead of Lua is a factor in this; it is also the reason why many
different Lua implementations exist [10].

4.1 Lua

Lua, or PUC-Lua, is the original and the most popular implementation
of Lua, created in 1993 and maintained by a team at the PUC-Rio
University (more info in Chapter 2).

The lua-users wiki, a website created by the community of the Lua
programming language, contains a section about sandboxing [22].
Still, it is outdated (the guide does not work for Lua 5.2 and above)
and incomplete. The current version is Lua 5.4.

PUC-Lua is not prone to exploits leveraging the FFI library (Sec-
tion 4.6) because the library is only available for LuaJIT. However,
multiple cases exist of escaping sandboxes using crafted bytecode; see
Section 4.5. Without proper sandboxing, functions from the standard
library can be used to execute malicious behaviour (Section 4.7).

17

4. Security in the Lua Ecosystem

4.2 LuaJIT

LuaJIT is a Just-In-Time Compiler for Lua and comes with a high-
performance interpreter. It has been in development since 2005, pri-
marily by Mike Pall and is used as a scripting middleware in games
and other performance-critical applications.

LuaJIT is fully compatible with Lua 5.1, but it also contains selected
features from Lua 5.2, Lua 5.3 and several extension modules, such
as support for bitwise operations or the FFI1 library, which allows
calling external C functions from Lua code [64, 65]. New development
seemed halted in the past [66], but as of November 2023, LuaJIT is
actively developed and maintained with a rolling release system [67].
Development on LuaJIT is also done by OpenResty, a widespread
nginx distribution, which has forked the LuaJIT repository and is
providing extra API functions for the language [68].

4.3 Luau

Luau is an implementation based onLua 5.1 that provides performance
and security [26]. As mentioned in Section 3.2.2, Luau was created
by the developers of the Roblox game. However, Luau is also being
used in other videogames, Alan Wake 2 being a notable and recent
example [69].

External Luau scripts are run by millions of players daily in Roblox.
Thus, Luau got field-tested, and there do not seem to be signs of
exploitable security-related bugs as of November 2023.

4.4 Exploit Methods

We call an exploit some chunk of code that executes unexpected, often
malicious behaviour. If the developers decide to allow modders to exe-
cute arbitrary code, then they also have to prevent these exploits. That
can be done by limiting access to unsecuremodules/functions and also
by sandboxing the Lua implementation. If the Lua implementation is
not sandboxed, the attacker could call operating-system commands

1. Foreign Function Interface.

18

4. Security in the Lua Ecosystem

(os.execute) or manipulate the filesystem using the Lua-included
functions.

4.5 Using Bytecode

Lua bytecode is the intermediate language to which the Lua implemen-
tations compile the Lua code. Bytecode is a list of internal instructions,
the Lua virtual machine processes these instructions. Every Lua imple-
mentation uses a different bytecode format, and the formats are not
compatible with each other. Pristine Lua used to include a bytecode
verifier, which was supposed to protect against bytecode exploitation.
It was removed in Lua 5.2 because the team could not deliver a verifier
that would be effective enough [70].

Remarkably, loading bytecode is allowed by default, and to deacti-
vate it, the developers have to use the loadfile function for loading
Lua with an extra parameter. Moreover, the dofile function, also used
for executing Lua chunks, does not support the option of disabling
bytecode [71]. The FAQ section of the LuaJIT website states that load-
ing untrusted bytecode is unsafe and that the recommended way to
sandbox Lua is to do it on the process level [23].

Peter Cawley published bytecode exploits for LuaJIT [30], Lua
5.1 [72], and also Lua 5.2 [73, 74]. Another exploit for Lua 5.1 has
been published by a different author [75]. There also exists a sandbox
escape using bytecode for more recent Lua 5.4 [76], which suggests
that mitigation of external bytecode is not a priority for the developer
team and that loading unverified bytecode should not be allowed.

Another LuaJIT sandbox escape using bytecode was published in
late 2022 [77], so the attack vector is valid even for recent versions of
LuaJIT. The code for these exploits is too long to be included as a part
of the thesis; consult the references of this section for the proofs-of-
concepts.

The difficulty of using this exploit method is quite high, as the
payloads are version and operating-system-specific, and it is necessary
to find an existing bug in the bytecode interpreter to exploit it.

19

4. Security in the Lua Ecosystem

4.6 Using FFI

The Foreign Function Interface library allows calling external C func-
tions from Lua code. It is integrated into LuaJIT and unavailable for
other Lua implementations [65]. The FFI library is said to be inherently
unsafe by the LuaJIT author [23].

Peter Cawley discusses using FFI to escape Lua-level sandboxes
in his article about malicious LuaJIT bytecode. According to him, if
the sandbox exposes the FFI library, then arbitrary code execution
is trivial [30]. We can see such an example of a script that executes
arbitrary Windows shellcode2 in Figure 6.3. Due to the nature of the
FFI library, this is only one of the different ways to run arbitrary code.
We can use other functions from theWin32 API, such as LoadLibraryA,
to execute arbitrary code from the DllMain method or ShellExecuteA
to execute an arbitrary file.

The difficulty of making LuaJIT exploits using FFI is lower than
that of using bytecode, as the exploits are using the standard functions
of the FFI library. Still, for a successful exploit, the attackers need to
know how to operate the operating-system-specific APIs to execute
malicious code.

4.7 Using the Standard Library

There are many possibilities with the standard library of Lua/LuaJIT
to run arbitrary malicious code, as is the case with most modern
programming languages. In Figure 4.1, we can see three such ways:

1. executing an operating-system-specific shell which runs a com-
mand,

2. loading a dynamic library that runs its DllMain method on load,

3. writing an executable file to a location that will autorun the
executable on the next start.

Using the standard library of Lua is the most accessible type of
exploit for an attacker, but it is also the method that is being protected

2. A piece of machine code used to spawn a (malicious) process.

20

4. Security in the Lua Ecosystem

-- execute a system command
os.execute('start cmd /k call "C:/Malware/malware.exe"')

-- load an arbitrary DLL (DllMain is executed)
package.loadlib('C:/Malware/malware.dll', '*')

-- copy a file to a location that will be run on startup
file = io.open('C:/Malware/malware.exe', 'r')
content = file:read('*a')
file = io.open('%appdata%/Microsoft/Windows/Start Menu' ..

'/Programs/Startup/hello.exe', 'w+')
file:write(content)

Figure 4.1: Several ways to executemalware onWindows systemswith
unsandboxed Lua implementation. Assume that files in C:/Malware
are malicious.

against the most often. The protection is done by removing these
“vulnerable” functions from the Lua environment or patching them
not to allow malicious behaviour.

4.8 Exploits: Summary

Table 4.1, is an overview of the exploit methods described in this
chapter. We discuss the difficulty of mitigating these exploit methods
in the next chapter and Section 7.2. Concrete proofs-of-concepts of the
exploits that we implemented are provided in Section 6.3.

Table 4.1: Comparison of the different exploit methods.

Exploit Type Requirements Difficulty
Using Bytecode bytecode functionsa high
Using FFI LuaJIT, FFI library medium
Using the Standard Library unsandboxed Lua low

a. dofile, loadfile with mode="b"

21

5 Prevention and Mitigations

This chapter tries to analyse the problem of how to deal with running
untrusted code (in our case, mod code) with potential malware in-
cluded. There are many ways to protect against running unwanted
code or limiting its impact. We start with different sandboxing solu-
tions available on different levels of the software hierarchy and then
focus on keeping our spawned processes low-privileged to mitigate
the malware that gets to run.

We focus solely on Windows solutions due to the nature of most
computer gamers using the Windows platform. For Linux systems,
tools from Section 5.3 could be replaced by kernel security modules
such as SELinux and AppArmor.

We discuss the following mitigation methods:

• Section 5.1: Lua-specific solutions, such as turning off insecure
features of the interpreter or sandboxing inside Lua, and also
modifying the source code of Lua/LuaJIT

• Section 5.2: Sandboxing Software. We compare Sandboxie, an
open-source sandbox wrapper around Win32 APIs and Win-
dows Sandbox, an optional feature of the Windows operating
system, which provides virtualisation-based sandboxing.

• Section 5.3: Limiting the process capabilities from within itself
by only allowing a strict subset of the operating-system API.
We explore the possibility of using AppContainers, security
sandboxes introduced in Windows 8, and the Process Mitigation
Policy Windows API.

5.1 Lua-specific Solutions

The following methods are specific to the Lua ecosystem, as they are
all about disabling certain language features or limiting them. We
will discuss three different mitigations: disabling loading bytecode,
disabling FFI and premade open-source Lua sandbox packages.

22

5. Prevention and Mitigations

5.1.1 Disabling Loading Bytecode

Specific for Lua ≥5.2 and LuaJIT, as older versions of Lua do not
provide options not to load bytecode1.

The functions that allow loading bytecode by default in LuaJIT are:
• dofile: loads a Lua chunk from a file and executes it,

• loadfile: loads a Lua chunk from a file and returns it,

• load: loads a Lua chunk from a variable and returns it,

• loadstring: in LuaJIT, an alias for load.
A Lua-specificway of doing thiswould be to provide a newenviron-

ment for the untrusted code, where we override the unsafe functions
with the safe ones (an example in Figure 5.1). The problem is that
we have to ensure the environment does not contain any functions
that can access the global environment of the caller, which is a tedious
process prone to errors [22].

As bytecode loading is not needed in BeamNG, we can disable
loading bytecode inside LuaJIT’s source code, which is less prone to
errors. In LuaJIT, all functions that load Lua code use the lua_loadx
function from the src/lj_load.c file [78]. We can tweak LuaJIT to not
load bytecode by setting the ls.mode variable to t, which forces text
mode for all the loading-related functions (Figure 5.2). Moreover, the
bytecode-loading variants will not be available in the Lua environment.
That means there is no way of accessing them, even using the debug
library or other functions.

5.1.2 Disabling FFI

This mitigation is relevant only for LuaJIT, as other Lua implementa-
tions do not include this library. The straightforward way to disable
FFI is to do so globally by compiling with the -DLUAJIT_DISABLE_FFI
option. However, if the application uses FFI for other reasons than
mods (as with BeamNG), then disabling FFI globally is not an op-
tion. Disabling FFI on the Lua level brings the same issues as trying

1. Loading bytecode could be prevented by checking whether the value of the first
byte is the decimal “27”.

23

5. Prevention and Mitigations

local function dofile_nobytecode(filename)
local f = assert(loadfile(filename, 't'))
return f()

end
local function loadfile_nobytecode(filename, mode, env)

return loadfile(filename, 't', env)
end
local function load_nobytecode (ld, source, mode, env)

return load(ld, source, 't', env)
end
local function loadstring_nobytecode(ld, source, mode, env)

return loadstring(ld, source, 't', env)
end

local env = {
dofile = dofile_nobytecode,
loadfile = loadfile_nobytecode,
load = load_nobytecode,
loadstring = loadstring_nobytecode,
...
-- add all the other safe functions that should be included

}
local function run_sandboxed(filename)

local func = loadfile(filename, nil, 't', env)
if not func then return nil
return pcall(func)

end

run_sandboxed(filename)

Figure 5.1:Replacing the bytecode-loading functions with the versions
not allowing bytecode.

24

5. Prevention and Mitigations

LUA_API int lua_loadx(lua_State *L, lua_Reader reader,
void *data, const char *chunkname, const char *mode)

{
ls.rfunc = reader;
ls.rdata = data;
ls.chunkarg = chunkname ? chunkname : "?";

- ls.mode = mode;
+ ls.mode = "t"; // force text mode

lj_buf_init(L, &ls.sb);
status = lj_vm_cpcall(L, NULL, &ls, cpparser);
lj_lex_cleanup(L, &ls);

}

Figure 5.2: Disabling bytecode in LuaJIT source: src/lj_load.c [78].

to disable loading bytecode (see Section 5.1.1). Ideally, the proper
mitigation is done on the level of LuaJIT’s source code, as in the case
of loading bytecode.

For the EMO Test Bench, we have chosen to implement this mitiga-
tion by disabling FFI during compilation, as it is a simple and effective
solution. However, if FFI is to be used in the application, a source-level
FFI hardening is a beneficial part of the overall security sandbox. Here
are a few pointers about what the source code level hardening should
include:

• safety wrappers need to be written for high-level operations on
FFI data types [79],

• functions for loading DLLs (ffi.load) should be entirely dis-
abled, or only allow a list of whitelisted “safe” DLLs,

• no cdata (a special FFI type representing C objects) object point-
ing to executable code in process memory should be allowed to
be constructed.

25

5. Prevention and Mitigations

5.1.3 Language Level Sandboxes

The sandboxing of a Lua mod can also be done on the language level.
There are multiple existing implementations of Lua sandboxes avail-
able on the Internet, such as:

• kikito’s sandbox [80],

• ryansquared’s sandbox [81],

• Mozilla’s Lua Sandbox Library [82].

Adámek describes the advantages and pitfalls of these language-
level solutions in his thesis [62]. One of the problems is that these
sandboxes are not widely used, and therefore, there are not enough
people probing the quality of the implementation. The most popular
of these repositories, Mozilla’s Lua Sandbox Library, only has 226
GitHub stars [82]. Also, at least some of the sandboxes do not seem
to be written by established experts in the field, and proper security
audits of these sandboxes are lacking. There is also a case of the authors
admitting their sandbox can be vulnerable under some circumstances
– the author of kikito’s sandbox states it can be exploited in PUC-Rio
Lua 5.1 via bytecode [80].

The advantage is that the solution of using a Lua-level sandbox is
portable across operating systems and that the performance overhead
of the sandbox is not significant.

5.1.4 Source Code Level Sandboxes

Instead of trying to compile the list of safe functions and managing
to provide a safe Lua environment for the untrusted code we want
to run, we can modify the source code of the Lua implementation to
patch the “unsafe” functions. Figure 5.3 shows an example of such a
patch in LuaJIT source, where we replace the usage of the C standard
library function fopen with our sandboxed variant fopen_sandboxed,
which only allows files of our choosing (or no files at all).

Be aware that it is critical to patch all such occurrences of fopen
and other C standard library or Win32 API functions that the imple-
mentation uses, which can be a cumbersome task. The “reward” in this

26

5. Prevention and Mitigations

example is a hardened Lua implementation that allows only access to
a predefined set of files.

FILE *fopen_sandboxed(const char *filename,
const char *mode) {

// add your rules here for what files to allow
if (!is_allowed(filename, mode)) {

return NULL;
}
return fopen(filename, mode);

}

static IOFileUD *io_file_open(lua_State *L,
const char *mode)

{
const char *fname = strdata(lj_lib_checkstr(L, 1));
IOFileUD *iof = io_file_new(L);

- iof->fp = fopen(fname, mode);
+ iof->fp = fopen_sandboxed(fname, mode);

if (iof->fp == NULL)
luaL_argerror(L, 1, lj_strfmt_pushf(L, "%s: %s",

fname, strerror(errno)));
return iof;

}

Figure 5.3: Patching the implementation of io.open in LuaJIT: src/li
b_io.c [83].

5.2 Sandboxing Software

We discuss various sandboxing tools and solutions available and their
influence on performance, with a focus on the case of 3D gaming,
where low latency and high FPS2 are needed for a smooth experience.

5.2.1 Windows Sandbox

Windows Sandbox [84] provides a lightweight desktop environment
to run applications safely in isolation. It has been part of the operating
system since Windows 10 and requires no extra dependencies. It is

2. Frames per second.

27

5. Prevention and Mitigations

an operating-system-level sandbox. Windows creates a temporary
machine with an independent disposable file system and read/write
access only to host folders specified in the sandbox configuration file.
Networking can be enabled or disabled. GPU support is enabled using
virtual GPU.

The security properties of the sandbox are ideal (disposability,
hardware-based virtualisation, whitelisting), but the sandboxed ma-
chine’s interface is problematic in computer games. Connection to
the sandbox is implemented using RDP (Remote Desktop Protocol),
including its maximal framerate of 30 frames per second [85]. Un-
fortunately, this limitation and the increased latency do not allow a
smooth gaming experience.

5.2.2 Sandboxie

Sandboxie is a sandbox-based isolation software for 32-bit and 64-bit
Windows NT-based operating systems [86]. It became open-source
in April 2020 [87] as the previous developer released the source code
under the GPL 3.0+ license.

Sandboxie runs a program in an isolated space, preventing the
selected program from permanently changing the filesystem. It works
by injecting parts of the Win32 API with sandboxed versions for the
process run in Sandboxie and all its children.

5.3 Enforcing Limits Using the Operating System

Running a sandbox around an unconstrained process is a top-down
approach, but we can also go the other way and constrain the process
as much as possible by limiting its privileges. The privilege limitation
needs the support of the operating system. In Windows, there are
multiple ways to achieve the goal of restricting process capabilities.

5.3.1 AppContainer Isolation

AppContainers are anOS-included option for isolating processes intro-
duced in Windows 8. Its core idea is granting access with the principle
of least privilege. It allows a customisable level of security and isolation

28

5. Prevention and Mitigations

of files, networks and processes. Unfortunately, if a developer wants to
isolate their process, the developer documentation for AppContainer
API is quite scarce [88].

AppContainers were primarily intended to be used with UWP
(UniversalWindows Platform), but there is also a possibility of launch-
ing AppContainers for standard, unpackaged apps. An implementa-
tion of this is available as part of the SandboxSecurityTools Microsoft
project on GitHub [89], and the tool Privexec also exists, which al-
lows running any Windows program under a given permission level,
including the AppContainer level [90].

For a deeper understanding of AppContainers, we recommend
the reader consult “Windows Internals Seventh Edition, Part 1” [91,
Chapter 7].

5.3.2 Process Mitigation Policies

Windows allows processes to set mitigation policies [92] for the calling
processes, enabling a process to harden itself against various attacks.
These include protections such as data execution prevention (DEP),
Address Space Layout Randomization (ASLR), Control Flow Guard
(CFG), or spawning only signed executables and dynamic libraries.

More details are available in Security of “Windows 10 System
Programming, Part 2” [93, Chapter 16].

29

5. Prevention and Mitigations

5.4 Summary

A list of mitigation techniques follows in Table 5.1. Some techniques,
such as disabling/limiting different Lua features, can be combined. For
others, it does not make much sense. For example, sandboxing using
Windows Sandbox and Sandboxie would add up the performance
impacts of both with little extra security.

Table 5.1: Comparison of the different sandboxing technologies in the
scope of sandboxing mods of BeamNG.drive.

Technique Requirements Impacta

Disabling FFI LuaJIT none, FFI cannot
be used

Disabling Bytecode Lua/LuaJIT none, bytecode
cannot be used

Lua Sandboxes sandbox-specific, Lua low, depends on
sandbox

Source Code Sandboxes interpreter-specific none, none
Windows Sandbox Windows 10 or later high, none
Sandboxie Windows medium, none
AppContainer Windows 8 or later low, none

a. performance, functionality.

30

6 The EMO Test Bench

The EMO (Exploit-Mitigation-Overhead) Test Bench is a software
tool developed as a part of this thesis and designed for an automated
evaluation of themitigations discussed inChapter 5 andmeasuring the
mitigations’ performance impact on BeamNG. The EMO Test Bench is
a set of two command-line interface applications developed in Python.

6.1 Requirements

We research the solution to enhance BeamNG’s security when load-
ing mods, considering the nature of the software and its player base.
Mitigations’ performance hit cannot be too noticeable, as BeamNG is
a real-time vehicle simulation and high framerates with low latency
are required for a smooth gaming experience.

BeamNG.drive is available on Windows and Linux, with most
of the players running the game on Windows. Therefore, a cross-
platform sandboxing solutionwould be ideal. Otherwise, two different
implementations of sandboxing need to be created.

The properties that the ideal mitigation solution should have are:

A) security: should mitigate all known attacks,

B) efficiency: should not decrease the frame rate of the game on a
common machine,

C) availability/portability: should not depend on features not
available on all operating systems used for playing the game
(Windows 7 and newer, Linux),

D) compatibility: cannot restrict features already available in the
game. The game should run under the mitigation without code
changes in other subsystems.

We compare different methods from Chapter 5 on the concrete
case of BeamNG.drive and the malware introduced in Section 4.4.
The EMO Test Bench is divided into two different benchmarks. The
Exploit-Mitigation benchmark combines various versions of Lua in-
terpreters, exploit methods from Section 4.4 and selected mitigations

31

6. The EMO Test Bench

from Chapter 5, and evaluates the success of these mitigations to pre-
vent the exploit. The other benchmark, called theMitigation-Overhead
benchmark, runs a performance test of the BeamNG.drive videogame
with mitigations from Chapter 5, assessing the performance hit of
every mitigation. This chapter is concerned with the tool design and
the included features. The results of the benchmarks are discussed
independently in Chapter 7.

6.2 Lua Implementations

In the Exploit-Mitigation Benchmark, we test eight Lua versions in
total. They are part of three Lua projects: PUC-Lua, LuaJIT and Luau.
Chapter 4 describes the differences between these projects. In this
section, we describe the versions used in the benchmark.

PUC-Lua

For the Exploit-Mitigation Benchmark, we chose to include the latest
releases of Lua for every version since Lua 5.1. Therefore, the bench-
mark includes four releases of Lua: 5.1.5, 5.2.4, 5.3.6, and 5.4.6. All past
Lua releases are available in the source code form [94].

LuaJIT

We include three different versions of LuaJIT: a version from 2015
(commit 4f8736), which was susceptible to the “Malicious LuaJIT
bytecode” exploit (Section 4.5); the last LuaJIT release v2.1.0-beta3
before it changed its model to rolling releases, and the latest commit
from the v2.1 rolling-release GitHub branch available at the time of
writing the thesis, which was published on 15th November, 2023.

Luau

Luau publishes new releases frequently on GitHub. In the benchmark,
we include the latest available release of Luau at the time of writing
the thesis, which is version 0.606, released on 8th December, 2023 [95].

32

6. The EMO Test Bench

6.3 Exploits

There are many different types of behaviour that a program for mali-
cious purposes such as:

• reading arbitrary locations: exfiltrate confidential data from the
system,

• writing to arbitrary locations: destroy critical files or write mal-
ware payloads to locations that are automatically run,

• network access: communicate with the attacker, allow remote
access to the computer.

In the scope of this work, we focus solely on the “arbitrary write
exploit”: code that writes files to an arbitrary location where the user
running the software has write access. This type of exploit is a realistic
entry point to deploy malware. Also, this type of exploit makes the
check whether an exploit was successful simple. We only have to check
for the existence of the file that was requested to be written to check
the exploit’s success.

We study different methods of writing to arbitrary locations di-
vided into three exploit families: bytecode-related exploits, FFI-related
exploits and exploits utilising the Lua standard library.

Bytecode: corsix

The exploit, published by Peter Cawley, also known as corsix, lever-
ages the capability of loading bytecode to corrupt the state of the
interpreter. State corruption enables the exploiter to escape the LuaJIT
environment and run a shellcode. The article [30] discusses running
OSX and Linux shellcode, but the exploit also works with Windows
shellcode, so we augmented it with a tweaked version of Windows
10/11 shellcode written by Bobby Cooke [96].

FFI: CreateProcess

The FFI library allows calling C functions from bound libraries. One of
the libraries that FFI bindswith by default is kernel32.dll, which con-
tains the Win32 API function CreateProcess. We use CreateProcess

33

6. The EMO Test Bench

to spawn a Command Prompt process that writes to the exploit file,
see Figure 6.1 for the template.

local ffi = require('ffi')

ffi.cdef[[
typedef struct _STARTUPINFOA {

... // omitted
} STARTUPINFOA, *LPSTARTUPINFOA;
typedef struct _PROCESS_INFORMATION {

... // omitted
} PROCESS_INFORMATION, *LPPROCESS_INFORMATION;
uint32_t CreateProcessA(void *, const char *, void *, void *,

uint32_t, uint32_t, void *, const char *, LPSTARTUPINFOA,
LPPROCESS_INFORMATION);

uint32_t CloseHandle(void **);
]]

local function execute(commandLine)
local si = ffi.new("STARTUPINFOA")
si.cb = ffi.sizeof(si)
local pi = ffi.new("PROCESS_INFORMATION")
ffi.C.CreateProcessA(nil, commandLine, nil, nil,

0, 0, nil, nil, si, pi) ~= 0
end

execute[["C:\WINDOWS\system32\cmd.exe /c \
\"echo {{EXPLOIT_CONTENTS}} > {{EXPLOIT_PATH}}"]]

Figure 6.1: The template for the CreateProcess exploit.

FFI: ffi.load

The LuaJIT function ffi.load loads a dynamic-link library (DLL) and
binds with its exported symbols. We could implement malicious code
inside one of the exports of the DLL, but we can also write the exploit
inside the DllMain function of the library. The program executes the
DllMain functionwhen it is loading the DLL. The source code (written
in C) of the exploit DLL is given in Figure 6.2.

34

6. The EMO Test Bench

#include <stdlib.h>

int __stdcall DllMain(void *hinstDLL,
unsigned long fdwReason,
void *lpvReserved) {
static int run = 0;
if (!run) {

system("start cmd.exe /c \"echo {{EXPLOIT_CONTENTS}}"
" > {{EXPLOIT_FILENAME}}\"");

run = 1;
}
return 1; // Successful DLL_PROCESS_ATTACH.

}

Figure 6.2: The template for the DLL source code. The exploit loads
the DLL using ffi.load in Lua.

FFI: VirtualAlloc

This exploit is conceptually similar to the FFI: CreateProcess one
in the method, but it used another Win32 API function from the
kernel32.dll library. VirtualAlloc allows an area of virtual mem-
ory of the running process to be executable [97]. We copy Windows
shellcode (same as in the Bytecode: corsix exploit) to that memory
area and then execute it. Figure 6.3 shows the exploit code.

-- the shellcode bytes
local code = '\072\049\255\072\247\231\101\072...'
ffi.cdef[[
void *VirtualAlloc(void *, size_t, unsigned long,

unsigned long);
]]

-- allocate memory with executable rights
-- 0x3000 = MEM_COMMIT + MEM_RESERVE
-- 0x40 = PAGE_EXECUTE_READWRITE
local mem = ffi.C.VirtualAlloc(nil, #code, 0x3000, 0x40)
ffi.copy(mem, ffi.new("char[?]", #code, code), #code)
func = ffi.cast("((void(*)())", mem)
func() -- run the shellcode

Figure 6.3: The VirtualAlloc exploit.

35

6. The EMO Test Bench

Standard Library: io.open

The Lua standard library includes standard input and output facilities
in the io package. The function io.open returns a file handle, to which
we write using the file:write function (Figure 6.4).

local file = io.open('{{EXPLOIT_PATH}}', 'w')
file:write('{{EXPLOIT_CONTENTS}}')
file:close()

Figure 6.4: The template for the io.open exploit.

Standard Library: os.execute

The Lua function os.execute is equivalent to the system function in
C and executes a system command. Therefore, we can spawn arbitrary
processes. We use the function to spawn an instance of Command
Prompt which writes to the exploit file (Figure 6.5).

os.execute[[C:\WINDOWS\system32\cmd.exe /c \
"echo {{EXPLOIT_CONTENTS}} > {{EXPLOIT_FILENAME}}"]]

Figure 6.5: The template for the io.open exploit.

6.4 Mitigations

This section gives an overview of all the tested mitigations. The source
code patches andLua-level sandbox are a part of the Exploit-Mitigation
Benchmark, as the interesting information is whether they succesfully
mitigate different exploit types for various Lua implementations. The
performance overhead of these solutions is either marginal or non-
existent. Therefore, they are not included in the Mitigation-Overhead
Benchmark.

On the other hand, the process-level sandboxmitigations are worth
exploring from the performance perspective, as they add non-trivial
complexity by running BeamNG.drive in a protected environment.
We include them in the Mitigation-Overhead Benchmark. We expect
the sandboxing software to satisfy its intended purpose. That means

36

6. The EMO Test Bench

the sandboxing software is successful at mitigating all the presented
exploits under the assumption that the mitigations are configured
correctly, which has been verified out of the scope of the EMO Test
Bench. Therefore, we do not include them as a part of the Exploit-
Mitigation Benchmark.

For the descriptions and details of the mitigations, see Chapter 5.
This section serves as a quick refresh on the methods and an overview
of what has been implemented in the EMO Test Bench.

Exploit-Mitigation Benchmark mitigations:

• Disabling Loading Bytecode (Section 5.1.1),

• Disabling FFI (Section 5.1.2),

• kikito’s sandbox (Section 5.1.3),

• C Standard Library Sandbox (Section 5.1.4).

Mitigation-Overhead Benchmark mitigations:

• Windows Sandbox (Section 5.2.1),

• Sandboxie (Section 5.2.2),

• AppContainer (Section 5.3.1).
Not included in the benchmark, see Section 6.7.1 for details.

6.5 Exploit-Mitigation Benchmark

The Exploit-Mitigation Benchmark is a command-line interface (CLI)
application written in the Python programming language. It allows
testing a single combination of an interpreter/exploit/mitigation or
running the benchmark for all implemented interpreters/exploits/mit-
igation in a single command. With the default settings, the application
is not verbose about the compilation of interpreters and exploits, but
that can be changed using the --log-level argument. The documen-
tation is part of the source code (Appendix A).

37

6. The EMO Test Bench

Figure 6.6: The Exploit-Mitigation Benchmark CLI.

Figure 6.6 shows an example of running the benchmark. Although
the program compiles the Lua implementations and exploits during
runtime, it is not dependent on the compiler toolchain of the host. A
portable development suite called w64devkit [98] is used to achieve
that. Portability is further increased by using a templating engine
library, Jinja, which replaces the placeholders in the exploits with the
real paths and values that should be used on the system, showcased
in Figure 6.7.

6.6 Overhead

We establish a similar environment to the one players use to esti-
mate the mitigations’ performance hit. We compare two different mod
setups and two scenarios to simulate the gaming performance realisti-
cally.

38

6. The EMO Test Bench

Figure 6.7: Jinja template at the top; the resulting file, part of the
ffi_load exploit, at the bottom.

39

6. The EMO Test Bench

Mod Setups

1. Setup A (minimal, no mods): only the benchmark mod, which
does not add any content, is installed,

2. Setup B (standard, 20 mods): 20 popular mods installed (com-
plete list in Appendix B).

Scenarios

1. Scenario 1 (minimal, no traffic): a vehicle roaming through the
Italy map road network without any other traffic,

2. Scenario 2 (standard, with traffic): vehicle roaming through
the West Coast USA map road network with traffic and parked
vehicles. Combinedwith Setup B, the traffic vehicles also include
modded vehicles.

Information about how many graphic frames per second (FPS) the
game renders is collected for every frame rendered and then stored for
further analysis. The overhead of the mitigations is calculated as the
percentage of decrease in the average FPS compared to the baseline,
which runs without mitigations.

6.7 Mitigation-Overhead Benchmark

The Mitigation-Overhead Benchmark follows design choices similar
to the Exploit-Mitigation Benchmark. It is a Python command-line
interface application as well. The mitigations are selected using the
--mitigation option. Running the setup with installed mods is done
with the --with-mods argument. An example of running the bench-
mark is shown in Figure 6.8.

Each of the four setup/scenario combinations from Section 6.6
(A1, A2, B1, B2) is run for ten seconds under each mitigation, start-
ing after the map is loaded and the traffic is spawned. Before every
benchmark, the data of the game are reset to its initial conditions
to keep the benchmark environment consistent. For all benchmarks,
BeamNG.drive is set to run on the Ultra graphic preset and to run in

40

6. The EMO Test Bench

a window of size 1920x1080 pixels. These settings are configurable by
tweaking the Mitigation-Overhead Benchmark files.

We run all the experiments on the same machine, the full specifi-
cation of which is also described in Appendix B. The benchmark code
is written in Lua as an extension mod for BeamNG and is available as
a part of the EMO Test Bench source code (Appendix A).

In contrast with the Exploit-Mitigation Benchmark, the Mitigation-
Overhead Benchmark has non-Python prerequisites, which need to
be set up by the user before running the program:

• a copy of BeamNG.drive 0.30.6.0,

• Windows Sandbox has to be enabled on the system,

• Sandboxie has to be installed.

The README.md file, included with the source code (Appendix A),
has instructions on running the benchmark. As the setup may be too
time-consuming just to check the functionality ofMitigation-Overhead
Benchmark, we recorded a video demonstration of running the bench-
mark. We attach the video to the thesis (Appendix A.3).

Figure 6.8: The Mitigation-Overhead Benchmark CLI.

41

6. The EMO Test Bench

6.7.1 AppContainer Obstacles

The Mitigation-Overhead benchmark also planned to introduce a
mitigation of running BeamNG.drive inside an AppContainer (Sec-
tion 5.3.1). We experimented with the Privexec tool [90] to launch
BeamNG.drive inside an AppContainer. However, finding the set of
capabilities that would allow the application to run without crashing
and mitigate the exploits presented was not successful. Therefore, we
omit AppContainer from the Mitigation-Overhead benchmark.

A new Win32 App isolation project may be a solution to these
obstacles [99]. Microsoft published a preview version of Application
Capability Profiler, which allows applications to run in a so-called
“learn-mode” and automatically obtain the list of AppContainer capa-
bilities needed to run the application. This feature is available only in
the Canary Insider builds of Windows, but there are plans to release
the feature in future versions of Windows

42

7 Benchmark Evaluation

In the previous chapter, we discussed the design and the implemen-
tation of the Exploit-Mitigation-Overhead Test Bench. Now, we dive
into the collected benchmark data and assess all the presented mitiga-
tions. The assessment results form a base of the proposed short-term
and long-term strategies on how to further secure the mod system of
BeamNG.drive.

7.1 Exploit-Mitigation: Mitigation Efficacy

We want to verify which mitigations mitigate which exploits for each
included Lua implementation and version. To obtain that information,
we run the Exploit-Mitigation Benchmark with this set of options:
--all-interpreters, --all-exploits and --all-mitigations.

The whole benchmark takes around ten minutes to complete on
the test machine (Appendix B); the results are presented in Table 7.1.
The 3 in the table means a successful mitigation of the exploit (or not
allowing the exploit to run), 7 stands for an exploit that managed to
write to the chosen file.

We summarise the findings as follows:

1. The only implementation that was vulnerable to the Bytecode:
corsix exploit was the version that the exploit was published for.
That is not surprising due to the exploit’s dependence on the
LuaJIT internals, which change during development.

2. To mitigate the bytecode exploit presented, disabling either load-
ing bytecode or FFI suffices. The exploit needs both of these
features present to be successful.

3. To replace the functions from the C standard library by their
sandboxed versions is an effective way of how to prevent against
the “low-hanging fruit” attacks utilizing the functions of Lu-
a/LuaJIT standard library.

4. Other than the Bytecode: corsix exploit, different versions of the
same Lua implementation have the same behaviour regarding

43

7. Benchmark Evaluation

the exploits and mitigations. That stems from the other exploits
utilising functions of the official API, and the functions do not
usually change their behaviour between versions.

5. Luau managed to mitigate all the exploits without extra miti-
gations applied, which is expected due to its focus on sandbox-
ing [28].

6. kikito’s sandbox managed to mitigate all the presented exploits.
However, we know that it is vulnerable to bytecode exploits
under Lua 5.1 [80].

The Exploit-Mitigation Benchmark does not include all the known
methods of exploiting Lua implementations. That is the future di-
rection of the publicly released tool based on the benchmark (Ap-
pendix A.1) – to include more exploits, beginning with the released
bytecode exploits for other Lua implementations and versions (Sec-
tion 4.5).

7.2 Mitigation-Overhead: Performance under
Mitigations

Using the Mitigation-Overhead Benchmark, we collected BeamNG
performance data – the “frames per second” (FPS) values reported by
the game during the benchmark. We ran the benchmark thrice. Every
run included all four setup/scenario combinations. Themachine under
test was not running any other programs at the time of the benchmarks.

For each of the three runs, we compute the mean and the standard
deviation of the FPS values. Then, for every mitigation and setup/sce-
nario combination, we take only the run with the median value of the
mean FPS to reduce the possibility of the benchmark being affected
by a strong outlier. We compute the values of the Overhead column
as the percentage of the decrease in mean FPS compared to the “No
Mitigation” baseline.

The result of this procedure is Table 7.2. The data from the runs
and the source code of the analysis are included as an attachment
(Appendix A.2).

44

7. Benchmark Evaluation

Table 7.1: The list of implementations/mitigations and whether they
succeeded to mitigate the exploits.

Implementation
Mitigation

Bytecode
corsix

FFI
Create
Process

FFI
load

FFI
Virtual
Alloc

IO
write

OS
execute

No mitigation
Lua-5.1.5 3 3 3 3 7 7

Lua-5.2.4 3 3 3 3 7 7

Lua-5.3.6 3 3 3 3 7 7

Lua-5.4.6 3 3 3 3 7 7

LuaJIT-4f8736 7 7 7 7 7 7

LuaJIT-v2.1.0-beta3 3 7 7 7 7 7

LuaJIT-rolling 3 7 7 7 7 7

Luau 3 3 3 3 3 3

Disable Bytecode
Lua-5.1.5 3 3 3 3 7 7

Lua-5.2.4 3 3 3 3 7 7

Lua-5.3.6 3 3 3 3 7 7

Lua-5.4.6 3 3 3 3 7 7

LuaJIT-4f8736 3 7 7 7 7 7

LuaJIT-v2.1.0-beta3 3 7 7 7 7 7

LuaJIT-rolling 3 7 7 7 7 7

Disable FFI
LuaJIT-4f8736 3 3 3 3 7 7

LuaJIT-v2.1.0-beta3 3 3 3 3 7 7

LuaJIT-rolling 3 3 3 3 7 7

C Standard Library Sandbox
Lua-5.1.5 3 3 3 3 3 3

Lua-5.2.4 3 3 3 3 3 3

Lua-5.3.6 3 3 3 3 3 3

Lua-5.4.6 3 3 3 3 3 3

LuaJIT-4f8736 7 7 7 7 3 3

LuaJIT-v2.1.0-beta3 3 7 7 7 3 3

LuaJIT-rolling 3 7 7 7 3 3

kikito’s Sandbox
Lua-5.1.5 3 3 3 3 3 3

Lua-5.2.4 3 3 3 3 3 3

Lua-5.3.6 3 3 3 3 3 3

Lua-5.4.6 3 3 3 3 3 3

LuaJIT-4f8736 3 3 3 3 3 3

LuaJIT-v2.1.0-beta3 3 3 3 3 3 3

LuaJIT-rolling 3 3 3 3 3 3

45

7. Benchmark Evaluation

Table 7.2: The mean framerates of the median runs, their correspond-
ing standard deviations, and overhead compared to no mitigation.

Setup + Scenario
Mitigation FPSa STDb Overhead

A1: No mods, no traffic, Italy
No Mitigation 118.17 4.82 –
Windows Sandbox 85.81 2.05 37.7%
Sandboxie 116.36 4.73 1.6%
A2: No mods, traffic, West Coast USA
No Mitigation 57.21 3.11 –
Windows Sandbox 39.25 4.49 45.8%
Sandboxie 56.35 3.40 1.5%
B1: 20 mods, no traffic, Italy
No Mitigation 117.70 5.05 –
Windows Sandbox 84.69 1.73 39.0%
Sandboxie 112.57 4.65 4.6%
B2: 20 mods, traffic, West Coast USA
No Mitigation 57.60 2.96 –
Windows Sandbox 42.27 1.47 36.3%
Sandboxie 57.62 1.00 -0.0%

a. Average “frames per second” value during the benchmark.
b. Standard deviation of the “frames per second” value during the benchmark.

From Table 7.2 we can see that there is a clear performance hit
of about 35–45% under the Windows Sandbox mitigation in all four
scenarios. With Sandboxie, the performance hit is much lower, esti-
mated to be around 0–5%, which is still allowing a smooth gaming
experience.

The framerate of about 60 frames per second can be considered
a good experience in vehicle simulation games. Remember that the
benchmark was run on a computer with high-end components so that
the absolute numbers would be lower for an average gaming PC.

We include the standard deviation column to analyse the stability
of the FPS value throughout the benchmark. High FPS instabilities
(also called “spikes”) are noticeable more than a slightly lower value

46

7. Benchmark Evaluation

of the mean FPS. However, it does not seem there is a pattern of any
mitigation or scenario that strongly impacts the FPS instabilities.

7.3 Mitigation Assessment

With the data from the benchmarks, we can assess and evaluate the
mitigations usability for BeamNG.drive concerning the requirements
stated in Section 6.1.

Let us recall the properties for which we search for in the solu-
tion: the solution should mitigate all presented exploits, not decrease
performance, and be portable across operating systems and operat-
ing system versions. Moreover, BeamNG.drive should be able to run
under the mitigation without code changes to other subsystems.

Disabling Loading Bytecode

The mitigation protects against all the bytecode exploits, has no per-
formance overhead, does not cause issues with compatibility, and is
cross-platform. It does not prevent all presented exploits, so it must
used in conjunction with other methods.

Disabling FFI

FFI is a feature that is used heavily in BeamNG.drive. Therefore, com-
piling LuaJIT without the FFI support is a no-go. However, FFI can be
patched to be more secure on the source code level, which is already
the case with BeamNG.drive.

kikito’s sandbox

Lua sandboxes, particularly kikito’s Sandbox as a member of that
family, are usually cross-platform, and there is no measurable per-
formance overhead. Also, kikito’s sandbox manages to prevent all
the presented exploits. However, Lua sandboxes, in general, are more
complex to integrate into BeamNG.drive correctly, as there is a need
to implement the sandbox for all the Lua entry points that mods use.
Also, compatibility will be an issue with the default settings, as most
Lua libraries and methods to load extra files will not be available.

47

7. Benchmark Evaluation

C Standard Library Sandbox

The mitigation protects against the exploits trying to execute system
commands or access the filesystem in a “naive” way. The mitigation
can be written for both Windows and Linux systems. A similar miti-
gation is already in place in BeamNG.drive.

Windows Sandbox

From the security point of view, Windows Sandbox is a good choice,
as the security is on the same level as running BeamNG.drive in a tem-
porary virtual machine. It prevents all presented exploits. However, it
cannot be used to sandbox a real-time game due to significant perfor-
mance overhead (Section 7.2) and due to the interface with the system,
which is limited to runnning with a low framerate Section 5.2.1.

Sandboxie

Sandboxie also managed to prevent all presented exploits due to its
virtual copy-on-write filesystem. With its quite low overhead, it could
be a choice for paranoid gamers whowant to get some extra protection.
However, the system driver it needs to install and its copyleft license
(Section 5.2.2) make it impossible to integrate it with the game as a
default. There also does not exist any security audit of the project. The
solution is only available on Windows.

AppContainer

In its current state, it is not easy to set the AppContainer properly
(Section 6.7.1), but assuming the capability list for the AppContainer
is configured correctly, AppContainers should provide security on the
level of Windows Sandbox/Sandboxie. The solution is available only
on Windows.

7.4 Proposed Solution

We propose a short-term and a long-term strategy to improve the
security of the mod system in BeamNG.drive.

48

7. Benchmark Evaluation

Short-term Strategy

The source code patches are a way how to mitigate various types
of exploits without introducing overhead. We also have to abide the
compatibility requirement. Disabling loading bytecode is an easy-
to-apply mitigation and prevents against a family of exploits. Then,
auditing the existing source code level sandbox of BeamNG.drive is
the next logical step to increase security.

Long-term Strategy

Securing against all the known exploits is hard. Securing against ex-
ploits that may be unknown is evenmore challenging, but it is the goal
in the long run. Process isolation can provide that, but none of the
options tested are currently viable. Running inside an AppContainer
seems like a promising direction to explore with the new Application
Capability Profiler (Section 6.7.1). However, that solution is not cross-
platform and similar mitigation on Linux (AppArmor, SELinux) has
to be implemented independently.

49

8 Conclusion

We explored different methods of using Lua to run malicious code.
With the default settings of these implementations, it is trivial to run
arbitrary code. These implementations are not security-driven, and
running untrusted code is not considered the use case they should
protect from. Therefore, proper sandboxing in one way or another
is required, such as disabling insecure features of Lua, patching the
source code, or running process-level sandbox software.

The “industry standard” of popular videogame security was exam-
ined in Chapter 3 by congregating the available data and creating the
Game Malware Survey. The survey showed us that running untrusted
mods without proper sandboxing leads to vulnerabilities being ex-
ploited actively. Furthermore, that focus on sandboxing is not given
for the bulk of the studied videogames, although there are positive
examples, such as Roblox and its Luau interpreter.

The EMO (Exploit-Mitigation-Overhead) Test Bench application
was designed and developed in Python to analyse mitigation effec-
tiveness on Lua implementations and performance impact on the
BeamNG.drive videogame.

The Exploit-Mitigation part of the EMO Test Bench is released to
the public as a suite of different Lua implementations, a library of
Lua exploit methods, and a list of applicable mitigations. It may serve
the Lua community as a primer to securing Lua. The development of
the suite will continue by focusing on implementing more exploits
and exploit types. We found out that mitigation against all the pre-
sented exploits is possible, but not all mitigations directly apply to
BeamNG.drive.

With the Mitigation-Overhead part of the EMO Test Bench, we
explored the impact of process-level sandboxes on BeamNG perfor-
mance. Its results suggest that Windows Sandbox has a high overhead
and provides a suboptimal player experience. The overhead of Sand-
boxie is acceptable, but its copyleft license makes it unsuitable for
integration into commercial software.

Regarding the next steps for BeamNG, the short-term goals are to
secure the source-code level sandboxing of BeamNG further, lever-
aging the information gained within the study. In the long term, a

50

8. Conclusion

process-level sandbox implementation is a robust way to mitigate
vulnerabilities emerging from running untrusted code. Running in
an AppContainer seems like an effective solution for Windows, with
caveats that must be investigated and resolved before integrating Ap-
pContainer support with the release versions.

51

A Attachments

This appendix describes the attachments of the thesis, which are avail-
able in the thesis archive at https://is.muni.cz/th/x5p5j/.

A.1 The EMO Test Bench

The source code for the EMO Test Bench is available in the thesis
archive at https://is.muni.cz/th/x5p5j/EMO-TestBench.zip.

The Exploit-Mitigation Benchmark has been published on GitHub
(https://github.com/adamivora/lua-hardening-suite) to serve
as a collection of examples how to execute potentially malicious Lua
code on Windows and protections against them.

A.2 Additional Data

These are files which are not a part of the source code of the EMO Test
Bench and are available at https://is.muni.cz/th/x5p5j/Addition
alData.zip.

Contents:

/GameMalwareSurvey

– /games_list.csv: the Game Malware Survey data

– /gms_analysis.ipynb: a Jupyter Notebook, which computes
statistics from the Game Malware Survey data

/MitigationOverheadBench

– /runs: directory containing the outputs from the Mitigation-
Overhead Benchmark

– /mitigation-overhead_statistics.ipynb: a Jupyter Note-
book, which aggregates the data to its presented form

52

https://is.muni.cz/th/x5p5j/
https://is.muni.cz/th/x5p5j/EMO-TestBench.zip
https://github.com/adamivora/lua-hardening-suite
https://is.muni.cz/th/x5p5j/AdditionalData.zip
https://is.muni.cz/th/x5p5j/AdditionalData.zip

A. Attachments

A.3 Video Showcase

To demonstrate the Mitigation-Overhead part of the EMO Test Bench
without needing to download and set it up, we prepared a video
showcasing the benchmark. The video is available in the archive of the
thesis at https://is.muni.cz/th/x5p5j/EMO-Demonstration.mp4.

53

https://is.muni.cz/th/x5p5j/EMO-Demonstration.mp4

B Benchmark Parameters

The data here can help with the reproducibility of the Mitigation-
Overhead benchmark or serve as a data point to compare with runs
of the Mitigation-Overhead benchmark on other machines.

• Hardware:AMDRyzen 9 5900X,NVIDIA®GeForce RTX™ 4090,
32 GB of DDR4 3200 MHz RAM

• Software: Windows 11 build 22631, Sandboxie-Classic v5.67.3,
Python 3.10, BeamNG.drive version 0.30.6.0

• BeamNG.drive settings: “Ultra” graphics preset, set up by the
Mitigation-Overhead benchmark

• List of mods for the Mitigation-Overhead Benchmark (down-
loaded automatically):

1. Dansworth D2500 (Type-D) Rear Engine Bus
2. Gavril Vertex NA2
3. Djplopper Mega Pack
4. 8x8 Heavy utility truck
5. Dansworth C1500 (Type-C) Front Engine Bus
6. FR17 (2018 update)
7. Me262
8. ETK 6000 & 4000 series
9. Fait One

10. Satsuma 210 ’58
11. FR16
12. Maluch
13. 1995 Ibishu Kashira (Gen 2)
14. Crash Test Dummy
15. Ibishu JBX100
16. Trailerpack

54

https://www.beamng.com/resources/dansworth-d2500-type-d-rear-engine-bus.1737/
https://www.beamng.com/resources/gavril-vertex-na2.13061/
https://www.beamng.com/resources/djplopper-mega-pack.451/
https://www.beamng.com/resources/8x8-heavy-utility-truck.17/
https://www.beamng.com/resources/dansworth-c1500-type-c-front-engine-bus.110/
https://www.beamng.com/resources/fr17-2018-update.2258/
https://www.beamng.com/resources/me262.2598/
https://www.beamng.com/resources/etk-6000-4000-series.1343/
https://www.beamng.com/resources/fait-one.2845/
https://www.beamng.com/resources/satsuma-210-58.2009/
https://www.beamng.com/resources/fr16.1567/
https://www.beamng.com/resources/maluch.1964/
https://www.beamng.com/resources/1995-ibishu-kashira-gen-2.8319/
https://www.beamng.com/resources/crash-test-dummy.906/
https://www.beamng.com/resources/ibishu-jbx100.14139/
https://www.beamng.com/resources/trailerpack.734/

B. Benchmark Parameters

17. High power car pack
18. B25 Mitchell
19. Codename : oldsfullsize
20. Hirochi Prasu

55

https://www.beamng.com/resources/high-power-car-pack.56/
https://www.beamng.com/resources/b25-mitchell.2366/
https://www.beamng.com/resources/codename-oldsfullsize.1417/
https://www.beamng.com/resources/hirochi-prasu.2251/

Bibliography

Note: Due to the nature of the thesis topic, the vast majority of sources
are dynamically changing online with a potentially limited lifetime.
To preserve the references, we used the Internet Archive Wayback
Machine [100], providing historical snapshots of the websites.

1. Dark Souls 3 exploit could let hackers take control of your en-
tire computer - The Verge [online]. 2022-01-23. [visited on
2023-09-28]. Available from: https://web.archive.org/web/
20230928220301/https://www.theverge.com/2022/1/22/
22896785/dark-souls-3-remote-execution-exploit-rce-
exploit-online-hack.

2. GTA 5 Exploit is Soft Locking Player Accounts, Rockstar Promises
Fix - IGN [online]. 2023-01-25. [visited on 2023-09-28]. Avail-
able from: https://web.archive.org/web/20230928220042/
https://www.ign.com/articles/gta-5-exploit-rockstar-
promises-fix.

3. NVD - CVE-2023-24059 [online]. 2023. [visited on 2023-05-11].
Available from: https://nvd.nist.gov/vuln/detail/CVE-
2023-24059.

4. Minecraft Official Site [online]. 2023. [visited on 2023-11-01].
Available from: https : / / web . archive . org / web /
20231101133629/https://www.minecraft.net/en-us.

5. POSTIGO, Hector. Of Mods and Modders. Games and Culture.
2007, vol. 2, no. 4, pp. 300–313. Available from doi: 10.1177/
1555412007307955.

6. Steam Charts [online]. 2023. [visited on 2023]. Available from:
https://store.steampowered.com/charts/mostplayed.

7. Mods | BeamNG [online]. 2023. [visited on 2023-09-28]. Avail-
able from: https://web.archive.org/web/20230928215648/
https : / / www . beamng . com / resources / ?order = download _
count.

56

https://web.archive.org/web/20230928220301/https://www.theverge.com/2022/1/22/22896785/dark-souls-3-remote-execution-exploit-rce-exploit-online-hack
https://web.archive.org/web/20230928220301/https://www.theverge.com/2022/1/22/22896785/dark-souls-3-remote-execution-exploit-rce-exploit-online-hack
https://web.archive.org/web/20230928220301/https://www.theverge.com/2022/1/22/22896785/dark-souls-3-remote-execution-exploit-rce-exploit-online-hack
https://web.archive.org/web/20230928220301/https://www.theverge.com/2022/1/22/22896785/dark-souls-3-remote-execution-exploit-rce-exploit-online-hack
https://web.archive.org/web/20230928220042/https://www.ign.com/articles/gta-5-exploit-rockstar-promises-fix
https://web.archive.org/web/20230928220042/https://www.ign.com/articles/gta-5-exploit-rockstar-promises-fix
https://web.archive.org/web/20230928220042/https://www.ign.com/articles/gta-5-exploit-rockstar-promises-fix
https://nvd.nist.gov/vuln/detail/CVE-2023-24059
https://nvd.nist.gov/vuln/detail/CVE-2023-24059
https://web.archive.org/web/20231101133629/https://www.minecraft.net/en-us
https://web.archive.org/web/20231101133629/https://www.minecraft.net/en-us
https://doi.org/10.1177/1555412007307955
https://doi.org/10.1177/1555412007307955
https://store.steampowered.com/charts/mostplayed
https://web.archive.org/web/20230928215648/https://www.beamng.com/resources/?order=download_count
https://web.archive.org/web/20230928215648/https://www.beamng.com/resources/?order=download_count
https://web.archive.org/web/20230928215648/https://www.beamng.com/resources/?order=download_count

BIBLIOGRAPHY

8. POOR, Nathaniel. Computer game modders’ motivations and
sense of community: A mixed-methods approach. New Media
& Society. 2013, vol. 16, no. 8, pp. 1249–1267. Available from
doi: 10.1177/1461444813504266.

9. Lua: about [online]. 2023-05-14. [visited on 2023-11-01]. Avail-
able from: https://web.archive.org/web/20231101220719/
https://www.lua.org/about.html.

10. lua-users wiki: Lua Implementations [online]. 2023-08-14. [vis-
ited on 2023-11-09]. Available from: https://web.archive.
org/web/20231108234727/https://lua-users.org/wiki/
LuaImplementations.

11. BeamNG.drive [online]. 2023-10-24. [visited on 2023-11-08].
Available from: https : / / web . archive . org / web /
20231108203834/https://www.beamng.com/game/.

12. LuaJIT [online]. 2023-08-21. [visited on 2023-08-23]. Available
from: https : / / web . archive . org / web / 20230823052551 /
https://luajit.org/luajit.html.

13. WAHBE, Robert; LUCCO, Steven; ANDERSON, Thomas E.;
GRAHAM, Susan L. Efficient software-based fault isolation.
In: Proceedings of the fourteenth ACM symposium on Operating sys-
tems principles - SOSP ’93. ACM Press, 1993. Available from doi:
10.1145/168619.168635.

14. GOLDBERG, Ian; WAGNER, David; THOMAS, Randi;
BREWER, Eric A. A Secure Environment for Untrusted Helper
Applications Confining the Wily Hacker. In: Proceedings of
the 6th Conference on USENIX Security Symposium, Focusing on
Applications of Cryptography - Volume 6. San Jose, California:
USENIX Association, 1996, p. 1. SSYM’96.

15. Chromium Docs - Sandbox [online]. 2023. [visited on
2023-07-29]. Available from: https://web.archive.org/web/
20230729192823 / https : / / chromium . googlesource . com /
chromium/src/+/HEAD/docs/design/sandbox.md.

57

https://doi.org/10.1177/1461444813504266
https://web.archive.org/web/20231101220719/https://www.lua.org/about.html
https://web.archive.org/web/20231101220719/https://www.lua.org/about.html
https://web.archive.org/web/20231108234727/https://lua-users.org/wiki/LuaImplementations
https://web.archive.org/web/20231108234727/https://lua-users.org/wiki/LuaImplementations
https://web.archive.org/web/20231108234727/https://lua-users.org/wiki/LuaImplementations
https://web.archive.org/web/20231108203834/https://www.beamng.com/game/
https://web.archive.org/web/20231108203834/https://www.beamng.com/game/
https://web.archive.org/web/20230823052551/https://luajit.org/luajit.html
https://web.archive.org/web/20230823052551/https://luajit.org/luajit.html
https://doi.org/10.1145/168619.168635
https://web.archive.org/web/20230729192823/https://chromium.googlesource.com/chromium/src/+/HEAD/docs/design/sandbox.md
https://web.archive.org/web/20230729192823/https://chromium.googlesource.com/chromium/src/+/HEAD/docs/design/sandbox.md
https://web.archive.org/web/20230729192823/https://chromium.googlesource.com/chromium/src/+/HEAD/docs/design/sandbox.md

BIBLIOGRAPHY

16. Application Sandbox | Android Open Source Project [on-
line]. 2023-08-24. [visited on 2023-11-09]. Available from:
https : / / web . archive . org / web / 20231108234417 / https :
//source.android.com/docs/security/app-sandbox.

17. App Sandbox | Apple Developer Documentation [online].
2023. [visited on 2023-11-08]. Available from: https :
/ / web . archive . org / web / 20231108234443 / http :
/ / web . archive . org / screenshot / https : / / developer .
apple.com/documentation/security/app_sandbox.

18. SVISTUNOVA, Olga. The Phantom Menace: how gamers of
different ages are being attacked. Kaspersky official blog [online].
2023 [visited on 2023-04-20]. Available from: https://web.
archive.org/web/20230420174354/https://www.kaspersky.
com/blog/modern-gamers-threats/47363/.

19. KASPERSKY. Overview of gaming-related malware, PUAs and
phishing. Securelist [online]. 2022 [visited on 2023-04-20]. Avail-
able from: https://web.archive.org/web/20230420234834/
https://securelist.com/gaming-related-cyberthreats-
2021-2022/107346/.

20. KASPERSKY. Analytical report on gaming-related cy-
berthreats in 2020-2021. Securelist [online]. 2021 [visited on
2023-04-20]. Available from: https://web.archive.org/web/
20230420234851/https://securelist.com/game-related-
cyberthreats/103675/.

21. Glossary | Malwarebytes [online]. 2023. [visited on 2023-11-07].
Available from: https : / / web . archive . org / web /
20231107135327/https://www.malwarebytes.com/glossary.

22. lua-users wiki: Sand Boxes [online]. 2015-09-03. [visited on
2023-06-08]. Available from: https://web.archive.org/web/
20230608091954/http://lua-users.org/wiki/SandBoxes.

23. Frequently Asked Questions (FAQ) | LuaJIT [online]. 2023-08-21.
[visited on 2023-11-09]. Available from: https://web.archive.
org/web/20231109120843/https://luajit.org/faq.html.

58

https://web.archive.org/web/20231108234417/https://source.android.com/docs/security/app-sandbox
https://web.archive.org/web/20231108234417/https://source.android.com/docs/security/app-sandbox
https://web.archive.org/web/20231108234443/http://web.archive.org/screenshot/https://developer.apple.com/documentation/security/app_sandbox
https://web.archive.org/web/20231108234443/http://web.archive.org/screenshot/https://developer.apple.com/documentation/security/app_sandbox
https://web.archive.org/web/20231108234443/http://web.archive.org/screenshot/https://developer.apple.com/documentation/security/app_sandbox
https://web.archive.org/web/20231108234443/http://web.archive.org/screenshot/https://developer.apple.com/documentation/security/app_sandbox
https://web.archive.org/web/20230420174354/https://www.kaspersky.com/blog/modern-gamers-threats/47363/
https://web.archive.org/web/20230420174354/https://www.kaspersky.com/blog/modern-gamers-threats/47363/
https://web.archive.org/web/20230420174354/https://www.kaspersky.com/blog/modern-gamers-threats/47363/
https://web.archive.org/web/20230420234834/https://securelist.com/gaming-related-cyberthreats-2021-2022/107346/
https://web.archive.org/web/20230420234834/https://securelist.com/gaming-related-cyberthreats-2021-2022/107346/
https://web.archive.org/web/20230420234834/https://securelist.com/gaming-related-cyberthreats-2021-2022/107346/
https://web.archive.org/web/20230420234851/https://securelist.com/game-related-cyberthreats/103675/
https://web.archive.org/web/20230420234851/https://securelist.com/game-related-cyberthreats/103675/
https://web.archive.org/web/20230420234851/https://securelist.com/game-related-cyberthreats/103675/
https://web.archive.org/web/20231107135327/https://www.malwarebytes.com/glossary
https://web.archive.org/web/20231107135327/https://www.malwarebytes.com/glossary
https://web.archive.org/web/20230608091954/http://lua-users.org/wiki/SandBoxes
https://web.archive.org/web/20230608091954/http://lua-users.org/wiki/SandBoxes
https://web.archive.org/web/20231109120843/https://luajit.org/faq.html
https://web.archive.org/web/20231109120843/https://luajit.org/faq.html

BIBLIOGRAPHY

24. NOTANEY, Stefanie. Roblox Reports March 2023 Key Metrics.
Roblox [online]. 2023 [visited on 2023-04-20]. Available from:
https://web.archive.org/web/20230420150135/https://
ir.roblox.com/news/news-details/2023/Roblox-Reports-
March-2023-Key-Metrics/default.aspx.

25. Experience | Roblox Wiki | Fandom [online]. 2023-10-09. [visited
on 2023-11-01]. Available from: https://web.archive.org/
web/20231101221715/https://roblox.fandom.com/wiki/
Experience.

26. Luau - Luau [online]. 2023-11-06. [visited on 2023-11-09]. Avail-
able from: https://web.archive.org/web/20231109100852/
https://luau-lang.org/.

27. SHEDLETSKY, John. Bye Bye Bytecode. Roblox Blog [online].
2012 [visited on 2012-09-09]. Available from: https://web.
archive.org/web/20120909151159/http://blog.roblox.
com:80/2012/08/bye-bye-bytecode/.

28. Sandboxing - Luau [online]. 2023. [visited on 2023-03-31]. Avail-
able from: https://web.archive.org/web/20230331003444/
https://luau-lang.org/sandbox.

29. Performance - Luau [online]. 2023. [visited on 2023-04-12]. Avail-
able from: https://web.archive.org/web/20230412232602/
https://luau-lang.org/performance.

30. Malicious LuaJIT bytecode [online]. 2015-11-11. [visited on
2023-05-26]. Available from: https : / / web . archive . org /
web/20230526002308/https://www.corsix.org/content/
malicious-luajit-bytecode.

31. Minetest | Open source voxel game engine [online]. 2023-10-21.
[visited on 2023-11-15]. Available from: https://web.archive.
org/web/20231115214055/https://www.minetest.net/.

32. Mods - ContentDB [online]. 2023-11-05. [visited on 2023-11-05].
Available from: https : / / web . archive . org / web /
20231105213724/https://content.minetest.net/packages/
?type=mod.

59

https://web.archive.org/web/20230420150135/https://ir.roblox.com/news/news-details/2023/Roblox-Reports-March-2023-Key-Metrics/default.aspx
https://web.archive.org/web/20230420150135/https://ir.roblox.com/news/news-details/2023/Roblox-Reports-March-2023-Key-Metrics/default.aspx
https://web.archive.org/web/20230420150135/https://ir.roblox.com/news/news-details/2023/Roblox-Reports-March-2023-Key-Metrics/default.aspx
https://web.archive.org/web/20231101221715/https://roblox.fandom.com/wiki/Experience
https://web.archive.org/web/20231101221715/https://roblox.fandom.com/wiki/Experience
https://web.archive.org/web/20231101221715/https://roblox.fandom.com/wiki/Experience
https://web.archive.org/web/20231109100852/https://luau-lang.org/
https://web.archive.org/web/20231109100852/https://luau-lang.org/
https://web.archive.org/web/20120909151159/http://blog.roblox.com:80/2012/08/bye-bye-bytecode/
https://web.archive.org/web/20120909151159/http://blog.roblox.com:80/2012/08/bye-bye-bytecode/
https://web.archive.org/web/20120909151159/http://blog.roblox.com:80/2012/08/bye-bye-bytecode/
https://web.archive.org/web/20230331003444/https://luau-lang.org/sandbox
https://web.archive.org/web/20230331003444/https://luau-lang.org/sandbox
https://web.archive.org/web/20230412232602/https://luau-lang.org/performance
https://web.archive.org/web/20230412232602/https://luau-lang.org/performance
https://web.archive.org/web/20230526002308/https://www.corsix.org/content/malicious-luajit-bytecode
https://web.archive.org/web/20230526002308/https://www.corsix.org/content/malicious-luajit-bytecode
https://web.archive.org/web/20230526002308/https://www.corsix.org/content/malicious-luajit-bytecode
https://web.archive.org/web/20231115214055/https://www.minetest.net/
https://web.archive.org/web/20231115214055/https://www.minetest.net/
https://web.archive.org/web/20231105213724/https://content.minetest.net/packages/?type=mod
https://web.archive.org/web/20231105213724/https://content.minetest.net/packages/?type=mod
https://web.archive.org/web/20231105213724/https://content.minetest.net/packages/?type=mod

BIBLIOGRAPHY

33. Client-side API sandboxing · Issue #7041 · minetest/minetest [on-
line]. 2018-07-26. [visited on 2023-11-05]. Available from: https:
//web.archive.org/web/20231105215519/https://github.
com/minetest/minetest/issues/7041.

34. Security Overview · minetest/minetest [online]. 2022-08-12. [vis-
ited on 2023-11-05]. Available from: https://web.archive.
org/web/20231105214437/https://github.com/minetest/
minetest/security.

35. Libraries and functions - Runtime Docs | Factorio [online].
2023-04-19. [visited on 2023-04-20]. Available from: https :
/ / web . archive . org / web / 20230420161707 / https : / / lua -
api.factorio.com/latest/Libraries.html.

36. GERHARDT, Justin. RCE in Factorio. Gerhardt Security Blog [on-
line]. 2017 [visited on 2017-08-24]. Available from: https://
web.archive.org/web/20170824005833/https://security.
gerhardt.link/RCE-in-Factorio/.

37. [PSA] Garry’s Mod Exploit : pcmasterrace. Reddit [online]. 2014
[visited on 2023-05-11]. Available from: https://web.archive.
org / web / 20230511164351 / https : / / old . reddit . com / r /
pcmasterrace/comments/23esri/psa_garrys_mod_exploit/.

38. Possible lua virus exploit found *cough*. Facepunch [online].
2014 [visited on 2014-07-17]. Available from: https://web.
archive.org/web/20140717110238/https://facepunch.com/
showthread.php?t=1386818.

39. Downloads for Minecraft Forge for Minecraft 1.20.1 [on-
line]. 2023-08-31. [visited on 2023-09-02]. Available from:
https : / / web . archive . org / web / 20230902080725 / https :
//files.minecraftforge.net/net/minecraftforge/forge/.

40. CurseForge [online]. 2023. [visited on 2023-03-15]. Available
from: https : / / web . archive . org / web / 20230315022959 /
https://www.curseforge.com/all-games.

41. BROWN, Andy. ‘Cities: Skylines’ modder banned after discov-
ery of major malware risk. NME [online]. 2022 [visited on
2023-05-11]. Available from: https://web.archive.org/web/
20230511162415/https://www.nme.com/news/gaming-news/

60

https://web.archive.org/web/20231105215519/https://github.com/minetest/minetest/issues/7041
https://web.archive.org/web/20231105215519/https://github.com/minetest/minetest/issues/7041
https://web.archive.org/web/20231105215519/https://github.com/minetest/minetest/issues/7041
https://web.archive.org/web/20231105214437/https://github.com/minetest/minetest/security
https://web.archive.org/web/20231105214437/https://github.com/minetest/minetest/security
https://web.archive.org/web/20231105214437/https://github.com/minetest/minetest/security
https://web.archive.org/web/20230420161707/https://lua-api.factorio.com/latest/Libraries.html
https://web.archive.org/web/20230420161707/https://lua-api.factorio.com/latest/Libraries.html
https://web.archive.org/web/20230420161707/https://lua-api.factorio.com/latest/Libraries.html
https://web.archive.org/web/20170824005833/https://security.gerhardt.link/RCE-in-Factorio/
https://web.archive.org/web/20170824005833/https://security.gerhardt.link/RCE-in-Factorio/
https://web.archive.org/web/20170824005833/https://security.gerhardt.link/RCE-in-Factorio/
https://web.archive.org/web/20230511164351/https://old.reddit.com/r/pcmasterrace/comments/23esri/psa_garrys_mod_exploit/
https://web.archive.org/web/20230511164351/https://old.reddit.com/r/pcmasterrace/comments/23esri/psa_garrys_mod_exploit/
https://web.archive.org/web/20230511164351/https://old.reddit.com/r/pcmasterrace/comments/23esri/psa_garrys_mod_exploit/
https://web.archive.org/web/20140717110238/https://facepunch.com/showthread.php?t=1386818
https://web.archive.org/web/20140717110238/https://facepunch.com/showthread.php?t=1386818
https://web.archive.org/web/20140717110238/https://facepunch.com/showthread.php?t=1386818
https://web.archive.org/web/20230902080725/https://files.minecraftforge.net/net/minecraftforge/forge/
https://web.archive.org/web/20230902080725/https://files.minecraftforge.net/net/minecraftforge/forge/
https://web.archive.org/web/20230315022959/https://www.curseforge.com/all-games
https://web.archive.org/web/20230315022959/https://www.curseforge.com/all-games
https://web.archive.org/web/20230511162415/https://www.nme.com/news/gaming-news/valve-bans-cities-skylines-modder-after-discovery-of-major-malware-risk-3159709
https://web.archive.org/web/20230511162415/https://www.nme.com/news/gaming-news/valve-bans-cities-skylines-modder-after-discovery-of-major-malware-risk-3159709
https://web.archive.org/web/20230511162415/https://www.nme.com/news/gaming-news/valve-bans-cities-skylines-modder-after-discovery-of-major-malware-risk-3159709
https://web.archive.org/web/20230511162415/https://www.nme.com/news/gaming-news/valve-bans-cities-skylines-modder-after-discovery-of-major-malware-risk-3159709

BIBLIOGRAPHY

valve-bans-cities-skylines-modder-after-discovery-of-
major-malware-risk-3159709.

42. ROOT, Enoch. Attack on Cities: Skylines — malicious code in
a virtual city. Kaspersky official blog [online]. 2022 [visited on
2023-05-11]. Available from: https://web.archive.org/web/
20230511162616/https://www.kaspersky.com/blog/cities-
skylines-malicious-mods/44004/.

43. Modding API - Cities: Skylines Wiki [online]. 2022-01-06. [visited
on 2023-11-11]. Available from: https://web.archive.org/
web/20231111195058/https://skylines.paradoxwikis.com/
Modding_API#Security_considerations.

44. VOJTĚŠEK, Jan. Dota 2 Under Attack: How a V8 Bug Was Ex-
ploited in the Game. Avast Threat Labs [online]. 2023 [visited on
2023-02-09]. Available from: https://web.archive.org/web/
20230209235307/https://decoded.avast.io/janvojtesek/
dota-2-under-attack-how-a-v8-bug-was-exploited-in-
the-game/.

45. Most played Steam Workshop Games Steam Charts | SteamDB [on-
line]. 2023-05-11. [visited on 2023-05-11]. Available from: https:
//steamdb.info/charts/?category=30.

46. Nexus Mods :: Games [online]. 2023. [visited on 2023-03-30].
Available from: http://web.archive.org/web/20230330010906/
http : / / web . archive . org / screenshot / https : / / www .
nexusmods.com/games.

47. latte-soft/0x1D: Roblox Studio Zero-Day Arbitrary Code Exe-
cution (ACE) Vulnerability [online]. 2023-06-05. [visited on
2023-11-05]. Available from: https://web.archive.org/web/
20231105195741/https://github.com/latte-soft/0x1D.

48. SCANNELL, Simon. Counter-Strike Global Offsets: reliable
remote code execution. secret club [online]. 2021 [visited on
2023-03-19]. Available from: https://web.archive.org/web/
20230319144658/https://secret.club/2021/05/13/source-
engine-rce-join.html.

61

https://web.archive.org/web/20230511162415/https://www.nme.com/news/gaming-news/valve-bans-cities-skylines-modder-after-discovery-of-major-malware-risk-3159709
https://web.archive.org/web/20230511162415/https://www.nme.com/news/gaming-news/valve-bans-cities-skylines-modder-after-discovery-of-major-malware-risk-3159709
https://web.archive.org/web/20230511162415/https://www.nme.com/news/gaming-news/valve-bans-cities-skylines-modder-after-discovery-of-major-malware-risk-3159709
https://web.archive.org/web/20230511162415/https://www.nme.com/news/gaming-news/valve-bans-cities-skylines-modder-after-discovery-of-major-malware-risk-3159709
https://web.archive.org/web/20230511162415/https://www.nme.com/news/gaming-news/valve-bans-cities-skylines-modder-after-discovery-of-major-malware-risk-3159709
https://web.archive.org/web/20230511162616/https://www.kaspersky.com/blog/cities-skylines-malicious-mods/44004/
https://web.archive.org/web/20230511162616/https://www.kaspersky.com/blog/cities-skylines-malicious-mods/44004/
https://web.archive.org/web/20230511162616/https://www.kaspersky.com/blog/cities-skylines-malicious-mods/44004/
https://web.archive.org/web/20231111195058/https://skylines.paradoxwikis.com/Modding_API#Security_considerations
https://web.archive.org/web/20231111195058/https://skylines.paradoxwikis.com/Modding_API#Security_considerations
https://web.archive.org/web/20231111195058/https://skylines.paradoxwikis.com/Modding_API#Security_considerations
https://web.archive.org/web/20230209235307/https://decoded.avast.io/janvojtesek/dota-2-under-attack-how-a-v8-bug-was-exploited-in-the-game/
https://web.archive.org/web/20230209235307/https://decoded.avast.io/janvojtesek/dota-2-under-attack-how-a-v8-bug-was-exploited-in-the-game/
https://web.archive.org/web/20230209235307/https://decoded.avast.io/janvojtesek/dota-2-under-attack-how-a-v8-bug-was-exploited-in-the-game/
https://web.archive.org/web/20230209235307/https://decoded.avast.io/janvojtesek/dota-2-under-attack-how-a-v8-bug-was-exploited-in-the-game/
https://steamdb.info/charts/?category=30
https://steamdb.info/charts/?category=30
http://web.archive.org/web/20230330010906/http://web.archive.org/screenshot/https://www.nexusmods.com/games
http://web.archive.org/web/20230330010906/http://web.archive.org/screenshot/https://www.nexusmods.com/games
http://web.archive.org/web/20230330010906/http://web.archive.org/screenshot/https://www.nexusmods.com/games
https://web.archive.org/web/20231105195741/https://github.com/latte-soft/0x1D
https://web.archive.org/web/20231105195741/https://github.com/latte-soft/0x1D
https://web.archive.org/web/20230319144658/https://secret.club/2021/05/13/source-engine-rce-join.html
https://web.archive.org/web/20230319144658/https://secret.club/2021/05/13/source-engine-rce-join.html
https://web.archive.org/web/20230319144658/https://secret.club/2021/05/13/source-engine-rce-join.html

BIBLIOGRAPHY

49. GOODIN, Dan. Dozens of popular Minecraft mods found
infected with Fracturiser malware. Ars Technica [online].
2023 [visited on 2023-11-05]. Available from: https://web.
archive.org/web/20231105221116/https://arstechnica.
com/information-technology/2023/06/dozens-of-popular-
minecraft - mods - found - infected - with - fracturiser -
malware/.

50. TAFT, Justin. Remote Code Execution In Source Games. One
Up Security, LLC [online]. 2017 [visited on 2023-05-11]. Avail-
able from: https://web.archive.org/web/20230511205601/
https://www.oneupsecurity.com/research/remote-code-
execution-in-source-games/.

51. Modding Guidelines — facepunch [online]. 2019-08-28. [visited on
2023-11-11]. Available from: https://web.archive.org/web/
20231111170410/https://facepunch.com/legal/modding.

52. Security Flaw in Hearts of Iron IV : paradoxplaza. Reddit [on-
line]. 2020 [visited on 2023-05-11]. Available from: https://web.
archive.org/web/20230511205137/https://old.reddit.
com/r/paradoxplaza/comments/ezqwel/security_flaw_in_
hearts_of_iron_iv/.

53. The Sims 4 - Mods and game updates [online]. 2022-12-19. [visited
on 2023-11-11]. Available from: https://web.archive.org/
web/20231111202423/http://web.archive.org/screenshot/
https://help.ea.com/en/help/the-sims/the-sims-4/mods-
and-the-sims-4-game-updates/.

54. ABRAMS, Lawrence. Cyberpunk 2077 bug fixed that let
malicious mods take over PCs. BleepingComputer | Cybersecu-
rity, Technology News and Support [online]. 2021 [visited on
2023-05-11]. Available from: https://web.archive.org/web/
20230511205932/https://www.bleepingcomputer.com/news/
security/cyberpunk-2077-bug-fixed-that-let-malicious-
mods-take-over-pcs/.

55. Remove the ability to load bytecode through load() - Factorio Forums
[online]. 2020-04-21. [visited on 2023-11-05]. Available from:
https : / / web . archive . org / web / 20231105201352 / https :
//test.forums.factorio.com/viewtopic.php?t=83955.

62

https://web.archive.org/web/20231105221116/https://arstechnica.com/information-technology/2023/06/dozens-of-popular-minecraft-mods-found-infected-with-fracturiser-malware/
https://web.archive.org/web/20231105221116/https://arstechnica.com/information-technology/2023/06/dozens-of-popular-minecraft-mods-found-infected-with-fracturiser-malware/
https://web.archive.org/web/20231105221116/https://arstechnica.com/information-technology/2023/06/dozens-of-popular-minecraft-mods-found-infected-with-fracturiser-malware/
https://web.archive.org/web/20231105221116/https://arstechnica.com/information-technology/2023/06/dozens-of-popular-minecraft-mods-found-infected-with-fracturiser-malware/
https://web.archive.org/web/20231105221116/https://arstechnica.com/information-technology/2023/06/dozens-of-popular-minecraft-mods-found-infected-with-fracturiser-malware/
https://web.archive.org/web/20230511205601/https://www.oneupsecurity.com/research/remote-code-execution-in-source-games/
https://web.archive.org/web/20230511205601/https://www.oneupsecurity.com/research/remote-code-execution-in-source-games/
https://web.archive.org/web/20230511205601/https://www.oneupsecurity.com/research/remote-code-execution-in-source-games/
https://web.archive.org/web/20231111170410/https://facepunch.com/legal/modding
https://web.archive.org/web/20231111170410/https://facepunch.com/legal/modding
https://web.archive.org/web/20230511205137/https://old.reddit.com/r/paradoxplaza/comments/ezqwel/security_flaw_in_hearts_of_iron_iv/
https://web.archive.org/web/20230511205137/https://old.reddit.com/r/paradoxplaza/comments/ezqwel/security_flaw_in_hearts_of_iron_iv/
https://web.archive.org/web/20230511205137/https://old.reddit.com/r/paradoxplaza/comments/ezqwel/security_flaw_in_hearts_of_iron_iv/
https://web.archive.org/web/20230511205137/https://old.reddit.com/r/paradoxplaza/comments/ezqwel/security_flaw_in_hearts_of_iron_iv/
https://web.archive.org/web/20231111202423/http://web.archive.org/screenshot/https://help.ea.com/en/help/the-sims/the-sims-4/mods-and-the-sims-4-game-updates/
https://web.archive.org/web/20231111202423/http://web.archive.org/screenshot/https://help.ea.com/en/help/the-sims/the-sims-4/mods-and-the-sims-4-game-updates/
https://web.archive.org/web/20231111202423/http://web.archive.org/screenshot/https://help.ea.com/en/help/the-sims/the-sims-4/mods-and-the-sims-4-game-updates/
https://web.archive.org/web/20231111202423/http://web.archive.org/screenshot/https://help.ea.com/en/help/the-sims/the-sims-4/mods-and-the-sims-4-game-updates/
https://web.archive.org/web/20230511205932/https://www.bleepingcomputer.com/news/security/cyberpunk-2077-bug-fixed-that-let-malicious-mods-take-over-pcs/
https://web.archive.org/web/20230511205932/https://www.bleepingcomputer.com/news/security/cyberpunk-2077-bug-fixed-that-let-malicious-mods-take-over-pcs/
https://web.archive.org/web/20230511205932/https://www.bleepingcomputer.com/news/security/cyberpunk-2077-bug-fixed-that-let-malicious-mods-take-over-pcs/
https://web.archive.org/web/20230511205932/https://www.bleepingcomputer.com/news/security/cyberpunk-2077-bug-fixed-that-let-malicious-mods-take-over-pcs/
https://web.archive.org/web/20231105201352/https://test.forums.factorio.com/viewtopic.php?t=83955
https://web.archive.org/web/20231105201352/https://test.forums.factorio.com/viewtopic.php?t=83955

BIBLIOGRAPHY

56. You *can* get a virus by playing Modded Terraria.. - YouTube [on-
line]. 2022-08-12. [visited on 2023-05-11]. Available from: https:
/ / web . archive . org / web / 20230511210300 / https : / / www .
youtube.com/watch?v=mgtvLaPYL-I.

57. Do KSP mods allow arbitrary code execution? Arqade - Stack
Exchange [online]. 2018 [visited on 2023-05-11]. Available from:
https : / / web . archive . org / web / 20230511210944 / https :
//gaming.stackexchange.com/questions/342166/do-ksp-
mods-allow-arbitrary-code-execution.

58. Valheim: Regarding Mods - Valheim Game [online]. 2023-05-29.
[visited on 2023-11-11]. Available from: https://web.archive.
org/web/20231111211215/https://www.valheimgame.com/
news/regarding-mods/.

59. PSA: Comfy modding team has found malware on the Valheim
Thunderstore. Info in comments. : valheim. Reddit [online]. 2022
[visited on 2023-05-11]. Available from: https://web.archive.
org / web / 20230511211055 / https : / / old . reddit . com / r /
valheim/comments/xfd81o/psa_comfy_modding_team_has_
found_malware_on_the/.

60. Can I use Third PartyMods with Rocket League? - Rocket League Sup-
port [online]. 2023-11. [visited on 2023-11-11]. Available from:
https : / / web . archive . org / web / 20231111215231 / https :
/ / www . epicgames . com / help / en - US / rocket - league -
c5719357623323 / technical - support - c7261971242139 /
can - i - use - third - party - mods - with - rocket - league -
a5720159878043.

61. SANTERI. Using mods in World of Tanks is a security
risk. Web & SEO Designers Forum [online]. 2019 [visited on
2023-05-11]. Available from: https://web.archive.org/web/
20230511211617 / https : / / forum . webseodesigners . com /
games-f20/using-mods-in-world-of-tanks-is-a-security-
risk-t1604.html.

62. ADÁMEK, Petr. Security of the Lua Sandbox. 2022. Available also
from: https : / / web . archive . org / web / 20230928214742 /
https : / / dspace . cvut . cz / handle / 10467 / 101898. Bache-

63

https://web.archive.org/web/20230511210300/https://www.youtube.com/watch?v=mgtvLaPYL-I
https://web.archive.org/web/20230511210300/https://www.youtube.com/watch?v=mgtvLaPYL-I
https://web.archive.org/web/20230511210300/https://www.youtube.com/watch?v=mgtvLaPYL-I
https://web.archive.org/web/20230511210944/https://gaming.stackexchange.com/questions/342166/do-ksp-mods-allow-arbitrary-code-execution
https://web.archive.org/web/20230511210944/https://gaming.stackexchange.com/questions/342166/do-ksp-mods-allow-arbitrary-code-execution
https://web.archive.org/web/20230511210944/https://gaming.stackexchange.com/questions/342166/do-ksp-mods-allow-arbitrary-code-execution
https://web.archive.org/web/20231111211215/https://www.valheimgame.com/news/regarding-mods/
https://web.archive.org/web/20231111211215/https://www.valheimgame.com/news/regarding-mods/
https://web.archive.org/web/20231111211215/https://www.valheimgame.com/news/regarding-mods/
https://web.archive.org/web/20230511211055/https://old.reddit.com/r/valheim/comments/xfd81o/psa_comfy_modding_team_has_found_malware_on_the/
https://web.archive.org/web/20230511211055/https://old.reddit.com/r/valheim/comments/xfd81o/psa_comfy_modding_team_has_found_malware_on_the/
https://web.archive.org/web/20230511211055/https://old.reddit.com/r/valheim/comments/xfd81o/psa_comfy_modding_team_has_found_malware_on_the/
https://web.archive.org/web/20230511211055/https://old.reddit.com/r/valheim/comments/xfd81o/psa_comfy_modding_team_has_found_malware_on_the/
https://web.archive.org/web/20231111215231/https://www.epicgames.com/help/en-US/rocket-league-c5719357623323/technical-support-c7261971242139/can-i-use-third-party-mods-with-rocket-league-a5720159878043
https://web.archive.org/web/20231111215231/https://www.epicgames.com/help/en-US/rocket-league-c5719357623323/technical-support-c7261971242139/can-i-use-third-party-mods-with-rocket-league-a5720159878043
https://web.archive.org/web/20231111215231/https://www.epicgames.com/help/en-US/rocket-league-c5719357623323/technical-support-c7261971242139/can-i-use-third-party-mods-with-rocket-league-a5720159878043
https://web.archive.org/web/20231111215231/https://www.epicgames.com/help/en-US/rocket-league-c5719357623323/technical-support-c7261971242139/can-i-use-third-party-mods-with-rocket-league-a5720159878043
https://web.archive.org/web/20231111215231/https://www.epicgames.com/help/en-US/rocket-league-c5719357623323/technical-support-c7261971242139/can-i-use-third-party-mods-with-rocket-league-a5720159878043
https://web.archive.org/web/20230511211617/https://forum.webseodesigners.com/games-f20/using-mods-in-world-of-tanks-is-a-security-risk-t1604.html
https://web.archive.org/web/20230511211617/https://forum.webseodesigners.com/games-f20/using-mods-in-world-of-tanks-is-a-security-risk-t1604.html
https://web.archive.org/web/20230511211617/https://forum.webseodesigners.com/games-f20/using-mods-in-world-of-tanks-is-a-security-risk-t1604.html
https://web.archive.org/web/20230511211617/https://forum.webseodesigners.com/games-f20/using-mods-in-world-of-tanks-is-a-security-risk-t1604.html
https://web.archive.org/web/20230928214742/https://dspace.cvut.cz/handle/10467/101898
https://web.archive.org/web/20230928214742/https://dspace.cvut.cz/handle/10467/101898

BIBLIOGRAPHY

lor’s Thesis. Czech Technical University in Prague, Faculty of
Information Technology.

63. FLORENCE, Paul; MENASSOL, Lucien. Étude de la surface d’at-
taque des APIs de modding dans les jeux vidéo [online]. 2020. [vis-
ited on 2023-09-28]. Institut National des Sciences Appliquées
de Toulouse. Available from: https : / / web . archive . org /
web/20230928215401/https://raw.githubusercontent.com/
gbip/lua_attack/master/report/report.pdf.

64. Frequently Asked Questions (FAQ) | LuaJIT [online]. 2023-09-15.
[visited on 2023-11-23]. Available from: https://web.archive.
org/web/20231122225906/https://luajit.org/extensions.
html.

65. FFI Library | LuaJIT [online]. 2023-08-21. [visited on
2023-09-02]. Available from: https://web.archive.org/web/
20230902075825/https://luajit.org/ext_ffi.html.

66. WALTERBELL. My love-hate relationship with LuaJIT (2015)
| Hacker News. Hacker News [online]. 2016 [visited on
2023-04-20]. Available from: https://web.archive.org/web/
20230420164301/https://news.ycombinator.com/item?id=
12573981.

67. Status | LuaJIT [online]. 2023-08-21. [visited on 2023-11-07].
Available from: https : / / web . archive . org / web /
20231107191251/https://luajit.org/status.html.

68. openresty/luajit2: OpenResty’s Branch of LuaJIT 2 [online]. 2023.
[visited on 2023-09-28]. Available from: https://web.archive.
org/web/20230928215127/https://github.com/openresty/
luajit2.

69. NORTHLIGHT. How Northlight makes Alan Wake 2 shine
[online]. 2023 [visited on 2023-11-09]. Available from: https:
/ / web . archive . org / web / 20231109095712 / https : / / www .
remedygames . com / article / how - northlight - makes - alan -
wake-2-shine.

64

https://web.archive.org/web/20230928215401/https://raw.githubusercontent.com/gbip/lua_attack/master/report/report.pdf
https://web.archive.org/web/20230928215401/https://raw.githubusercontent.com/gbip/lua_attack/master/report/report.pdf
https://web.archive.org/web/20230928215401/https://raw.githubusercontent.com/gbip/lua_attack/master/report/report.pdf
https://web.archive.org/web/20231122225906/https://luajit.org/extensions.html
https://web.archive.org/web/20231122225906/https://luajit.org/extensions.html
https://web.archive.org/web/20231122225906/https://luajit.org/extensions.html
https://web.archive.org/web/20230902075825/https://luajit.org/ext_ffi.html
https://web.archive.org/web/20230902075825/https://luajit.org/ext_ffi.html
https://web.archive.org/web/20230420164301/https://news.ycombinator.com/item?id=12573981
https://web.archive.org/web/20230420164301/https://news.ycombinator.com/item?id=12573981
https://web.archive.org/web/20230420164301/https://news.ycombinator.com/item?id=12573981
https://web.archive.org/web/20231107191251/https://luajit.org/status.html
https://web.archive.org/web/20231107191251/https://luajit.org/status.html
https://web.archive.org/web/20230928215127/https://github.com/openresty/luajit2
https://web.archive.org/web/20230928215127/https://github.com/openresty/luajit2
https://web.archive.org/web/20230928215127/https://github.com/openresty/luajit2
https://web.archive.org/web/20231109095712/https://www.remedygames.com/article/how-northlight-makes-alan-wake-2-shine
https://web.archive.org/web/20231109095712/https://www.remedygames.com/article/how-northlight-makes-alan-wake-2-shine
https://web.archive.org/web/20231109095712/https://www.remedygames.com/article/how-northlight-makes-alan-wake-2-shine
https://web.archive.org/web/20231109095712/https://www.remedygames.com/article/how-northlight-makes-alan-wake-2-shine

BIBLIOGRAPHY

70. future of bytecode verifier | lua-l archive [online]. 2009-03-04. [vis-
ited on 2023-11-09]. Available from: https://web.archive.
org/web/20231109122410/http://lua-users.org/lists/
lua-l/2009-03/msg00039.html.

71. dofile | Lua 5.4 Reference Manual [online]. 2023-05-02. [visited on
2023-11-09]. Available from: https://web.archive.org/web/
20231109135431/https://www.lua.org/manual/5.4/manual.
html#pdf-dofile.

72. Exploiting Lua 5.1 on 32-bit Windows.md · GitHub [on-
line]. 2013-09-26. [visited on 2023-11-09]. Available from:
https : / / web . archive . org / web / 20231109124059 / https :
//gist.github.com/corsix/6575486.

73. Exploiting Lua 5.2 on x64 · GitHub [online]. 2016-09. [visited
on 2023-11-09]. Available from: https://web.archive.org/
web/20231109124118/https://gist.github.com/corsix/
49d770c7085e4b75f32939c6c076aad6.

74. Bytecode abuse in Lua 5.2 (-work4) - lua-l archive [online].
2010-08-21. [visited on 2023-11-09]. Available from: https :
/ / web . archive . org / web / 20231109132835 / http : / / lua -
users.org/lists/lua-l/2010-08/msg00487.html.

75. Pwning Lua through ’load’ [online]. 2017-01-01. [visited on
2023-04-09]. Available from: https://web.archive.org/web/
20230409072741/https://saelo.github.io/posts/pwning-
lua-through-load.html.

76. Lua 5.4.4 Sandbox Escaping & Type confusion caused by the ab-
sence of type check | lua-l archive [online]. 2021-10-25. [visited on
2023-11-09]. Available from: https://web.archive.org/web/
20231109133052/http://lua-users.org/lists/lua-l/2021-
10/msg00104.html.

77. LuaJIT Sandbox Escape: The Saga Ends [online]. 2022-12-30. [vis-
ited on 2023-11-06]. Available from: https://web.archive.
org/web/20231106193716/https://0xbigshaq.github.io/
2022/12/30/luajit-sandbox-escape/.

65

https://web.archive.org/web/20231109122410/http://lua-users.org/lists/lua-l/2009-03/msg00039.html
https://web.archive.org/web/20231109122410/http://lua-users.org/lists/lua-l/2009-03/msg00039.html
https://web.archive.org/web/20231109122410/http://lua-users.org/lists/lua-l/2009-03/msg00039.html
https://web.archive.org/web/20231109135431/https://www.lua.org/manual/5.4/manual.html#pdf-dofile
https://web.archive.org/web/20231109135431/https://www.lua.org/manual/5.4/manual.html#pdf-dofile
https://web.archive.org/web/20231109135431/https://www.lua.org/manual/5.4/manual.html#pdf-dofile
https://web.archive.org/web/20231109124059/https://gist.github.com/corsix/6575486
https://web.archive.org/web/20231109124059/https://gist.github.com/corsix/6575486
https://web.archive.org/web/20231109124118/https://gist.github.com/corsix/49d770c7085e4b75f32939c6c076aad6
https://web.archive.org/web/20231109124118/https://gist.github.com/corsix/49d770c7085e4b75f32939c6c076aad6
https://web.archive.org/web/20231109124118/https://gist.github.com/corsix/49d770c7085e4b75f32939c6c076aad6
https://web.archive.org/web/20231109132835/http://lua-users.org/lists/lua-l/2010-08/msg00487.html
https://web.archive.org/web/20231109132835/http://lua-users.org/lists/lua-l/2010-08/msg00487.html
https://web.archive.org/web/20231109132835/http://lua-users.org/lists/lua-l/2010-08/msg00487.html
https://web.archive.org/web/20230409072741/https://saelo.github.io/posts/pwning-lua-through-load.html
https://web.archive.org/web/20230409072741/https://saelo.github.io/posts/pwning-lua-through-load.html
https://web.archive.org/web/20230409072741/https://saelo.github.io/posts/pwning-lua-through-load.html
https://web.archive.org/web/20231109133052/http://lua-users.org/lists/lua-l/2021-10/msg00104.html
https://web.archive.org/web/20231109133052/http://lua-users.org/lists/lua-l/2021-10/msg00104.html
https://web.archive.org/web/20231109133052/http://lua-users.org/lists/lua-l/2021-10/msg00104.html
https://web.archive.org/web/20231106193716/https://0xbigshaq.github.io/2022/12/30/luajit-sandbox-escape/
https://web.archive.org/web/20231106193716/https://0xbigshaq.github.io/2022/12/30/luajit-sandbox-escape/
https://web.archive.org/web/20231106193716/https://0xbigshaq.github.io/2022/12/30/luajit-sandbox-escape/

BIBLIOGRAPHY

78. LuaJIT/src/lj_load.c at 43d0a19158ceabaa51b0462c1ebc97612b420a2e
· LuaJIT/LuaJIT · GitHub [online]. 2023-08-20. [visited on
2023-11-26]. Available from: https://github.com/LuaJIT/
LuaJIT/blob/43d0a19158ceabaa51b0462c1ebc97612b420a2e/
src/lj_load.c#L56.

79. FFI Semantics | LuaJIT [online]. 2023-08-21. [visited on
2023-11-30]. Available from: https://web.archive.org/web/
20231130191255/https://luajit.org/ext_ffi_semantics.
html.

80. kikito/lua-sandbox: A lua sandbox for executing non-trusted code
[online]. 2021-11-04. [visited on 2023-09-28]. Available from:
https : / / web . archive . org / web / 20230928211839 / https :
//github.com/kikito/lua-sandbox.

81. RyanSquared/lua-sandbox: A very quick sandbox module written
for Lua 5.3, Linux compatible [online]. 2017-02-05. [visited on
2020-12-02]. Available from: https://web.archive.org/web/
20201202182355 / https : / / github . com / RyanSquared / lua -
sandbox.

82. mozilla-services/lua_sandbox: Generic Lua sandbox for dynamic data
analysis [online]. 2021-04-06. [visited on 2023-11-06]. Available
from: https : / / web . archive . org / web / 20231106210800 /
https://github.com/mozilla-services/lua_sandbox.

83. LuaJIT/src/lib_io.c at 43d0a19158ceabaa51b0462c1ebc97612b420a2e
· LuaJIT/LuaJIT · GitHub [online]. 2023-08-20. [visited on
2023-11-26]. Available from: https://github.com/LuaJIT/
LuaJIT/blob/43d0a19158ceabaa51b0462c1ebc97612b420a2e/
src/lib_io.c#L87.

84. Windows Sandbox | Microsoft Learn [online]. 2023-05-25. [visited
on 2023-09-02]. Available from: https://web.archive.org/
web/20230902081621/https://learn.microsoft.com/en-
us/windows/security/application-security/application-
isolation/windows-sandbox/windows-sandbox-overview.

85. Frame rate is limited to 30 FPS in remote sessions - Windows
Server | Microsoft Learn [online]. 2023-02-23. [visited on
2023-05-11]. Available from: https : / / web . archive . org /

66

https://github.com/LuaJIT/LuaJIT/blob/43d0a19158ceabaa51b0462c1ebc97612b420a2e/src/lj_load.c#L56
https://github.com/LuaJIT/LuaJIT/blob/43d0a19158ceabaa51b0462c1ebc97612b420a2e/src/lj_load.c#L56
https://github.com/LuaJIT/LuaJIT/blob/43d0a19158ceabaa51b0462c1ebc97612b420a2e/src/lj_load.c#L56
https://web.archive.org/web/20231130191255/https://luajit.org/ext_ffi_semantics.html
https://web.archive.org/web/20231130191255/https://luajit.org/ext_ffi_semantics.html
https://web.archive.org/web/20231130191255/https://luajit.org/ext_ffi_semantics.html
https://web.archive.org/web/20230928211839/https://github.com/kikito/lua-sandbox
https://web.archive.org/web/20230928211839/https://github.com/kikito/lua-sandbox
https://web.archive.org/web/20201202182355/https://github.com/RyanSquared/lua-sandbox
https://web.archive.org/web/20201202182355/https://github.com/RyanSquared/lua-sandbox
https://web.archive.org/web/20201202182355/https://github.com/RyanSquared/lua-sandbox
https://web.archive.org/web/20231106210800/https://github.com/mozilla-services/lua_sandbox
https://web.archive.org/web/20231106210800/https://github.com/mozilla-services/lua_sandbox
https://github.com/LuaJIT/LuaJIT/blob/43d0a19158ceabaa51b0462c1ebc97612b420a2e/src/lib_io.c#L87
https://github.com/LuaJIT/LuaJIT/blob/43d0a19158ceabaa51b0462c1ebc97612b420a2e/src/lib_io.c#L87
https://github.com/LuaJIT/LuaJIT/blob/43d0a19158ceabaa51b0462c1ebc97612b420a2e/src/lib_io.c#L87
https://web.archive.org/web/20230902081621/https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/windows-sandbox/windows-sandbox-overview
https://web.archive.org/web/20230902081621/https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/windows-sandbox/windows-sandbox-overview
https://web.archive.org/web/20230902081621/https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/windows-sandbox/windows-sandbox-overview
https://web.archive.org/web/20230902081621/https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/windows-sandbox/windows-sandbox-overview
https://web.archive.org/web/20230511184613/https://learn.microsoft.com/en-us/troubleshoot/windows-server/remote/frame-rate-limited-to-30-fps
https://web.archive.org/web/20230511184613/https://learn.microsoft.com/en-us/troubleshoot/windows-server/remote/frame-rate-limited-to-30-fps
https://web.archive.org/web/20230511184613/https://learn.microsoft.com/en-us/troubleshoot/windows-server/remote/frame-rate-limited-to-30-fps

BIBLIOGRAPHY

web/20230511184613/https://learn.microsoft.com/en-
us / troubleshoot / windows - server / remote / frame - rate -
limited-to-30-fps.

86. Sandboxie-Plus | Open Source sandbox-based isolation software [on-
line]. 2023. [visited on 2023-08-31]. Available from: https://
web.archive.org/web/20230831222005/https://sandboxie-
plus.com/.

87. [IMPORTANT] Sandboxie Open Source Code is available for
download - Sandboxie Forum (Read Only) - Sandboxie (Read
Only) - Sophos Community [online]. 2020-04-08. [visited on
2023-06-17]. Available from: https : / / web . archive . org /
web / 20230617112707 / https : / / community . sophos . com /
sandboxie / f / forum / 119641 / important - sandboxie - open -
source-code-is-available-for-download.

88. ASHCRAFT, Alvin. AppContainer Isolation - Win32 apps. Mi-
crosoft Learn [online]. 2021 [visited on 2023-05-11]. Available
from: https : / / web . archive . org / web / 20230511215044 /
https : / / learn . microsoft . com / en - us / windows / win32 /
secauthz/appcontainer-isolation.

89. GitHub - microsoft/SandboxSecurityTools: Security testing tools
for Windows sandboxing technologies [online]. 2023-09-08. [vis-
ited on 2023-11-06]. Available from: https://web.archive.
org/web/20231106220046/https://github.com/microsoft/
SandboxSecurityTools.

90. GitHub - M2Team/Privexec: Run the program with the specified per-
mission level [online]. 2023-11-29. [visited on 2023-12-12]. Avail-
able from: https://web.archive.org/web/20231212171534/
https://github.com/M2Team/Privexec.

91. YOSIFOVICH, Pavel. Windows Internals Seventh Edition, Part 1.
Microsoft Press, 2017.

92. GetProcessMitigationPolicy function (processthreadsapi.h) -
Win32 apps | Microsoft Learn [online]. 2022-11-01. [visited
on 2023-06-23]. Available from: https : / / web . archive .
org / web / 20230623134030 / https : / / learn . microsoft .
com / en - us / windows / win32 / api / processthreadsapi / nf -
processthreadsapi-getprocessmitigationpolicy.

67

https://web.archive.org/web/20230511184613/https://learn.microsoft.com/en-us/troubleshoot/windows-server/remote/frame-rate-limited-to-30-fps
https://web.archive.org/web/20230511184613/https://learn.microsoft.com/en-us/troubleshoot/windows-server/remote/frame-rate-limited-to-30-fps
https://web.archive.org/web/20230511184613/https://learn.microsoft.com/en-us/troubleshoot/windows-server/remote/frame-rate-limited-to-30-fps
https://web.archive.org/web/20230511184613/https://learn.microsoft.com/en-us/troubleshoot/windows-server/remote/frame-rate-limited-to-30-fps
https://web.archive.org/web/20230511184613/https://learn.microsoft.com/en-us/troubleshoot/windows-server/remote/frame-rate-limited-to-30-fps
https://web.archive.org/web/20230511184613/https://learn.microsoft.com/en-us/troubleshoot/windows-server/remote/frame-rate-limited-to-30-fps
https://web.archive.org/web/20230831222005/https://sandboxie-plus.com/
https://web.archive.org/web/20230831222005/https://sandboxie-plus.com/
https://web.archive.org/web/20230831222005/https://sandboxie-plus.com/
https://web.archive.org/web/20230617112707/https://community.sophos.com/sandboxie/f/forum/119641/important-sandboxie-open-source-code-is-available-for-download
https://web.archive.org/web/20230617112707/https://community.sophos.com/sandboxie/f/forum/119641/important-sandboxie-open-source-code-is-available-for-download
https://web.archive.org/web/20230617112707/https://community.sophos.com/sandboxie/f/forum/119641/important-sandboxie-open-source-code-is-available-for-download
https://web.archive.org/web/20230617112707/https://community.sophos.com/sandboxie/f/forum/119641/important-sandboxie-open-source-code-is-available-for-download
https://web.archive.org/web/20230511215044/https://learn.microsoft.com/en-us/windows/win32/secauthz/appcontainer-isolation
https://web.archive.org/web/20230511215044/https://learn.microsoft.com/en-us/windows/win32/secauthz/appcontainer-isolation
https://web.archive.org/web/20230511215044/https://learn.microsoft.com/en-us/windows/win32/secauthz/appcontainer-isolation
https://web.archive.org/web/20231106220046/https://github.com/microsoft/SandboxSecurityTools
https://web.archive.org/web/20231106220046/https://github.com/microsoft/SandboxSecurityTools
https://web.archive.org/web/20231106220046/https://github.com/microsoft/SandboxSecurityTools
https://web.archive.org/web/20231212171534/https://github.com/M2Team/Privexec
https://web.archive.org/web/20231212171534/https://github.com/M2Team/Privexec
https://web.archive.org/web/20230623134030/https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getprocessmitigationpolicy
https://web.archive.org/web/20230623134030/https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getprocessmitigationpolicy
https://web.archive.org/web/20230623134030/https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getprocessmitigationpolicy
https://web.archive.org/web/20230623134030/https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getprocessmitigationpolicy

BIBLIOGRAPHY

93. YOSIFOVICH, Pavel. Windows 10 System Programming, Part 2.
Independently Published, 2021.

94. Lua: download area [online]. 2023-05-18. [visited on 2023-12-11].
Available from: https : / / web . archive . org / web /
20231211202421/https://www.lua.org/ftp/.

95. Releases · luau-lang/luau [online]. 2023-12-08. [visited on
2023-12-11]. Available from: https : / / web . archive .
org / web / 20231211201920 / https : / / github . com / luau -
lang/luau/releases.

96. GitHub - boku7/x64win-DynamicNoNull-WinExec-PopCalc-
Shellcode: 64bit WIndows 10 shellcode dat pops dat calc - Dynamic &
Null Free [online]. 2023-03-08. [visited on 2023-12-11]. Available
from: https : / / web . archive . org / web / 20231211203325 /
https : / / github . com / boku7 / x64win - DynamicNoNull -
WinExec-PopCalc-Shellcode.

97. VirtualAlloc function (memoryapi.h) - Win32 apps | Microsoft Learn
[online]. 2022-07-27. [visited on 2023-12-11]. Available from:
https : / / web . archive . org / web / 20231211212729 / https :
/ / learn . microsoft . com / en - us / windows / win32 / api /
memoryapi/nf-memoryapi-virtualalloc.

98. GitHub - skeeto/w64devkit: Portable C and C++ Development Kit
for x64 (and x86) Windows [online]. 2023-12-08. [visited on
2023-12-12]. Available from: https://web.archive.org/web/
20231212001253/https://github.com/skeeto/w64devkit/
tree/master.

99. WESTON, David. Public Preview : Improve Win32 app security
via app isolation. Windows Developer Blog [online]. 2023 [vis-
ited on 2023-12-11]. Available from: https://web.archive.
org / web / 20231211185700 / https : / / blogs . windows . com /
windowsdeveloper/2023/06/14/public-preview-improve-
win32-app-security-via-app-isolation/.

100. Internet Archive: Wayback Machine [online]. 2023-11-08. [visited
on 2023-11-08]. Available from: https://web.archive.org/
web/20231108130620/https://archive.org/web/.

68

https://web.archive.org/web/20231211202421/https://www.lua.org/ftp/
https://web.archive.org/web/20231211202421/https://www.lua.org/ftp/
https://web.archive.org/web/20231211201920/https://github.com/luau-lang/luau/releases
https://web.archive.org/web/20231211201920/https://github.com/luau-lang/luau/releases
https://web.archive.org/web/20231211201920/https://github.com/luau-lang/luau/releases
https://web.archive.org/web/20231211203325/https://github.com/boku7/x64win-DynamicNoNull-WinExec-PopCalc-Shellcode
https://web.archive.org/web/20231211203325/https://github.com/boku7/x64win-DynamicNoNull-WinExec-PopCalc-Shellcode
https://web.archive.org/web/20231211203325/https://github.com/boku7/x64win-DynamicNoNull-WinExec-PopCalc-Shellcode
https://web.archive.org/web/20231211212729/https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://web.archive.org/web/20231211212729/https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://web.archive.org/web/20231211212729/https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://web.archive.org/web/20231212001253/https://github.com/skeeto/w64devkit/tree/master
https://web.archive.org/web/20231212001253/https://github.com/skeeto/w64devkit/tree/master
https://web.archive.org/web/20231212001253/https://github.com/skeeto/w64devkit/tree/master
https://web.archive.org/web/20231211185700/https://blogs.windows.com/windowsdeveloper/2023/06/14/public-preview-improve-win32-app-security-via-app-isolation/
https://web.archive.org/web/20231211185700/https://blogs.windows.com/windowsdeveloper/2023/06/14/public-preview-improve-win32-app-security-via-app-isolation/
https://web.archive.org/web/20231211185700/https://blogs.windows.com/windowsdeveloper/2023/06/14/public-preview-improve-win32-app-security-via-app-isolation/
https://web.archive.org/web/20231211185700/https://blogs.windows.com/windowsdeveloper/2023/06/14/public-preview-improve-win32-app-security-via-app-isolation/
https://web.archive.org/web/20231108130620/https://archive.org/web/
https://web.archive.org/web/20231108130620/https://archive.org/web/

	Introduction
	Glossary
	Game Malware Survey
	Attacker Motivation
	Case Studies
	BeamNG.drive
	Roblox
	Minetest
	Factorio
	Other Lua Games
	Minecraft
	Cities: Skylines

	Summary Table
	Methodology

	Statistics and Takeaways

	Security in the Lua Ecosystem
	Lua
	LuaJIT
	Luau
	Exploit Methods
	Using Bytecode
	Using FFI
	Using the Standard Library
	Exploits: Summary

	Prevention and Mitigations
	Lua-specific Solutions
	Disabling Loading Bytecode
	Disabling FFI
	Language Level Sandboxes
	Source Code Level Sandboxes

	Sandboxing Software
	Windows Sandbox
	Sandboxie

	Enforcing Limits Using the Operating System
	AppContainer Isolation
	Process Mitigation Policies

	Summary

	The EMO Test Bench
	Requirements
	Lua Implementations
	Exploits
	Mitigations
	Exploit-Mitigation Benchmark
	Overhead
	Mitigation-Overhead Benchmark
	AppContainer Obstacles

	Benchmark Evaluation
	Exploit-Mitigation: Mitigation Efficacy
	Mitigation-Overhead: Performance under Mitigations
	Mitigation Assessment
	Proposed Solution

	Conclusion
	Attachments
	The EMO Test Bench
	Additional Data
	Video Showcase

	Benchmark Parameters
	Bibliography

