
Masaryk University
Faculty of Informatics

ECG Arrhythmia Detection and
Classification

Bachelor’s Thesis

Adam Ivora

Brno, Spring 2020

This is where a copy of the official signed thesis assignment and a copy of the
Statement of an Author is located in the printed version of the document.

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Adam Ivora

Advisor: doc. RNDr. Tomáš Brázdil, Ph.D.
Consultant: Ing. Filip Plešinger, Ph.D.

i

Acknowledgements

Thanks to
Natálka, for her love, never-ending support and encouragement,
Jana, for being there for me,
Filip, for his valuable advice, corrections and answers to every
single one of my questions,
all the lively and lovely people from the Laboratory of Electronic
and Multimedia Applications, for the thought-provoking debates,
Adam, for always cheering me up,
Damon Albarn, for his musical masterpieces.

ii

Abstract

In the thesis we design a machine learning (ML) model for classifica-
tion of heart arrhythmia from a 1-lead ECG (electrocardiogram) signal
recorded by telemonitoring devices. A part of the thesis is devoted
to the comparison of multiple ML methods on three datasets, two of
which are publicly available.

Both the classical ML methods based on domain knowledge fea-
tures and neural networks trained on the raw signal are tested in the
comparison.

The F1 macro averaged scores on the unseen data partitions are in
the range of 0.43 to 0.79. Thanks to low inference time, the model can
be used as a part of a server ECG processing application. The output
of the thesis is a public repository with the comparison of the methods
mentioned above on the publicly available ECG datasets.

iii

Keywords

machine learning, electrocardiography, telemedicine, signal process-
ing, neural networks

iv

Contents

Introduction 1

1 Down the Electrocardiography Hole 2
1.1 Electrocardiogram . 2

1.1.1 Telemonitoring 3
1.1.2 Specific ECG elements 3

1.2 Selected arrhythmia descriptions 5
1.2.1 Atrial fibrillation 5
1.2.2 Premature ventricular contraction 5
1.2.3 Ventricular tachycardia 6

1.3 Aims of the thesis . 6

2 Feature Processing 7
2.1 Signal processing . 8
2.2 Preprocessing . 9

2.2.1 Resampling . 9
2.2.2 Band-pass filtering 10
2.2.3 Standardization 10

2.3 Feature extraction . 11
2.3.1 R peak detection 11
2.3.2 R peak features 12
2.3.3 QRS correlation features 12
2.3.4 PRT segments . 13
2.3.5 Heart rate variability 13

3 Software Tools 14
3.1 SciPy . 14
3.2 NeuroKit2 . 14
3.3 Scikit-learn . 14
3.4 PyTorch . 15
3.5 ONNX . 15
3.6 Other libraries . 15

4 Datasets 16
4.1 The PhysioNet Computing in Cardiology Challenge 2017 . . 16
4.2 The China Physiological Signal Challenge 2018 17

v

4.3 Private dataset . 17
4.4 Other datasets . 18

4.4.1 MIT-BIH . 18
4.4.2 PTB . 18
4.4.3 PTB-XL . 19

5 Models 20
5.1 Baselines . 20

5.1.1 k-nearest neighbors with dynamic time warping 20
5.1.2 Logistic regression 21

5.2 Models with hand-engineered features 21
5.2.1 Random forest 22
5.2.2 XGBoost . 22
5.2.3 Multilayer perceptron 23

5.3 Models with direct signal input 23
5.3.1 Convolutional networks 24
5.3.2 Recurrent networks 24

6 Training 26
6.1 Train-test split . 26

6.1.1 Cross-validation 26
6.2 Models with hand-engineered features 27
6.3 Models with direct signal input 28

6.3.1 Data augmentation 28
6.4 Model persistence . 29

7 Evaluation 30
7.1 Metrics . 30

7.1.1 F1 score . 30
7.2 Results . 31
7.3 Inference and deployment 32

8 Conclusion, Future Works 33

Bibliography 34

A Source code 43

B Complete list of hand-engineered features 44

vi

List of Tables

2.1 Features extracted from the signal. 13
4.1 CINC2017 labels 16
4.2 CPSC2018 labels 17
4.3 Private dataset labels 18
7.1 A binary classification task confusion matrix. 30
7.3 The F1 macro averaged scores on the test partitions. 32
B.1 Complete list of extracted features. 44
B.4 List of statistics used. 46

vii

List of Figures

1.1 Electrocardiograms of normal rhythm, atrial fibrillation
and a noisy signal (CINC2017 dataset [2]). 2

1.2 Holter monitor, a type of ECG telemonitoring
device [3]. 3

1.3 ECG of a single beat in normal sinus rhythm [6]. 4
1.4 Premature ventricular contraction (CPSC2018/A0080)

occuring at 1.1 seconds from the start of the recording. 5
1.5 Ventricular tachycardia / fibrillation (CUDB/cu05) [12]. 6
2.1 Data flow in the two feature processing approaches. 7
2.2 Recording CINC2017/A00002 sampled at original

frequency, 100 Hz and 10 Hz. 10
2.3 R peak detection in a noisy signal by Pan-Tompkins

method (top) and Neurokit method (bottom). Recording
from the CINC2017 dataset [2]. 12

5.1 A schema of a multilayer perceptron
architecture [56]. 23

5.2 Gated recurrent unit [63]. 25

viii

Introduction

Abnormalities of the heart rhythm (arrhythmia) are among the most
common health problems in the population. They range in severity
from benign palpitations to total loss of cardiac function and death [1].
One of the methods to diagnose heart arrhythmia is an analysis of elec-
trocardiogram. However, a trained human expert is needed for precise
diagnosis of a heart condition. Some arrhythmia, such as atrial fibrilla-
tion, require long-term monitoring for days or even weeks. However,
long-term cardiac monitoring signals are too long to be thoroughly
analysed by a human effectively, so the analysis has to be done auto-
matically by a model. With automated arrhythmia classification, the
expert only has to look at parts of the signal suggested by the model.

The model has to be able to classify heart rate abnormalities, the
normal rhythm and noisy ECGs.

In Chapter 1, there is a brief explanation of the physiological back-
ground of ECG and description of heart arrhythmia we will classify.
Chapter 2 contains an introduction to supervised learning lightly
focused on learning from one-dimensional signals. Chapter 3 is a
summary of software tools and libraries used (scikit-learn, PyTorch,
ONNX Runtime, and more). Chapter 4 includes the description of
datasets we used to train the models. The practical part of the thesis
starts from chapter 5, where we discuss various machine learning
models we tried to solve the problem. Chapter 6 is concerned with
the training of the models. Chapter 7 is about the evaluation of the
models and model export. In the last Chapter 8, we will conclude the
work and talk about further improvements to the solution.

We show the final model performance in the comparison table in
Section 7.2.

The full source code for the experiment is available under an MIT
licence. For more information, see Appendix A.

1

1 Down the Electrocardiography Hole

1.1 Electrocardiogram

Figure 1.1: Electrocardiograms of normal rhythm, atrial fibrillation
and a noisy signal (CINC2017 dataset [2]).

Electrocardiogram signal is a recording of the electrical activity of the
heart. Electrodes on the skin detect small changes of voltage which are
caused by heart muscle depolarization and the following repolariza-
tion. Two electrodes can measure the electric potential between them.
This pair of electrodes is called an ECG lead. Every lead provides a
different viewpoint of a heart’s electrical activity. The most clinically
used lead formation is 12-lead from ten electrodes. This work focuses
on 1-lead (two electrodes) ECG often used in telemonitoring devices.

2

1. Down the Electrocardiography Hole
1.1.1 Telemonitoring

Figure 1.2: Holter monitor, a type of ECG telemonitoring device [3].

Telemonitoring is defined as “the use of information technology to
monitor patients at a distance” [4]. In the context of ECG monitoring,
a telemonitoring device is usually a small, wearable device such as a
Holter monitor (Figure 1.2). Telemonitoring system can help decrease
hospital admissions in cardiac patients [5].

1.1.2 Specific ECG elements

In order to identify heart arrhythmias, we have to recognize the char-
acteristic patterns in ECG. The essential elements of an ECG include
P wave, QRS complex and T wave [1]. All these waves are shown
together in Figure 1.3.

3

1. Down the Electrocardiography Hole

Figure 1.3: ECG of a single beat in normal sinus rhythm [6].

The P wave represents the electrical depolarization and the re-
sulting muscle contraction of both atria, the upper chambers of the
heart. The QRS complex represents the depolarization of the ventri-
cles, lower chambers of the heart. The horizontal ST segment follows,
and the cardiac cycle ends with a broad T wave, which represents the
ventricular repolarization [7].

RR interval

RR interval, also called the inter-beat interval, is the time elapsed be-
tween two consecutive R waves which can be directly used to calculate
the average heart rate HR:

HR =
60

RR interval in seconds , (1.1)

where the RR interval in seconds is averaged over several consecutive
R peaks.

Several relevant machine learning features can be extracted from
the RR intervals. Heart rate variability methods are concerned pre-
cisely with the problem of analysing inter-beat intervals. We discuss
these methods more thoroughly in section 2.3.5.

4

1. Down the Electrocardiography Hole

1.2 Selected arrhythmia descriptions

To get a basic idea of the labels that are being classified in this work, a
brief description of a few heart arrhythmia follows.

1.2.1 Atrial fibrillation

Atrial fibrillation (AF) is an arrhythmia usually detected from ECG by
irregular heartbeats (RR interval length is unstable) and an absence of
a P wave preceding the QRS complex. AF is the most common cardiac
rhythm disorder and is dangerous for the patient [8]. Atrial fibrillation
increases the risk of heart failure, stroke, coronary heart disease and
death [9].

An example of atrial fibrillation electrocardiogram is shown in
Figure 1.1. In the figure, we can see the characteristic irregular RR
intervals.

1.2.2 Premature ventricular contraction

A premature ventricular contraction (PVC) is a premature beat that
most often happens by low oxygenation of the ventricles. It is easily
recognizable by the usually enlarged QRS on the ECG (Figure 1.4)
and the compensatory pause after the PVC which is longer than usual.

Single premature beats normally occur even in healthy people, but
six or more PVCs per minute are considered pathological [10].

Figure 1.4: Premature ventricular contraction (CPSC2018/A0080) oc-
curing at 1.1 seconds from the start of the recording.

5

1. Down the Electrocardiography Hole
1.2.3 Ventricular tachycardia

Ventricular tachycardia is a run of four or more premature ventricular
contractions. An example of this arrhythmia is shown in Figure 1.5.

Ventricular tachycardia is a dangerous arrhythmia as it can progress
into a ventricular flutter and ventricular fibrillation, which requires
immediate defibrillation as there is no effective cardiac output [11].

Figure 1.5: Ventricular tachycardia / fibrillation (CUDB/cu05) [12].

1.3 Aims of the thesis

The thesis aims to design and compare various machine learning mod-
els to classify heart rhythm. The resulting experiment is designated
with respect to reproducibility and extensibility.

6

2 Feature Processing

Two different approaches to feature extraction are being compared in
this work. One is the approach of crafting hand-engineered features
from the signal by using domain knowledge. The second one is the
use of neural networks to be used as automated feature extractors
trained on the complete signal. Below, there are descriptions of the
two approaches, and in Figure 2.1 we can see the data pipeline of both
types of models.

Signal

Filtering

Feature extraction

Standardization

Model

Hand-engineered features pipeline.

Signal

Filtering

Resampling

Standardization

Augmentation
(training only)

Model

Direct signal input pipeline.

Figure 2.1: Data flow in the two feature processing approaches.

Models with hand-engineered features

This approach is about using the domain knowledge to extract features
from a signal that characterize the heart condition. We need to have a
level of expertise in the field to build meaningful feature extractors
that work even for noisy or abnormal signals.

7

2. Feature Processing
Models with direct signal input

These methods use the signal input without much domain knowledge.
The models act as automated feature extractors and try to learn the un-
known mapping function between samples and the labels. The main
requirement is a great amount of labelled, clean data. We resample
(Section 2.2.1) the signal to reduce the number of samples, standardize
it (Section 2.2.3) and then train the models. We can also use data aug-
mentation (Section 6.3.1) to increase the number of training examples.

2.1 Signal processing

An electrocardiogram is an example of a discrete one-dimensional
signal. Thus, the natural way to work with ECGs is to use methods
of digital signal processing. A brief explanation of some signal pro-
cessing key concepts follows. A more detailed introduction into signal
processing is out of this thesis’ scope, and there is already a great
deal of quality material on the subject available online or in signal
processing textbooks, e.g., Discrete-time signal processing [13].

Sampling

Heart electrical activity is a continuous analogue signal. To get a digital
representation of the underlying analogue signal, we need to sample
and quantize it. The sampling rate of a signal is the number of samples
per time interval. The standard unit of sampling rate is Hz (1 Hz =
1 sample per second). ECG sampling rate usually falls within the range
of 100–1000 Hz, but there does not exist a single sampling rate used
ubiquitously.

Filtering

A discrete-time signal can be mapped from the real space into the
Fourier (frequency) space by the Fourier transform. That means we
can think about the signal not as a function of time, but a function of
frequency [14].

Filtering is a process which removes the unwanted components
of a signal. In this study, we use band-pass filtering. A band-pass

8

2. Feature Processing
filter has two cut-off frequencies. The signals under the lower cut-off
frequency and over the higher cut-off frequency are attenuated. Filter
design is the study of designing signal processing filters that satisfy
the requirements. More information about filter design can be found
in Discrete-time signal processing [15].

2.2 Preprocessing

We used resampling to reduce the dimensionality of the signal and
band-pass filtering to filter out frequency spectra which contain little
information about heart rhythm.

2.2.1 Resampling

We can reduce the dimensionality of the signal without losing too
much of its quality by resampling – changing its sampling rate. Most
of the heartbeat information is in the lower frequencies under 50 Hz,
and thus we can still see the electrocardiogram clearly when using
relatively small sampling rate.

As we can see in Figure 2.2, the second recording resampled to
100 Hz still retains the quality of the signal, and the different segments
of ECG are easily detectable. A sampling rate of 10 Hz is too low; parts
of the recording are inevitably lost.

For feature extraction, we did not do any resampling. Some fea-
tures, especially the frequency-domain ones, benefit from larger sam-
pling rate. A sampling rate of 250 Hz or greater is ideal. For time-
domain analysis, a frequency of 100 Hz is acceptable [16]. Thus, we
resampled all recordings for neural network-based methods to 100 Hz
using a polyphase filter. We used the resample_poly function with
default parameters from SciPy, a Python library [17].

9

2. Feature Processing

Figure 2.2: Recording CINC2017/A00002 sampled at original frequency,
100 Hz and 10 Hz.

2.2.2 Band-pass filtering

As most of the relevant information of the signal is only in a narrow
frequency spectrum, we can suppress the frequencies out of the spec-
trum in the signal. For this, we can use a digital band-pass filter which
removes both the very low (0–0.5 Hz) and high (>40 Hz) frequency
noise.

In the cases of datasets where there is no information about filter-
ing, we preprocess the signals using a band-pass filter in the frequency
range of 0–40 Hz. We do zero-phase filtering using a fifth-order Butter-
worth finite impulse response filter. We use the SciPy Python library
for filter design.

2.2.3 Standardization

Models with hand-engineered features

For the methods where the features are extracted from the signal
using domain knowledge, we standardize each feature individually
by removing the mean of the training set and dividing by the standard
deviation of the feature.

10

2. Feature Processing
Models with direct signal input

We use a sample-wise standardization when working with direct
signal input (distance-based methods, neural networks). For a signal
X = X1X2X3...Xn, the standardized version Z is defined as:

Z =
X ´ X̄
σ(X)

, (2.1)

where X̄ is the mean and σ(X) is the standard deviation of the signal.
The sample-wise standardization helps us to get all samples to

the same range and baseline of sample values, as every patient can
have its characteristic voltage range. When there is a large amount of
high-amplitude noise in the recording, the sample standard deviation
can be extreme, and the resulting heart waves can become hard to
read after standardization. We do not deal with this problem, and it
could theoretically be a problem which affects performance; thus, it is
promising to explore the phenomenon more in the future.

2.3 Feature extraction

Electrocardiogram signal is high-dimensional (thousands of samples),
and it can be helpful to extract features of the signal. We use generic
signal statistics (mean, range, standard deviation, skew, kurtosis, ex-
tremes, percentiles). We also add domain-level features based on the
length of the signal segments. For most of these methods, we need to
extract and label the R peaks. Robust R peak detection in noisy electro-
cardiograms is not trivial, and it is still an open research problem [18].

2.3.1 R peak detection

For R peak detection, the Python physiological signal library Neu-
roKit2 (Section 3.2) is used. It supports a variety of R peak detection
algorithms. We chose the NeuroKit custom method as it can extract R
peaks even from some noisy signals (see Figure 2.3). In comparison,
the standard Pan–Tompkins algorithm [19] does not detect any real R
peaks in the noisy signal in the figure.

11

2. Feature Processing

Figure 2.3: R peak detection in a noisy signal by Pan-Tompkins method
(top) and Neurokit method (bottom). Recording from the CINC2017
dataset [2].

2.3.2 R peak features

With R peak annotations, we can extract potentially useful features for
arrhythmia detection. These include RR interval statistics, the corre-
sponding heart rate, and heart rate variability features (Section 2.3.5).

2.3.3 QRS correlation features

We also create features by correlating the area near the QRS peaks.
Missing P waves, a symptom of atrial fibrillation, can be numerically
detected by low correlation of the area before the QRS complex. These
features have already been successfully tried for the detection of atrial
fibrillation [20].

12

2. Feature Processing
2.3.4 PRT segments

Neurokit2 also has an algorithm for segmenting the electrocardiogram
into all the ECG segments referenced in Figure 1.3. We can extract
intervals between the segments. Some arrhythmia are even defined by
prolonged intervals of these segments. For example, the first degree
atrioventricular block (I-AVB) is, by definition, a heart rhythm with
a PR interval longer than 0.2 seconds [21]. The segmentation is a
problem of at least the same complexity as R peak detection, so we
cannot expect the detected PRT segments will be accurate all the time.

2.3.5 Heart rate variability

Heart rate variability (HRV) is the variation of the times between
heartbeats (RR intervals). Heart rate variability features can be di-
vided into three categories – time domain, frequency domain and
non-linear features [22]. We use the Neurokit2 library, which is self-
proclaimed to be “the most comprehensive software for computing
HRV indices” [23]. As of NeuroKit2 version 0.0.40, the library can
compute 19 time-domain, 11 frequency-domain and nine non-linear
features. The inputs for all HRV methods are the positions of R peaks.

List of hand-engineered features

Here we present the summarized list of hand-engineered features
used for training and inference. For a complete list of all features, see
Appendix B.

Table 2.1: Features extracted from the signal.

Type Count
Signal statistics 12
RR interval features 11
QRS correlation features 11
PRT interval features 55
HRV features 24
Total 113

13

3 Software Tools

The whole implementation was written in Python with the support of
several libraries, mainly the machine learning and signal processing
ones. A brief description of the tools used follows.

3.1 SciPy

The SciPy library is a scientific computation library with a heavy
emphasis on time andmemory-efficient numerical routines. It consists
of about 600,000 lines of code in 16 subpackages and is being actively
developed since 2001 [24].

In this work, the signal subpackage is used for signal processing
and the stats subpackage for various statistic features computation.

3.2 NeuroKit2

NeuroKit2 is a work-in-progress successor to the library NeuroKit.py.
The library provides access to advanced biological signal processing
functions. The supported biosignals comprise ECG (electrocardiogra-
phy signals), EDA (electrodermal activity), PPG (photoplethysmo-
gram), EMG(electromyography signals) andEEG (electroencephalog-
raphy signals) [25].

We use the ECG processing subpart of the package, namely the
QRS detector (Section 2.3.1) and the PQRST segmentation routine
(Section 2.3.4). We also compute the HRV features (Section 2.3.5)
using this package.

3.3 Scikit-learn

Scikit-learn is a library which encompasses a range of machine learn-
ing algorithms for supervised and unsupervised classification prob-
lems. It includes functions for data preprocessing, model selection,
dimensionality reduction, classification and more [26].

14

3. Software Tools

We use scikit-learn for the classical ML pipeline: preprocessing,
training and evaluating models. The random forest and logistic regres-
sion models are also implemented by this library.

3.4 PyTorch

PyTorch is a high-performance object-oriented deep learning library.
A dynamical computational graph is the core structure for neural
network layers. It integrates acceleration libraries for bothCPU (central
processing unit) and GPU (graphics processing unit). An automatic
differentiation framework is also included [27].

We use PyTorch for training neural network models. PyTorch also
supports export of trained models to the ONNX format, which is
useful for inference.

3.5 ONNX

Open Neural Network Exchange (ONNX) is an open-source format
for trained ML models. It supports inference on both PC and mobile
devices using the ONNX Runtime. The ONNX Runtime also supports
multiple inference accelerators, one of which is also a GPU accelera-
tion [28].

ONNX bindings exist for a great variety of programming lan-
guages: Python, C#, C++, C, Java, Ruby and JavaScript. We use the
ONNX models and the ONNX Runtime C# package for easy model
replacement/updates.

For exporting scikit-learn estimators, we use the ONNXMLTools
library [29]. PyTorch already has built-in ONNX exporting function-
ality.

3.6 Other libraries

We use Pandas [30] for data analysis, progress bars from tqdm [31],
NumPy [32] for its efficient vectorized computationmodel, tslearn [33]
for the k-NN DTW classifier (Section 5.1.1), XGBoost [34] for the gra-
dient boosted tree model (Section 5.2.2) and Plotly [35] for generating
the plots in this thesis.

15

4 Datasets

We use three datasets in total for evaluating the models. Several ar-
rhythmia public datasets exist, but their structure is variable. In par-
ticular, they are varied by the lengths of recordings, the number of
classes and number of ECG leads. From these, we have chosen The
PhysioNet Computing in Cardiology Challenge 2017 and The China
Physiological Signal Challenge 2018 dataset. For an interested reader,
comprehensive lists of arrhythmia datasets is a part of the PTB-XL
publication [36]. We also used a private dataset which is larger than
any open one we have found.

4.1 The PhysioNet Computing in Cardiology
Challenge 2017

AF Classification from a short single lead ECG recording was the theme of
The PhysioNet Computing in Cardiology Challenge (CINC) 2017 [2].
It is of our interest since the samples provided resemble our use case –
single lead data from a telemonitoring device. The 8528 recordings
ranging from 9 to 61 seconds are sampled at 300 Hz. The files are
already preprocessed by a band-pass filter with a bandwidth of 0.5-
40 Hz. There are only three classes included in the challenge original
scoring metric – the noise class X was added subsequently. Five teams
shared the first place in the competition. The winners mainly used
ensemble methods: XGBoost + RNN [37], random forests [38, 39]
and custom ensemble algorithms [40, 41].

Table 4.1: CINC2017 labels

Label Condition Count
N Sinus Rhythm 5154
A Atrial Fibrillation 771
O Other Rhythm 2557
X Noisy 46

Total 8528

16

4. Datasets

4.2 The China Physiological Signal Challenge 2018

A set of 12-lead ECGs was made public for The China Physiological
Signal Challenge (CPSC) 2018 [42]. There is a total of 9831 recordings
from 9458 different patients. Out of those, 6877 is available in the form
of a training set. The recordings are sampled at 500 Hz. The length
of the recording ranges from six to 60 seconds. There is a total of
nine distinct classes. There is a total of 477 multi-label recordings (the
patient had more than one heart condition); we do not use them as
some of our models are not fit for multi-label classification. We used
only the first lead I as it is similar to a single-lead ECG. Moreover, the
winners of the challenge achieved only slightly worse performance
when using a single lead for classification [43].

Table 4.2: CPSC2018 labels

Label Condition Count
Normal Sinus Rhythm 918
AF Atrial Fibrillation 1098

I-AVB Atrioventricular Block 704
LBBB Left Bundle Branch Block 207
RBBB Right Bundle Branch Block 1695
PAC Premature Atrial Contraction 556
PVC Premature Ventricular Contraction 672
STD ST Segment Depression 825
STE ST Segment Elevation 202
Total 6877

4.3 Private dataset

This dataset was acquired by telemonitoring thousands of patients
throughout several years (MDT, s.r.o., Brno, Czechia). The sampling
frequency is 200 Hz; the length of every recording is between 30 and
70 seconds. In the table below, we can see the distribution of class
labels in the data.

17

4. Datasets

Table 4.3: Private dataset labels

Label Condition Count
AF Atrial Fibrillation 20000
AVB Atrioventricular Block 20000
NK Noisy 20000
PAC Premature Atrial Contraction 20000
PVC Premature Ventricular Contraction 20000
SR Sinus Rhythm 20000
SVT Supraventricular Tachycardia 14823
VT Ventricular Tachycardia 4757
Total 139580

4.4 Other datasets

There exist more publicly available electrocardiogram datasets. Al-
though we did not use them in the practical part, we wanted to give
an overview of some of them and the reason why we do not compare
the machine learning models on them in this work.

4.4.1 MIT-BIH

TheMIT-BIH (Massachusetts Institute of Technology - Beth Israel Hos-
pital) Arrhythmia Database [44] has been the standard for analysis of
arrhythmia classification methods. The dataset is small – it contains 48
recordings from 47 patients. There is a high number of papers investi-
gating this dataset. We get about 12,100 results on Google Scholar if we
search for “MIT-BIH Arrhythmia Database” related articles [45]. We
decided not to use the dataset because of its small number of patients
and over saturation of articles analysing it.

4.4.2 PTB

The PTB (Physikalisch-Technische Bundesanstalt) Diagnostic ECG
Database [46] is another ECG database that is widely cited (3,150
results on Google Scholar). It contains 549 records from 290 patients.

18

4. Datasets

The only class with a sufficient number of recordings is Myocardial
infarction, with 148 recordings. As we do not try to detect myocardial
infarction in this thesis, it does not make much sense to include it in
the benchmarks.

4.4.3 PTB-XL

This dataset [36] contains 21,837 clinical 12-lead ECG short recordings
from 18885 patients and is the largest public ECG dataset as of July
2020. As it was published in April 2020, there was not enough time to
do a detailed analysis of it. One comparison study focused on deep
learning networks on the PTB-XL dataset is already available [47].
Further analysis of machine learning methods for classification of
arrhythmia in the dataset is a promising future direction to explore.

19

5 Models

This chapter lists all the models that were tested on the selected ar-
rhythmia datasets. The selection of models was influenced by the win-
ning entries of CINC2017 and CPSC2018. Therefore, we chose models
from the family of ensemble methods (random forest – Section 5.2.1,
XGBoost – Section 5.2.2) based on hand-engineered features and neu-
ral networkmodels trained on direct signal (CNN – Section 5.3.1, RNN
– Section 5.3.2). As baseline classifiers, we used k-nearest neighbour
classifier with DTW distance metric (Section 5.1.1) and a logistic re-
gression (Section 5.1.2) model based on the hand-engineered features.

The descriptions of the machine learning models are not complete
or detailed. For a more thorough review, we recommend the textbooks
Hands-On Machine Learning with Scikit-Learn & TensorFlow [48] and
Deep Learning [49].

5.1 Baselines

These baselines are simple models which can give us an idea of how
are the other models better than a trivial classifier.

5.1.1 k-nearest neighbors with dynamic time warping

k-nearest neighbors (k-NN) is one of the simplest supervised learning
algorithms. Themain idea is that new examples are of the class of their
nearest neighbours. The important parameter is k, which means how
many neighbours influence the classification. The metric used when
comparing the examples is also very important. The commonly used
metrics include, but are not limited to,Minkowski distance, correlation,
cosine similarity or dynamic time warping [50].

As for the implementation, we used the KNeighborsTimeSeries-
Classifier with its default dtw metric from the tslearn Python library.

Dynamic time warping

The problem of classifying arrhythmia from ECG is a time series clas-
sification problem. Time series classification is a mature research field,

20

5. Models

and there is plenty of algorithms trying to solve the problem [51].How-
ever, most of the algorithms are evaluated on small datasets (hundreds
of records) from The UCR (University of California, Riverside) Time
Series Archive [52]. Dynamic time warping (DTW) is considered to
be the standard for measuring time-series similarity. It was shown
that a 1-NN classifier with DTW distance is a powerful time-series
classification method [51].

5.1.2 Logistic regression

Logistic regression is one of the simpler supervised learning algo-
rithms. For each sample x and class k, a score sk(x) is computed:

sk(x) = xᵀθ(k), (5.1)

where θ(k) is the parameter vector of the model for class k and the kth

row of the full parameter matrix Θ. Then the predicted class is:

ŷ = argmaxksk(x). (5.2)

The model is usually trained by minimizing the cross entropy cost
function J:

J(Θ) = ´
1
m

Σm
i=1ΣK

k=1y(i)k log(p̂(i)k), (5.3)

where y(i)k is an indicator variable in the case of mutually exclusive
classes, m is the total number of samples, K is the total number of
classes and p̂(i)k is the model estimated probability of sample i belong-
ing to class k calculated using the softmax function from the score
s(i)k [53].

Weuse themultinomial logistic regression class LogisticRegression
from the scikit-learn package.

5.2 Models with hand-engineered features

These models take the features from Section 2.3 as the input. Random
forest and XGBoost classifiers are examples of ensemble machine
learning models using the bagging and boosting ensemble techniques,
respectively. Ensemble tree models were chosen because of ease of

21

5. Models

feature selection – they are not as sensitive to the quality of features.
Multilayer perceptron, a type of artificial neural network, was also
trained with the hand-engineered features.

Bagging

Bagging (bootstrap aggregating) is the technique of training the same
type of model using random subsets of the training set. The sampling
of random subsets is done with replacement. By collective voting of
the classifiers trained on all subsets, the resulting ensemble model can
gain robustness and be better than any single base classifier [54].

5.2.1 Random forest

Random forest is an ensemble model of decision tree classifiers using
the bagging technique. A set of decision trees is trained on different
random subsets on the data. Moreover, the nodes in the decision trees
are not split by the best feature globally, but the best feature selected
from a random set of features [54].

Boosting

Boosting is the technique of training multiple weak classifiers sequen-
tially. Every classifier is trying to correct the mistakes that the previous
models made. By sequentially improving the results of previous mod-
els, the final ensemble classifier is robust machine learningmodel. One
of the boosting algorithms is Gradient Boosting [55]. The underlying
weak classifier is usually a decision tree.

5.2.2 XGBoost

XGBoost is an optimized library using the gradient boosting algorithm
for training ensemble classifiers. XGBoost stands for Extreme Gradient
Boosting [34].

We use the XGBoostClassifier which the Python package pro-
vides as a scikit-learn compatible classifier.

22

5. Models

5.2.3 Multilayer perceptron

Multilayer perceptron is a type of an artificial neural network. It con-
sists of an input layer, one or more hidden layers and an output layer.
The neurons are densely connected between two neighbouring layers.
Figure 5.1 shows a multilayer perceptron with one hidden layer, three
neurons in the input layer, three in the hidden layer and two neurons
in the output layer.

A neuron’s output h is calculated as a linear combination of its
inputs with a bias term followed by a (usually non-linear) activation
function σ:

hw(x) = σ(xᵀw + b), (5.4)
where x is the input vector, w is the weight vector of the input and b
is the bias term.

The multilayer perceptron we use has one hidden layer and uses
the rectified linear unit (ReLU) activation function:

σ(x) = max(0, x) (5.5)

To train the network, we need to find the weights which minimize
the loss function between the predicted and true outputs. This problem
is discussed in Section 6.3.

Figure 5.1: A schema of a multilayer perceptron architecture [56].

5.3 Models with direct signal input

These methods take as the input the band-filtered, standardized elec-
trocardiogram signal.

23

5. Models

5.3.1 Convolutional networks

Convolutional neural network (CNN) is also a type of artificial neural
network. They consist of convolutional layers. Neurons in the convolu-
tional layers are not densely connected to all neurons in the previous
layer as in the case of a multilayer perceptron. Instead, the inputs to a
single neuron are only from a small region from the previous layer.
All neurons in a layer share the same weights, so the learned filters
are spatially invariant [57].

CNNs are popular in the field of computer vision, where the filters
are two-dimensional. In the case of electrocardiograms, the signal is
one-dimensional, and so can be the CNN filters. Two-dimensional
filters can also be used on the spectrograms of the signal, which are
created by a short-time Fourier transform [58].

ResNet

ResNet (residual network) is a convolutional neural network archi-
tecture emerged in 2015 in the field of computer vision. It allowed
training convolutional neural networks with significantly increased
depth (more than 100 layers) without degradation of performance
using deep residual learning.

A model from the ResNet family won the Image Large Scale Visual
Recognition Challenge 2015 with a 3.57 % top-five classification error
on Imagenet 1k, an image database of more than 14 million labelled
images with 1000 different classes. The original ResNet paper [59]
contains more information.

We use the ResNet architecture with 18 one-dimensional convolu-
tional layers in the comparison.

5.3.2 Recurrent networks

A recurrent neural network (RNN) is a network which consists of
neurons the same as in multilayer perceptrons. The difference is that
the output connection of a neuron can be its own input connection. An
RNN can take inputs in the form of a sequence and produce a vector –
this is called a sequence-to-vector network [60].

Classical RNNs do not work very well on long sequences, as the
network becomes very deep and the network can suffer from the

24

5. Models

vanishing gradient problem as well as the short-term memory prob-
lem [61].

Gated recurrent unit (GRU) is often the solution to both of the
stated problems. GRU was first introduced in the context of Natural
Language Processing [62], and it works similarly as the LSTM (long
short-term memory).

Figure 5.2: Gated recurrent unit [63].

The GRU cell (Figure 5.2) contains gates which control the parts
of the state that should be erased and which parts of the input should
become a part of the cell’s hidden state [61].

We use an architecture of convolutional ResNet backbone fol-
lowed by a gated recurrent unit (GRU). The backbone extracts 128-
dimensional feature vectors which are then fed into the GRU. The
GRU layer can then capture the longer-term dependencies between
features extracted by the convolutional backbone.

Training the recurrent network on the raw input is an also option,
but current recurrent network architectures are not well-suited to train
on very long sequences for both performance and computational time
reasons.

25

6 Training

This chapter is concerned about the training of themodels. Themodels
are trained on each dataset separately as there is little overlap between
the labels in the datasets.

The precise model hyperparameters and architectures are also
available in the source code (Appendix A).

6.1 Train-test split

We split all the datasets into train and test partitionswhich are same for
all the models. The models are trained on the train partition, and the
final evaluation is done on the test partition, which the model has not
seen so that we can evaluate the generalization power of the model.
For neural network-based models, we further separate a hold-out
validation set out of the training set to evaluate learning performance
during training.

The split is 90–10 % of data for the train and test partitions, respec-
tively. When using the validation partition, the final split is 80–10–10 %
of train, validation and test partitions.

All the models are trained and evaluated on the same train-test
split.

Because the private datasets contain a large number of recordings
from the same patients, the train-validation-test partitions are split
using GroupShuffleSplit from scikit-learn by the telemonitoring de-
vice ID. Therefore, it should not happen that the same patient’s record
is both in the training and test partition.

6.1.1 Cross-validation

Cross-validation is an alternative way of evaluating the generalization
performance of a model. The K-fold cross-validation splits a dataset
into K partitions (folds), then trains the model K times training on
K ´ 1 of the folds and evaluating on the last one. The K scores can be
averaged to get the validation score.

26

6. Training

For all models except CNN and RNN models, we use 5-fold cross-
validation as the validation score. For CNN and RNN, we use the
hold-out validation set score.

6.2 Models with hand-engineered features

This family of models is trained using the 5-fold cross-validation on
90 % of the data. All the models use balanced class weights – the fewer
samples the class has, the larger the class weight is. The parameters
used were found by a cross-validated grid search on the training
partition of the CINC2017 dataset (Section 4.1). If a parameter of the
classifier is not stated, we use the default value provided by the library.

Logistic regression

The missing features are imputed by the mean of the column and then
standardized (Section 2.2.3).

The regularization parameter C = 100.0 is used.

Random forest

The missing features were imputed but not scaled, as random forests
can deal with unscaled features easily.

The max_depth of the trees in the forest is set to 20, the minimum
number of samples at a leaf node (min_samples_leaf) is 5, and the
number of estimators in the forest is 1000.

XGBoost

We use a learning rate eta of 0.1, a minimum loss reduction (gamma)
of 0.1. The maximum allowed depth (max_depth) of a tree is 7. The
min_child_weight parameter is 4, number of estimators is 1000, the
same as in the random forest classifier. The subsample parameter is
set to 0.8.

27

6. Training

MLP

The default learning rate of 0.001 with the Adam optimizer [64] is
used for minimizing the cross-entropy loss function. A batch size of
128 is used.

Early stopping is used –when the validation score is not improving
for ten consecutive epochs, the training stops. Early stopping can help
the generalization power of the neural network [65].

6.3 Models with direct signal input

6.3.1 Data augmentation

Data augmentation techniques help us to increase the model’s training
dataset size by introducing transforms that do not change the label of
the recording. We used random flipping of the sign of the signal, as it
commonly happens that the patient switches the electrodes, and the
resulting signal is inverted.

Random cropping of the signal would be possible if we had the
information about the location of the arrhythmia. As the information
is not available, random cropping could crop out the arrhythmic part,
and the label would be wrong. Thus, we decided not to use random
cropping.

ResNet

We use a ResNet implementation from the torchvision library used
for computer vision tasks. The convolutional layers are rewritten to
be one-dimensional. We use an 18-layer and 50-layer convolutional
residual networks. We train the ResNets for 20 epochs and after each
epoch measure the validation score. We take the model with the best
validation score as the final trained model.

We use a batch size of 32 for the ResNet18 model. The batch size is
dependent mainly on the available CUDA memory. We use a cross-
entropy loss function, the Adam optimizer with a learning rate of
0.0003. For regularization of the networks, we use a weight decay
of 0.0001. We do not use weight decay for the batch normalization
parameters, as it is shown to degrade the performance of learning [66].

28

6. Training

We use gradient norm clipping [67], which helps us with unstable
gradients problem.

CnnGru

For training the CnnGru classifier, we use learning hyperparameters
same as the ResNet ones – Adam, a learning rate of 0.0003, weight
decay of 0.0001, cross-entropy loss. We train with a batch size of 32 for
ten epochs and again save the model trained on the epoch with the
highest validation score.

k-NN with DTW

The n_neighbors parameter is set to 1, as we want to use the 1-nearest
neighbour classifier. However, the evaluation takes too much time to
calculate scores on even the smallest of our datasets. Therefore, we do
not have the scores for this baseline. For our use case, the inference
time is crucial, so this classifier is apparently not applicable.

6.4 Model persistence

To save the models for future evaluation, we used the PyTorch and
joblib libraries, which both use the pickle module under the hood. This
solution is not perfect because the saved models have no guarantee
of being transferable to the future versions of the machine learning
libraries. Our mitigation is to use the reproducible Python virtual
environment which has exactly the versions of libraries we used. Also,
the exported ONNX models (Section 3.5) are independent of any
library and should be usable on any platform supporting the ONNX
Runtime.

29

7 Evaluation

After training of the models, we compare them against each other. In
this chapter, we will describe the F1 score metric, which we use in the
final comparison table and then discuss the final results.

7.1 Metrics

We need to evaluate the performance different models on the same
data. For a binary classification problem with two classes, say Pos and
Neg, a confusion matrix has two rows and two columns. True positives
are the examples labelled as Pos and classified as Pos, true negatives
are Neg classified as Neg, false positives are Neg classified as Pos, and
false negatives are Pos classified as Neg.

Table 7.1: A binary classification task confusion matrix.

True Positives (TP) True Negatives (TN)
False Positives (FP) False Negatives (FN)

A confusion matrix for a multi-class problem has shape N ˆ N,
where N is the number of classes. A single score instead of a full matrix
is preferable for comparing the classifiers’ performance. We calculate
the F1 score for all classifiers and use it for a rough comparison.

7.1.1 F1 score

The F1 score is the harmonic mean of precision (positive predictive
value) and recall (sensitivity) [68]:

F1 = 2 ˆ
precision ˆ recall
precision+ recall , (7.1)

where
precision =

TP
TP+ FP, and recall = TP

TP+ FN . (7.2)
The above definition is valid for binary classification. With multi-

class classification, we do macro averaging. That means, we take a

30

7. Evaluation

separate F1 score for each class versus all the others as a binary prob-
lem; then, we get the resulting macro F1 score as the mean of all the
class scores.

F1 score is a simple way to compare classifiers. It favours classifiers
with similar precision and recall; this is not always what we want
when our task is classifying heart pathologies.

We use F1 score for simplicity, but some types of arrhythmia are
more dangerous than the others. For example, ventricular tachycar-
dia is life-threatening as it can lead to deadly ventricular fibrillation.
Therefore, a metric that takes into account the severity of different
classes could prove useful in future work.

7.2 Results

In Table 7.3, we can see the F1 scores, macro averaged over all classes
of the datasets. Our best trained model on the CINC2017 dataset is
the MLPClassifier, the best model on the CPSC2018 dataset is the
ResNet18Classifier and on the private dataset it is the CnnGruClassi-
fier.

On the CINC2017 dataset with four classes and thousands of
recordings, the methods based on hand-engineered features and on
the direct signal are comparable. However, when the dataset has more
different classes or is bigger in size, the automated feature extractors
can provide better performance and good inference time.

As the private dataset is themost similar to the telemonitoring data,
we will likely use the methods trained on the direct signal. The hand-
engineered feature methods could probably be tuned and have better
results with more domain knowledge and expert-designed features.

31

7. Evaluation

Table 7.3: The F1 macro averaged scores on the test partitions.

Model CINC2017 CPSC2018 Private
LogisticRegression 0.6419 0.4532 0.5773
RandomForestClassifier 0.6513 0.4323 0.6153
XGBClassifier 0.6480 0.4824 0.6345
MLPClassifier 0.6824 0.4840 0.6290
ResNet18Classifier 0.6539 0.6296 0.7871
CnnGruClassifier 0.6470 0.5432 0.7923

7.3 Inference and deployment

The models are automatically converted by the program to the Open
Neural Network Exchange format (Section 3.5). Exported models can
be loaded in any application that supports the ONNX Runtime.

32

8 Conclusion, Future Works

In this work, we train seven different models on three different ECG
databases and compare their performance between each other. We
find that at least in our experiment, both hand-crafted features and
the neural network feature extractors each have both its positive and
negative aspects.

The next step is the integration of the model to the ECG process-
ing solution running on the telemonitoring server. As the solution
is ready to work with ONNX models, the integration should not be
problematic.

An another direction of study could be the ensemble model of both
the feature processing approaches we tried.

The solution can also be expanded with more datasets to run the
comparison on, for example, the PTB-XL database (Section 4.4.3) or
the PhysioNet Computing in Cardiology Challenge 2020 dataset [69].

33

Bibliography

1. LILLY, Leonard S. Chapter 11. Mechanisms of Cardiac Arrhyth-
mias. In: Pathophysiology of heart disease: a collaborative project of
medical students and faculty. Wolters Kluwer, 2016, p. 268. ISBN
1605477230.

2. CLIFFORD, Gari; LIU, Chengyu; MOODY, Benjamin; LEHMAN,
Li-wei; SILVA, Ikaro; LI, Qiao; JOHNSON, Alistair; MARK, Roger.
AF Classification from a Short Single Lead ECG Recording: the
Physionet Computing in Cardiology Challenge 2017. In: 2017
Computing in Cardiology Conference (CinC). Computing in Cardi-
ology, 2017. Available from DOI: 10.22489/cinc.2017.065-469.

3. BLAUS, Bruce. An illustration depicting a Holter monitor. 2017.
Available also from: https://commons.wikimedia.org/wiki/
File:Holter_Monitor.png.

4. MEYSTRE, Stephane. The Current State of Telemonitoring: A
Comment on the Literature.Telemedicine and e-Health. 2005, vol. 11,
no. 1, pp. 63–69. Available from DOI: 10.1089/tmj.2005.11.63.

5. CORDISCO,Marie Elena; BENIAMINOVITZ,Ainat;HAMMOND,
Kim; MANCINI, Donna. Use of telemonitoring to decrease the
rate of hospitalization in patients with severe congestive heart
failure. The American Journal of Cardiology. 1999, vol. 84, no. 7, pp.
860–862. Available from DOI: 10.1016/s0002-9149(99)00452-
x.

6. ATKIELSKI, Anthony. ECG of a heart in normal sinus rhythm. 2007.
Available also from: https://commons.wikimedia.org/wiki/
File:SinusRhythmLabels.svg.

7. DUBIN, Dale. Chapter 1: Basic Principles. In: Rapid Interpretation
of EKG’s, Sixth Edition. Tampa, Fla: Cover Pub. Co, 2000, pp. 14–27.
ISBN 0912912065.

8. LIP, Gregory Y. H. et al. Atrial fibrillation. Nature Reviews Disease
Primers. 2016, vol. 2, no. 1, pp. 16016. ISSN 2056-676X. Available
from DOI: 10.1038/nrdp.2016.16.

34

https://doi.org/10.22489/cinc.2017.065-469
https://commons.wikimedia.org/wiki/File:Holter_Monitor.png
https://commons.wikimedia.org/wiki/File:Holter_Monitor.png
https://doi.org/10.1089/tmj.2005.11.63
https://doi.org/10.1016/s0002-9149(99)00452-x
https://doi.org/10.1016/s0002-9149(99)00452-x
https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg
https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg
https://doi.org/10.1038/nrdp.2016.16

BIBLIOGRAPHY
9. ODUTAYO, Ayodele; WONG, Christopher X; HSIAO, Allan J;

HOPEWELL, Sally; ALTMAN, Douglas G; EMDIN, Connor A.
Atrial fibrillation and risks of cardiovascular disease, renal dis-
ease, and death: systematic review and meta-analysis. BMJ. 2016,
pp. i4482. Available from DOI: 10.1136/bmj.i4482.

10. DUBIN, Dale. Chapter 5: Rhythm, Part I. Premature Ventricular
Contraction (PVC). In: Rapid Interpretation of EKG’s, Sixth Edition.
Tampa, Fla: Cover Pub. Co, 2000, p. 135. ISBN 0912912065.

11. DUBIN, Dale. Chapter 5: Rhythm, Part I. Runs of Ventricular
Tachycardia. In: Rapid Interpretation of EKG’s, Sixth Edition. Tampa,
Fla: Cover Pub. Co, 2000, p. 156. ISBN 0912912065.

12. NOLLE, Floyd M; BOWSER, Richard W. Creighton University Ven-
tricular Tachyarrhythmia Database. physionet.org, 1992. Available
from DOI: 10.13026/C2X59M.

13. OPPENHEIM, Alan. Discrete-time signal processing. Upper Saddle
River: Pearson, 2010. ISBN 0131988425.

14. OPPENHEIM, Alan. Chapter 8: The Discrete Fourier Transform.
In: Discrete-time signal processing. Upper Saddle River: Pearson,
2010, pp. 541–600. ISBN 0131988425.

15. OPPENHEIM, Alan. Chapter 7: Filter Design Techniques. In:
Discrete-time signal processing. Upper Saddle River: Pearson, 2010,
pp. 439–511. ISBN 0131988425.

16. KWON, Ohhwan; JEONG, Jinwoo; KIM, Hyung Bin; KWON, In
Ho; PARK, Song Yi; KIM, Ji Eun; CHOI, Yuri. Electrocardiogram
Sampling Frequency Range Acceptable for Heart Rate Variability
Analysis. Healthcare Informatics Research. 2018, vol. 24, no. 3, pp.
198. Available from DOI: 10.4258/hir.2018.24.3.198.

17. scipy.signal.resample_poly — SciPy v1.5.0 Reference Guide. 2020.
Available also from: https://docs.scipy.org/doc/scipy-1.5.
0/reference/generated/scipy.signal.resample_poly.html.

18. GAO, Hongxiang; LIU, Chengyu; WANG, Xingyao; ZHAO, Lina;
SHEN, Qin; NG, E. Y. K.; LI, Jianqing. An Open-Access ECG
Database for Algorithm Evaluation of QRS Detection and Heart
Rate Estimation. Journal of Medical Imaging and Health Informatics.

35

https://doi.org/10.1136/bmj.i4482
https://doi.org/10.13026/C2X59M
https://doi.org/10.4258/hir.2018.24.3.198
https://docs.scipy.org/doc/scipy-1.5.0/reference/generated/scipy.signal.resample_poly.html
https://docs.scipy.org/doc/scipy-1.5.0/reference/generated/scipy.signal.resample_poly.html

BIBLIOGRAPHY
2019, vol. 9, no. 9, pp. 1853–1858. Available from DOI: 10.1166/
jmihi.2019.2800.

19. PAN, Jiapu; TOMPKINS, Willis J. A Real-Time QRS Detection
Algorithm. IEEE Transactions on Biomedical Engineering. 1985,
vol. BME-32, no. 3, pp. 230–236. Available from DOI: 10.1109/
tbme.1985.325532.

20. PLESINGER, Filip; ANDRLA, Petr; VISCOR, Ivo; HALAMEK,
Josef; BULKOVA, Veronika; JURAK, Pavel. Shape Analysis of
Consecutive BeatsMayHelp in theAutomatedDetection ofAtrial
Fibrillation. In: 2018 Computing in Cardiology Conference (CinC).
Computing in Cardiology, 2018. Available from DOI: 10.22489/
cinc.2018.036.

21. DUBIN, Dale. Chapter 6: Rhythm, Part II. 1°AV Block. In: Rapid
Interpretation of EKG’s, Sixth Edition. Tampa, Fla: Cover Pub. Co,
2000, p. 178. ISBN 0912912065.

22. ACHARYA, U. Rajendra; JOSEPH, K. Paul; KANNATHAL, N.;
LIM, Choo Min; SURI, Jasjit S. Heart rate variability: a review.
Medical & Biological Engineering & Computing. 2006, vol. 44, no.
12, pp. 1031–1051. Available from DOI: 10.1007/s11517-006-
0119-0.

23. Heart Rate Variability (HRV) — NeuroKit 0.0.39 documentation.
2020. Available also from: https://neurokit2.readthedocs.
io/en/latest/examples/hrv.html.

24. VIRTANEN, Pauli et al. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods. 2020, vol. 17,
pp. 261–272. Available from DOI: https://doi.org/10.1038/
s41592-019-0686-2.

25. MAKOWSKI, Dominique; PHAM, Tam; LAU, Zen J.; BRAM-
MER, Jan C.; LESPINASSE, François; PHAM, Hung; SCHÖLZEL,
Christopher; S H CHEN, Annabel. NeuroKit2: A Python Toolbox
for Neurophysiological Signal Processing. Zenodo, 2020. Available
from DOI: 10.5281/ZENODO.3597887.

26. PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research. 2011, vol. 12, pp. 2825–2830.

36

https://doi.org/10.1166/jmihi.2019.2800
https://doi.org/10.1166/jmihi.2019.2800
https://doi.org/10.1109/tbme.1985.325532
https://doi.org/10.1109/tbme.1985.325532
https://doi.org/10.22489/cinc.2018.036
https://doi.org/10.22489/cinc.2018.036
https://doi.org/10.1007/s11517-006-0119-0
https://doi.org/10.1007/s11517-006-0119-0
https://neurokit2.readthedocs.io/en/latest/examples/hrv.html
https://neurokit2.readthedocs.io/en/latest/examples/hrv.html
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5281/ZENODO.3597887

BIBLIOGRAPHY
27. PASZKE, Adam et al. PyTorch: An Imperative Style, High Perfor-

manceDeepLearning Library. In:WALLACH,H.; LAROCHELLE,
H.; BEYGELZIMER, A.; D’ALCHÉ-BUC, F.; FOX, E.; GARNETT,
R. (eds.). Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 8024–8035.

28. BAI, Junjie; LU, Fang; ZHANG, Ke, et al. ONNX: Open Neural
Network Exchange [https://github.com/onnx/onnx]. GitHub,
2019.

29. CORPORATION, Microsoft. ONNXMLTools. 2020. Available also
from: https://github.com/onnx/onnxmltools.

30. REBACK, Jeff et al. pandas-dev/pandas: Pandas 1.0.5. Zenodo, 2020.
Available from DOI: 10.5281/ZENODO.3898987.

31. COSTA-LUIS, Casper O. da. tqdm: A Fast, Extensible Progress
Meter for Python and CLI. Journal of Open Source Software. 2019,
vol. 4, no. 37, pp. 1277. Available from DOI: 10.21105/joss.
01277.

32. WALT, Stéfan van der; COLBERT, S Chris; VAROQUAUX, Gaël.
The NumPy Array: A Structure for Efficient Numerical Compu-
tation. Computing in Science & Engineering. 2011, vol. 13, no. 2, pp.
22–30. Available from DOI: 10.1109/mcse.2011.37.

33. TAVENARD, Romain et al. Tslearn, A Machine Learning Toolkit
for Time Series Data. Journal of Machine Learning Research. 2020,
vol. 21, no. 118, pp. 1–6. Available also from: http://jmlr.org/
papers/v21/20-091.html.

34. CHEN, Tianqi; GUESTRIN, Carlos. XGBoost: A Scalable Tree
Boosting System. In: Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. San
Francisco, California, USA: ACM, 2016, pp. 785–794. KDD ’16.
ISBN 978-1-4503-4232-2. Available from DOI: 10.1145/2939672.
2939785.

35. INC., Plotly Technologies. Collaborative data science. Montreal,
QC: Plotly Technologies Inc., 2015. Available also from: https:
//plot.ly.

37

https://github.com/onnx/onnx
https://github.com/onnx/onnxmltools
https://doi.org/10.5281/ZENODO.3898987
https://doi.org/10.21105/joss.01277
https://doi.org/10.21105/joss.01277
https://doi.org/10.1109/mcse.2011.37
http://jmlr.org/papers/v21/20-091.html
http://jmlr.org/papers/v21/20-091.html
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://plot.ly
https://plot.ly

BIBLIOGRAPHY
36. WAGNER, Patrick; STRODTHOFF,Nils; BOUSSELJOT, Ralf-Dieter;

KREISELER, Dieter; LUNZE, Fatima I.; SAMEK,Wojciech; SCHA-
EFFTER, Tobias. PTB-XL, a large publicly available electrocardio-
graphy dataset. Scientific Data. 2020, vol. 7, no. 1. Available from
DOI: 10.1038/s41597-020-0495-6.

37. TEIJEIRO, Tomas; GARCIA, Constantino A.; CASTRO, Daniel;
FÉLIX, Paulo. Arrhythmia Classification from the Abductive In-
terpretation of Short Single-Lead ECG Records. In: 2017 Comput-
ing in Cardiology Conference (CinC). Computing in Cardiology,
2017. Available from DOI: 10.22489/cinc.2017.166-054.

38. ZABIHI, Morteza; RAD, Ali Bahrami; KATSAGGELOS, Agge-
los K.; KIRANYAZ, Serkan; NARKILAHTI, Susanna; GABBOUJ,
Moncef. Detection of Atrial Fibrillation in ECG Hand-held De-
vices Using a Random Forest Classifier. In: 2017 Computing in
Cardiology Conference (CinC). Computing in Cardiology, 2017.
Available from DOI: 10.22489/cinc.2017.069-336.

39. MAHAJAN, Ruhi; KAMALESWARAN, Rishikesan; HOWE, John
Andrew; AKBILGIC, Oguz. Cardiac Rhythm Classification from
a Short Single Lead ECG Recording via Random Forest. In: 2017
Computing in Cardiology Conference (CinC). Computing in Cardi-
ology, 2017. Available from DOI: 10.22489/cinc.2017.179-403.

40. DATTA, Shreyasi et al. Identifying Normal, AF and other Abnor-
mal ECG Rhythms using a Cascaded Binary Classifier. In: 2017
Computing in Cardiology Conference (CinC). Computing in Cardi-
ology, 2017. Available from DOI: 10.22489/cinc.2017.173-154.

41. HONG, Shenda; WU, Meng; ZHOU, Yuxi; WANG, Qingyun;
SHANG, Junyuan; LI, Hongyan; XIE, Junqing. ENCASE: an EN-
semble ClASsifiEr for ECG Classification Using Expert Features
and Deep Neural Networks. In: 2017 Computing in Cardiology Con-
ference (CinC). Computing in Cardiology, 2017. Available from
DOI: 10.22489/cinc.2017.178-245.

42. LIU, Feifei et al. An Open Access Database for Evaluating the
Algorithms of Electrocardiogram Rhythm and Morphology Ab-
normality Detection. Journal of Medical Imaging and Health Infor-
matics. 2018, vol. 8, no. 7, pp. 1368–1373. Available from DOI:
10.1166/jmihi.2018.2442.

38

https://doi.org/10.1038/s41597-020-0495-6
https://doi.org/10.22489/cinc.2017.166-054
https://doi.org/10.22489/cinc.2017.069-336
https://doi.org/10.22489/cinc.2017.179-403
https://doi.org/10.22489/cinc.2017.173-154
https://doi.org/10.22489/cinc.2017.178-245
https://doi.org/10.1166/jmihi.2018.2442

BIBLIOGRAPHY
43. CHEN, Tsai-Min; HUANG, Chih-Han; SHIH, Edward S.C.; HU,

Yu-Feng; HWANG, Ming-Jing. Detection and Classification of
Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural
NetworkModel. iScience. 2020, vol. 23, no. 3, pp. 100886. Available
from DOI: 10.1016/j.isci.2020.100886.

44. MOODY,George B;MARK,RogerG.MIT-BIHArrhythmiaDatabase.
physionet.org, 1992. Available from DOI: 10.13026/C2F305.

45. MIT-BIH Arrhythmia Database - Google Scholar. 2020. Available
also from: https://scholar.google.com/scholar?q=MIT-
BIH+Arrhythmia+Database.

46. BOUSSELJOT, Ralf-Dieter; KREISELER, D; SCHNABEL, A. The
PTB Diagnostic ECGDatabase. physionet.org, 2004. Available from
DOI: 10.13026/C28C71.

47. STRODTHOFF, Nils; WAGNER, Patrick; SCHAEFFTER, Tobias;
SAMEK, Wojciech. Deep Learning for ECG Analysis: Benchmarks
and Insights from PTB-XL. 2020. Available from arXiv: 2004.13701
[cs.LG].

48. GÉRON, Aurélien. Hands-On Machine Learning with Scikit-Learn,
Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intel-
ligent Systems. O’Reilly Media, 2019. ISBN 1492032646. Available
also from: https://www.xarg.org/ref/a/1492032646/.

49. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron.
Deep Learning. MIT Press, 2016. http://www.deeplearningbook.
org.

50. CUNNINGHAM, Padraig; DELANY, Sarah Jane. k-Nearest Neigh-
bour Classifiers: 2nd Edition (with Python examples). 2020. Available
from arXiv: 2004.04523 [cs.LG].

51. BAGNALL, Anthony; LINES, Jason; BOSTROM, Aaron; LARGE,
James; KEOGH, Eamonn. The great time series classification bake
off: a review and experimental evaluation of recent algorithmic
advances. Data Mining and Knowledge Discovery. 2016, vol. 31, no.
3, pp. 606–660. Available from DOI: 10.1007/s10618-016-0483-
9.

39

https://doi.org/10.1016/j.isci.2020.100886
https://doi.org/10.13026/C2F305
https://scholar.google.com/scholar?q=MIT-BIH+Arrhythmia+Database
https://scholar.google.com/scholar?q=MIT-BIH+Arrhythmia+Database
https://doi.org/10.13026/C28C71
https://arxiv.org/abs/2004.13701
https://arxiv.org/abs/2004.13701
https://www.xarg.org/ref/a/1492032646/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/2004.04523
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1007/s10618-016-0483-9

BIBLIOGRAPHY
52. DAU, Hoang Anh; BAGNALL, Anthony; KAMGAR, Kaveh; YEH,

Chin-Chia Michael; ZHU, Yan; GHARGHABI, Shaghayegh;
RATANAMAHATANA, Chotirat Ann; KEOGH, Eamonn. The
UCR time series archive. IEEE/CAA Journal of Automatica Sinica.
2019, vol. 6, no. 6, pp. 1293–1305. Available from DOI: 10.1109/
jas.2019.1911747.

53. GÉRON, Aurélien. Chapter 4: Training Models. Logistic Regres-
sion. In: Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Sys-
tems. O’Reilly Media, 2019, pp. 142–150. ISBN 1492032646. Avail-
able also from: https://www.xarg.org/ref/a/1492032646/.

54. GÉRON, Aurélien. Chapter 7: Ensemble Learning and Random
Forests. Bagging and Pasting, Random Forests. In: Hands-On
Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems. O’Reilly Media,
2019, pp. 192–199. ISBN 1492032646. Available also from: https:
//www.xarg.org/ref/a/1492032646/.

55. GÉRON, Aurélien. Chapter 7: Ensemble Learning and Random
Forests. Boosting. In:Hands-OnMachine Learning with Scikit-Learn,
Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelli-
gent Systems. O’ReillyMedia, 2019, pp. 203–208. ISBN 1492032646.
Available also from: https://www.xarg.org/ref/a/1492032646/.

56. CHRISLB. Diagram of a multi-layer feedforward artificial neural net-
work. 2012. Available also from: https://commons.wikimedia.
org / wiki / File : MultiLayerNeuralNetworkBigger _ english .
png.

57. Course materials and notes for Stanford class CS231n: Convolutional
Neural Networks for Visual Recognition. 2020. Available also from:
https://cs231n.github.io/convolutional-networks/.

58. HUANG, Jingshan; CHEN, Binqiang; YAO, Bin; HE, Wangpeng.
ECG Arrhythmia Classification Using STFT-Based Spectrogram
and Convolutional Neural Network. IEEE Access. 2019, vol. 7,
pp. 92871–92880. Available from DOI: 10.1109/access.2019.
2928017.

40

https://doi.org/10.1109/jas.2019.1911747
https://doi.org/10.1109/jas.2019.1911747
https://www.xarg.org/ref/a/1492032646/
https://www.xarg.org/ref/a/1492032646/
https://www.xarg.org/ref/a/1492032646/
https://www.xarg.org/ref/a/1492032646/
https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetworkBigger_english.png
https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetworkBigger_english.png
https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetworkBigger_english.png
https://cs231n.github.io/convolutional-networks/
https://doi.org/10.1109/access.2019.2928017
https://doi.org/10.1109/access.2019.2928017

BIBLIOGRAPHY
59. HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian.

Deep Residual Learning for Image Recognition. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2016. Available from DOI: 10.1109/cvpr.2016.90.

60. GÉRON,Aurélien. Chapter 15: Processing SequencesUsingRNNs
and CNNs. Recurrent Neurons and Layers. In: Hands-On Ma-
chine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems. O’Reilly Media,
2019, pp. 497–501. ISBN 1492032646. Available also from: https:
//www.xarg.org/ref/a/1492032646/.

61. GÉRON,Aurélien. Chapter 15: Processing SequencesUsingRNNs
and CNNs. Handling Long Sequences. In: Hands-On Machine
Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools,
and Techniques to Build Intelligent Systems. O’Reilly Media, 2019,
pp. 511–520. ISBN 1492032646. Available also from: https://
www.xarg.org/ref/a/1492032646/.

62. CHO,Kyunghyun;MERRIËNBOER, Bart van;GULCEHRE,Caglar;
BAHDANAU, Dzmitry; BOUGARES, Fethi; SCHWENK, Hol-
ger; BENGIO, Yoshua. Learning Phrase Representations using
RNN Encoder–Decoder for Statistical Machine Translation. In:
Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, 2014, pp. 1724–1734. Available from
DOI: 10.3115/v1/D14-1179.

63. BLAD, John Erling. Gated Recurrent Unit, fully gated version. 2018.
Available also from: https://commons.wikimedia.org/wiki/
File:Gated_Recurrent_Unit,_base_type.svg.

64. KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic
Optimization. 2014. Available from arXiv: 1412.6980 [cs.LG].

65. CARUANA, Rich; LAWRENCE, Steve; GILES, Lee. Overfitting
in Neural Nets: Backpropagation, Conjugate Gradient, and Early
Stopping. In: Proceedings of the 13th International Conference on
Neural Information Processing Systems. Denver, CO: MIT Press,
2000, pp. 381–387. NIPS’00.

66. LAARHOVEN, Twanvan. L2Regularization versus Batch andWeight
Normalization. 2017. Available from arXiv: 1706.05350 [cs.LG].

41

https://doi.org/10.1109/cvpr.2016.90
https://www.xarg.org/ref/a/1492032646/
https://www.xarg.org/ref/a/1492032646/
https://www.xarg.org/ref/a/1492032646/
https://www.xarg.org/ref/a/1492032646/
https://doi.org/10.3115/v1/D14-1179
https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_base_type.svg
https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_base_type.svg
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1706.05350

BIBLIOGRAPHY
67. PASCANU, Razvan;MIKOLOV, Tomas; BENGIO, Yoshua. On the

Difficulty of Training Recurrent Neural Networks. In: Proceedings
of the 30th International Conference on International Conference on
Machine Learning - Volume 28. Atlanta, GA, USA: JMLR.org, 2013,
III–1310–III–1318. ICML’13.

68. GÉRON, Aurélien. Chapter 3: Classification. Performance Mea-
sures. In: Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Sys-
tems. O’ReillyMedia, 2019, pp. 88–93. ISBN 1492032646. Available
also from: https://www.xarg.org/ref/a/1492032646/.

69. PEREZ ALDAY, Erick Andres; GU, Annie; SHAH, Amit; LIU,
Chengyu; SHARMA, Ashish; SEYEDI, Salman; BAHRAMI RAD,
Ali; REYNA, Matthew; CLIFFORD, Gari. Classification of 12-lead
ECGs: the PhysioNet - Computing in Cardiology Challenge 2020. Phy-
sioNet, 2020. Available from DOI: 10.13026/F4AB-0814.

42

https://www.xarg.org/ref/a/1492032646/
https://doi.org/10.13026/F4AB-0814

A Source code

The source code for all experiments is available as a .zip file in the
archive of the thesis at https://is.muni.cz/th/ybs7e/. It is also
publicly available on GitHub at https://github.com/adamivora/e
cg_arrhythmia_classification. A README.md file is included in the
repository with the instructions to run the experiments.

The archive version contains the extracted feature Pandas data
frames and trained models, so only dataset download is needed to
run the comparison. The GitHub version does not contain any prepro-
cessed data, and the full run through the pipeline can take more than
three hours.

43

https://is.muni.cz/th/ybs7e/
https://github.com/adamivora/ecg_arrhythmia_classification
https://github.com/adamivora/ecg_arrhythmia_classification

B Complete list of hand-engineered features

Table B.1 presents the full list of the features used to train models with
hand-engineered features, along with descriptions of the features. The
total number of numeric columns used for training is 113 – 24 HRV
features and 89 segment and signal features.

The features of type [float] are actually a list of 11 statistical
features listed in Table B.4. The HRV feature descriptions are based
on the Neurokit2 documentation [23].

Table B.1: Complete list of extracted features.

Name Description Type
Segment and signal features:
N_QRS Number of QRS complexes de-

tected.
integer

P_Stats Statistics of the P segment length. [float]
R_Stats Statistics of the R segment length. [float]
T_Stats Statistics of the T segment length. [float]
PR_Stats Statistics of the PR intervals of the

same beat.
[float]

RR_Stats Statistics of the consecutive RR in-
tervals.

[float]

RT_Stats Statistics of the RT intervals of the
same beat.

[float]

QRS_Stats Consecutive beat correlation statis-
tics.

[float]

Signal_Stats Statistics of the band-pass prepro-
cessed signal.

[float]

Time-domain HRV features:
HRV_RMSSD Root mean square of successive dif-

ferences between RR intervals.
float

HRV_MeanNN Mean of the RR intervals. float
HRV_SDNN Standard deviation of RR intervals. float

44

B. Complete list of hand-engineered features

HRV_SDSD Standard deviation of successive
differences between RR intervals.

float

HRV_CVNN Calculated from the features
HRV_SDNN / HRV_MeanNN.

float

HRV_CVSD HRV_RMSSD / HRV_MeanNN. float
HRV_MedianNN Median of the absolute values of

successive differences between RR
intervals.

float

HRV_MadNN Median absolute deviation of the
RR intervals.

float

HRV_MCVNN HRV_MadNN / HRV_MedianNN. float
HRV_TINN An approximation of the RR inter-

val distribution.
float

HRV_HTI The number of RR intervals di-
vided by the height of histogram
of RR intervals.

float

HRV_pNN20 Number of pairs of successive RR
intervals that differ by more than
20 ms divided by total number of
RR intervals.

float

HRV_pNN50 Number of pairs of successive RR
intervals that differ by more than
50 ms divided by total number of
RR intervals.

float

Frequency-domain HRV features:
HRV_HF SPD of the high frequency band. float
HRV_VHF SPD of the very high frequency

band.
float

HRV_HFn Normalized high frequency
(HRV_HF / total power).

float

HRV_LnHF Log transformation of HRV_HF. float

Non-linear HRV features:
HRV_SD1 Beat-to-beat variability. float

45

B. Complete list of hand-engineered features

HRV_SD2 Index of long-term RR interval fluc-
tuations.

float

HRV_SD2SD1 The ratio of HRV_SD2 / HRV_SD1. float
HRV_CSI Cardiac Sympathetic Index. float
HRV_CSI_Modified Modified Cardiac Sympathetic In-

dex.
float

HRV_CVI Cardial Vagal Index. float
HRV_SampEn Sample entropy. float

Table B.4: List of statistics used.

Name Description
min The minimum.
max The maximum.
mean The arithmetic mean.
median The median (50th percentile).
perc25 The 25th percentile (first quartile).
perc75 The 75th percentile (third quartile).
perc99 The 99th percentile.
range The range (max ´ min).
std The standard deviation.
skew The sample skewness (symmetry of the distribution).
kurtosis The fourth standardized moment (tailedness of the dis-

tribution).

46

	Introduction
	Down the Electrocardiography Hole
	 Electrocardiogram
	 Telemonitoring
	 Specific ECG elements

	 Selected arrhythmia descriptions
	 Atrial fibrillation
	 Premature ventricular contraction
	 Ventricular tachycardia

	 Aims of the thesis

	Feature Processing
	 Signal processing
	 Preprocessing
	 Resampling
	 Band-pass filtering
	 Standardization

	 Feature extraction
	 R peak detection
	 R peak features
	 QRS correlation features
	 PRT segments
	 Heart rate variability

	Software Tools
	 SciPy
	 NeuroKit2
	 Scikit-learn
	 PyTorch
	 ONNX
	 Other libraries

	Datasets
	 The PhysioNet Computing in Cardiology Challenge 2017
	 The China Physiological Signal Challenge 2018
	 Private dataset
	 Other datasets
	 MIT-BIH
	 PTB
	 PTB-XL

	Models
	 Baselines
	 k-nearest neighbors with dynamic time warping
	 Logistic regression

	 Models with hand-engineered features
	 Random forest
	 XGBoost
	 Multilayer perceptron

	 Models with direct signal input
	 Convolutional networks
	 Recurrent networks

	Training
	 Train-test split
	 Cross-validation

	 Models with hand-engineered features
	 Models with direct signal input
	 Data augmentation

	 Model persistence

	Evaluation
	 Metrics
	 F1 score

	 Results
	 Inference and deployment

	Conclusion, Future Works
	Bibliography
	Source code
	Complete list of hand-engineered features

