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1 Dynamic programming

Dynamic programming is a collection of algorithms that can be used to compute optimal policies given a perfect
model of the environment as a Markov Decision Process.

We will discuss four of the algorithms:

e Policy evaluation (prediction) - allows us to compute the state-value function v, (s) for an arbitrary policy
T,

e Policy improvement - allows us to find a better policy 7’ given a value function v,
e Policy iteration - allows us to find an optimal policy using policy evaluation and policy improvement m,

e Value iteration - allows us to find an optimal policy without policy evaluation,

2 Environment

e S - a finite set of states

St =8 U{L} - aset of states plus the terminal state if it is needed

e R - a finite set of possible rewards

A:S — P(A) - a mapping from states to a finite subset of possible actions

p(s’,r | s,a) - are dynamics of the environment such that s € S,a € A(s),r € R,s' € ST

2.1 Stochastic policy

The following sections assume a stochastic policy 7 such that:

e 1:(AXS)—10,1],

m(a | s) is a way to denote 7(a, s),

domain of 7 is D(w) = {(a,s) | a € A(s),s € S},
V(a,s) € D(xw) :w(a | s) >0,

Vs €S8 : ) easmlals)=1

3 Bellman expectation equation

For a fixed stochastic policy 7, discount factor v € [0,1) (with the possibility that v = 1 if all episodes terminate)
it holds that Vs € S:

ve(s)= Y wlals) D p(s'sr ] sa)lr+7-va(s)),

a€A(s) s'est
reR

and v, (L) =0, if L is defined.



3.1 Analytic solution

If we fully know the dynamics p(s’,r | s,a), then the Bellman expectation equation is a system of |S| linear
equations with S unknowns, which are v, (s) for each s € S.

vals) = Y wlals) D p(s'r | s,a)lr+7-vn(s)]

acA(s) s'est
reR
= Z m(a | s) Z p(s',r | s,a)-r+- Z m(a | s) Z p(s',r | s,a) - vg(s)
acA(s) s'est acA(s) s'est
reR recR

We will introduce the Bellman operator to show how the solution can be computed exactly.

3.2 Bellman operator

Denote by V' a vector space of all state-value functions v = (v(s1),v(s2),...,v(s|s])) (dimV = |S]).
Then Bellman operator B, : V — V is defined by:

B,(v) =R+~ Py v,

where R is a vector of expected rewards for each state (Rx(s1), Rx(s2),..., Rx(s|s])) and
R,(s) = Z m(a | s) Z p(s',r | s,a)-r,
a€A(s) s'est
reR

and where Py is an |S] x |S| (stochastic) matrix which elements are

Pr(s,s') = Z m(a | s) Zp(s',r | 5,a)

a€A(s) reR



Let’s show the mapping has a fixed point B, (v;) = v, for a simple concrete case where S = {s1, s2, s3}:

Br(v)=Rx+7~v-Pr-v

v(s1) R (s1) Pr(s1,51) Pr(s1,52) Pn(51,83) v(s1)
Br [ v(s2) | = | Ba(s2) | +7- | Pr(s2,81) Pr(s2,82) Pr(s2,83) | - | v(s2)
v(ss3) R (s3) Pr(s3,s1) Pr(ss,s2) Pr(ss,ss) v(ss3)

Br(v(s1)) = Ra(s1) + - (Pr(s1,51) - v(s1) + Pr(s1,82) - v(s2) + Pr(s1,53) - v(s3))
Br(v(s1)) = Z m(a | s1) Z p(s',r | s1,a)-r

a€A(s1) s'eS
reER
r S wlals) Y plsr | sia)-v(sy)
ac€A(s1) reER
+ Z a|sl)Zp(52,r|sl,a)-v(52)
a€A(s1) rcR
+y > mlals) D plssr | sia)-v(ss)
acA(s1) r€R
= Y wals) | D sna) )+ > Y s | s1,0) u(s)
a€A(s1) Sle% s'€STeER
| 7€

Z m(a | s1) Z p(s',r | s1,a) - r+v-p(s',r | s1,a) - v(s)

a€A(s1) s'g%
= > wals) Y s | si,a) - [r+-o(s)]
a€A(s1) s’g%
= Br(vn(s) = Y wlal|s) > p(s',r|s,a) [r+7-ve(s)] =va(s)
a€A(s) s'eS

reR

We can calculate v, analytically:

R'n' +’7P7rfv‘rr = Un

—vPrvr = R:
V(1 —vP:) = R,
= Re(1 —7Pr)7"

4 Policy evaluation

4.1 Synchronous iterative policy evaluation

For a fixed policy 7, Vs € S:

vo(s) = { arbitrary s € S,

0 s=1.
vera(s) = Y wlals) > p(sr|s,a)r+v-v(s)
a€A(s) S’E%Jr

and vg(L) = 0 for all k, if present. Then

lim v, = v,.
k—o0

Proof. The case of v € (0,1) is proven here, however the result can be extended to the case when v = 1 if all
episodes terminate.



It should be easy to see that synchronous iterative policy evaluation is equivalent to iterative application of the
Bellman operator B, : V — V. For all k£ > 0,

vi(s) = B1(v0(s)) = Br(Br(Bx(... Bx(vo(s)))))

We consider the metric space (V,d), where V is the vector space over the value function vectors and d is a
metric induced by an L., norm:

Yo eV ||yl = I;lea;(\v(sﬂ

Yoy, v2 € V i d(v1,v2) = ||[v1 — V2||ec = r;leaéc\vl(s) — va(s)|

The operator B, is a y-contraction which means that:
Vvi,v2 € V i d(Br(v1), Br(v2)) <7 -d(v1,v2)
We show that it is true:

|[Br(v1) = Br(v2)|loo = ||[(Rx + 7 Pr-v1) — (Rr +7 - Pr - v2)|[s0
= |7 Pr(v1 — v2)|loo

01(51) — 1}2(51)

1}1(82) — ’02(81)
=iy Px : oo

v1(s)s)) - v2(s)5)))

|[v1 — v2|o

|[v1 — v2|o
<|lv-Pr : [ oo

|[v1 — va|o

1

1
=7 Pr | . | (o1 = v2lloo) oo

— =

=[v-{ . | (lvr = vzlloo)lloo
1

l[v1 — v2|e
l[v1 — v2|e
=7 : I oo

l[v1 — v2l|e

=7 [[v1 = 2/l

[1Bx(v1) = Br(v2)[|oo <7+ [[v1 = v2[c0,



Z es Pﬂ—(81, S/) ZS’GS ZaGA(sl) 7T(CL I Sl) ZTGRP(SI? r | 51, a’)
ZS’ES Pﬂ'(327 5/) Zs’ES ZG/EA(SQ) W(a | 52) ZreR p(slv r | 52, a)

ZS’ES Pﬂ-(S‘S|, S/) ZSIES ZaeA(s‘s‘) 7T(CL | 5|S\) ZreRp(s/7T | 5|S\7a)
Vie{l,...,|S|}: Z Z m(a | si)Zp(s’,r | si,a) = Z m(a | si) p(s'sr| siya)
s'€S acA(s;) rER s'eS
a€A(s;)
r€R

=p(s'eS,reR|s,acAs;)) =1

Now that we know || B (v1) — Br(v2)|looc < 7 ||v1 — v2||eo (B is a y-contraction), we can use the fact to find
the fixed point and show that it is unique (by using the Banach Contraction Principle).

Assumptions of BCP: a contraction mapping B, on a complete metric space (V,d) with contraction constant
v < 1.
Fix vg € V to an arbitrary value.

Define a sequence {vg} in V' by

V41 = Bﬂ-(’vk) = BﬁJrl(’Uo), k > 0.

Because B, is a «y-contraction, we have:

d(vk, ’Uk-,+1) = d(Bw('Uk—l)a Bﬂ(vk)) <
d(Vk, V1) <

For any m,n such that m > n it means

m—1

d(v5,0m) < Y d(vi,vit1)

m—1 n
< Z ’yi -d(vg,v1) < 17_ 5 - d(vo, v1).

Definition 4.1. A sequence {a,} is said to be a Cauchy sequence iff for any € > 0 there exists N such that
d(amam) < e for all m,n > N.
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Figure 1: A Cauchy sequence



Theorem 4.2 (Cauchy Criterion). In a complete metric space, a sequence is Cauchy iff it converges.

We can find N for any € > 0 such that d(a,,an) < € for all m,n > N:
Y

n

A(Vp, V) < T - d(vg,v1) < €
K d(vo,v1)

11—~
1 R
"8, (6 d(vovvl))

N = [logw (6' d(lvo_zl)ﬂ

AN
= d(Vp,vm) < = - d(vg,v1) < €.
v

Thus, {vg} is a Cauchy sequence. Because {v;} is a Cauchy sequence, it satisfies the Cauchy criterion and
converges.

That means there exists a convergence point x:

= lim vg = lim vg_1 = B:(x)
k—o0 k—o0

Bﬂ- ( lim 'l)k> = lim Vi

k—o0 k—o0

the limit of the iterative application of B, on v always converges to a fixed point & such that B, (x) = . But
we already know one fixed point of the mapping, it is the solution v, = v;(s) Vs € S to the Bellman expectation
equation, which is the state-value function for an arbitrary policy .

In other words,
Yvg €V : khj& B¥(vo) = vy,
where v, € V is the state-value function (vector of dimension |S]|) of an arbitrary policy .
The last thing to show is that the fixed point is unique. Let @,y be fixed points of B, then
d(x,y) = d(Bx(x), Bx(y)) <7 - d(x,y)
d(z,y) <v-d(@,y)
(1—7)-dz,y) <0

(I —7) >0, thus d(z,y) = 0 (as the distance must be non-negative) and = = y. O
4.2 Asynchronous iterative policy evaluation

It is not needed to keep the values vy (s) during the iterative policy evaluation sweep. We can change the values
of v(s) in-place.

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: threshold € > 0 determining accuracy of estimation
Initialize V (s) for all s € S arbitrarily, V(L) =0
repeat
A = 0;
foreach s € S do
v="V(s);
Vis)=2am(als) >y, p(s',r | s,a)[r+~-V(s)];
if [v —V(s)| > A then
| A=lo-V(s)
end if
end foreach
until A < ¢;




It can be proven that also this form of policy evaluation converges to v,.

4.3 Gridworld

We consider a simple case of gridworld:

L1123
4 | 5|6 |7
819 |10 11
12113 | 14

which can be represented as a finite MDP:

e S={1,2,...,14}

St=8SuU{l}

R = {1}

Vs € S: A(s) = {left,up, right, down}

p(s',r | s,a)

state transition: when on the edge, stay on the current cell; otherwise, move to the direction specified by
the action

reward: -1 always (except the terminal state)

e y=1

4.4 Calculation of v,

We will calculate the value function v, of the equiprobable random policy:
1
Vs,a € A(s) :m(a | s) = 1

a) analytically

(L) =0

(1) = % p(L, =1 1,1eft) - (—1 + v (L))
n % p(1, =1 | Lup) - (=1 + vy (1))
4 i -p(2, =1 | 1,right) - (—1+v4(2))
n % -p(5, =1 | 1,down) - (=1 + v.(5))

vn(1) = —1+ i (r (1) + vx(2) + va(5))

= 30:(1) —v:(2) —v(5) = —4

Ur(2) = =14 = (v (1) + v (2) + v (3) + v (6))
= —ur(1) +30:(2) — v:(3) — v(6) = —4



The system of equations can be represented by an |S| x |S| matrix:

coococoococoo o |

SO DO OO O OO

0 -1
0 0
0 0
3 -1
-1 4
0 -1
-1 0 0
-1 0
0 -1
0 0
0 0
0 0
0 0
0 0

OO O OO OO

0 0
0 0
-1 0
0 -1
0 0
-1 0
3 0
0 3
0 -1
0 0
-1 0
0o -1
0 0
0 0

0 0 O
0 0 O
0 0 O
0 0 O
0 0 O
0 0 O
0 0 O
-1 0 0
0 -1 0
0 0 -1
0O 0 O
2 -1 0
-1 3 -1
0o -1 3

We can solve the system using any method for solving linear equations and get

ve=(—14 —20 —22 —14 —18 —20 —20 —20 —20 —I8 —14 —22 —20 —14)",

which are the exact values of the state-value function v, for the states s € S.

b) (synchronous) policy evaluation

L]1]2]3
4 |56 |7
819 (1011
12113114 | L

We use the iterative policy evaluation update rule with vo(s) = 0 for all s € ST.

Ul(l)

_|_

+

+
R e I Ll ol Bl N (S

p(L,—1|1,1eft) - (1 4 vp(L))

-p(l, -1 | l,up) : (_1 + UO(I))

-p(2,—1] 1,right) - (=1 + vo(2))

-p(5,—1 1] 1,down) - (—1 4 v(5))

(—4+4-0)=—1

VseS:v(s)=—1

02(1)

_|_

+
I e el Bl S B N S

+

p(L,—1] 1,1eft) - (=1 + (L))

~p(1, =1 ] Lup) - (=1 + w1 (1))

-p(2,=1 | 1,right) - (=1 + v1(2))

-p(5,—1| 1,down) - (=1 +v1(5))

7
(40111 =0 =175

Vg =

—4
—4
—4
—4

—4
—4
—4
—4

—4
—4
—4
—4




1
vs() = 7 -p(L,—1 |1, left) - (~1 +vz(1))
1
+ 1 p(L =1 Lup) - (1 +va(1))
1
+ 1 -p(2,—1] 1,right) - (=1 + v2(2))
1
+ 1 -p(5,—1 1] 1,down) - (—1 4 v(5))
1 7 39
= (440--—-2-2)=-"=-24
1 (40— ) o 375
Vv, for the Greedy Policy
Random Policy wrt Vi
0.0| 0.0[ 0.0] 0.0 >
k=0 0.0] 0.0] 0.0] 0.0 T random
- 0.0/ 0.0]0.0] 0.0 sl policy
0.0 0.0 0.0] 0.0 Tl
0.0/-1.0{-1.0|-1.0 —
k=1 -1.0[-1.0[-1.0]-1.0 T
-1.0/-1.0]-1.0|-1.0 T
-1.0[-1.0-1.0] 0.0 N ol
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t
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of-2.9|-2.4] 0.0 L = -
0.0[-6.1|-8.4|-0.0 - = s
k=10 6.1|-7.7|-8.4|-8.4 i 5 |, - optimal
-8.4]-8.4[-7.7]-6.1 Ll oy policy
-9.0[-8.4]-6.1] 0.0 e i
0.0]-14.|-20.|-22. - = |5
e oo 14.]-18.|20.[ 20 Vi e ],
B 20.|-20.[-18.|-14. =N
22.|-20.|-14] 0.0 Ll -] -

Figure 2: Convergence of iterative policy evaluation on a small gridworld.

5 Policy improvement

The following explanation is only for the case of deterministic policies 7 such that:

e A:S =24
erm:S— A
e VseS:m(s) € Als)

The ideas should "easily” extend to stochastic policies.



5.1 Bellman equation for deterministic policies

As we know, the Bellman expectation equation for stochastic policies is

U;.tOCh(S) _ Z 7r(a | 8) Z p(S/,’I“ | S,G)[T+’Y~Uﬂ—(8/)]

acA(s) s'est
reR

The Bellman expectation equation for deterministic policies is

ve(s) = Y p(s'sr | s,m(s))lr + - on(s)],

s'est
reER

and

qr(s,a) = Z p(s',r | s,a)[r + - v (s)].

s'est
reR

5.2 Bellman operator for deterministic policies

The Bellman operator for deterministic policies can be defined using the same matrices as for the stochastic
case.

Denote by V' a vector space of all state-value functions v = (v(s1),v(s2),...,v(s|s|)) (dimV = |S]).
Then Bellman operator B, : V' — V is defined by:

Bﬂ(v):Rﬂ+'7'Pﬂ'U7

where R is a vector of expected rewards for each state (Rr(s1), Rx(s2),..., Rx(s|s])) and
R, (s) = Z p(s',r | s,m(s)) -,
s'est
reR

and where Py is an |S] x |S| (stochastic) matrix which elements are

= Zp(s’,r | s,7(s)).

reER

5.3 Policy improvement theorem

Let 7,7’ € A® be deterministic policies such that
Vs €S qr(s,m'(s)) > vx(s).
Then the policy 7’ is at least as good as 7
Vs €S :vp(s) > vx(s).

If there is strict inequality for at least one s € S in the first equation, there is a strict inequality for at
least one s € S in the second equation.

Proof. (Original, from the book, without explanation.)
Ur(s) < gn(s,7'(s))
= E[Rt-i-l + 70 (S41) | S =5, Ay = 7'(5)]
Er[Ri1 + yor(Seq1) | Se = 5]

< En[Rey1 4 ¥qr(Se41, 7' (Ses1)) | Se = 5]
= En/[Rpp1 +YEL[Rego +0r(Siv2) | Sev1s Avyr = 7' (Se11)] | Se = 3]
=Eo[Rey1 + YR + 727)7r(5t+2)) | S¢ = 3]
< Enr[Rig1 +YRiy2 + 7 Rigs + 7 vx(Siys)) | Si = ]

< [Reg1 +YRipo + 7Rz + YV Reja + -+ | S = 8
=l (s).



Definition 5.1 (Definitions and facts.). We know that for arbitrary state-value function v € V' from the

vector space V of all state-value functions it holds that

lim BY(v) = vy,

k—oc0

where v, € V is the state-value function of the policy =.

We define a binary partial order relation > between two state-value functions v, v’ from V by

v/ >v = (Vs 8 (s) > v(s))

and a binary relation > by

vV >v = (VseS)(W'(s) >v(s)) A(Fs" € SV (s) > v(s))

The Bellman operator B, preserves >:

(Vs € S)(v(s) = '(s)) = | Y p(s'sr | s,m())[r +7-0(s)] | =

s'est
reR

v>v" = Br(v) > B:(v).

For all policies 7, 7’ € AS and states s € S:

S plsr | s, ()l 4y 0(s)

s'est
reR

(Bw(vn))(s) = D p(s'r | 5,7 () +7 - va(s')]

s'est
reR

(Br(vr))(8) = gz (5,7 (5))

Proof. (Policy improvement theorem, using Bellman operator.) We use the fixed point of the Bellman
operator to prove the policy improvement theorem. There is an assumption that the discount factor v < 1.

a) Let m,7' € AS be any pair of deterministic policies such that, for all s € S, g (s, 7'(s)) > v (s):

(Vs € S)(ar(5,7'(5)) = vx(s))
Bri(vr) > vy
BTr’(Bﬂ" (UW)) Z Bﬂ' (UTF)
B}/ (vx)) > B (vx)

= vy < Bp(vy)) < B2(v;) <--- < lim BY (v;) = v

Vpr 2 Vg
(Vs € §)(vr () = vx(s))
(Vs € 8)(gn(s,7'(5)) Z va(s) = vw(s) = va(s)).

b) Let m, 7’ € A be any pair of deterministic policies such that, for all s € S, (s, 7'(s)) > v.(s) and



that there exists s’ € S such that ¢, (s',7'(s")) > v (s'):

(Vs € S)(an(s:7'(5)) = vr(s)) A (38" € S)(gx ("7 (s")) > v (s))
B (’Uﬂ—) > Uy
BW’(BW’ (Ufr)) > Brr(vr)
B2/(vr)) > B2/(vx)

= vy < Bp(vg)) < B2(vg) <-+- < klim B, (vs) = v
—00

(Vs € 8)(v'(s) = v(s)) A (Fs' € S)(V'(s") > v(s))

(Vs € 8)(gn(s,7'(5)) Z vr(s) A (35" € S)(gn (s, 7'(5") > va(s"))
= (Vs € 8)(V'(s) 2 v(s)) A (35" € S)(v'(s') > v(s))

The policy improvement theorem is hence proved. O

5.4 Bellman optimality equation

For a discount factor v € [0,1) (with the possibility that v = 1 if all episodes terminate) it holds that
Vs € S:

v*(s) = max p(s',r | s,a)[r +-v*(s)],

a€A(s
( )5'654r
reER

and v*(L) =0, if L is defined.
The Bellman optimality equation is a set of |S| non-linear equations with |S| unknowns.

To prove that v* is unique, we will use a variant of the Bellman operator.

5.5 Bellman backup operator for deterministic policies

Denote by V' a vector space of all state-value functions v = (v(s1),v(s2),...,v(ss))) (dimV = |S]).
Then the Bellman backup operator B* : V' — V is defined as:

B*(v) = B*((v(s1),v(s2), ..., v(s1s)) "),

B* = '
(v(s)) aIenj()i) R(s,a +72 srls,a)-vs)|,
s'est
reR
where R : (S X A) — R is a function defined for s € S,a € A(s):
R(s,a) = Z p(s',r | s,a)-r

s'est
reR

5.5.1 Fixed point
The iterative application of B* converges to a unique fixed point v*:

lim (B*)F = v*.

k—o0



Proof. Similar to the proof of convergence of policy evaluation. The assumptions are the same (discount
factor v € [0, 1)).

We will prove that the Bellman backup operator is a ~-contraction in the metric space induced by the
L., norm and thus converges to a unique fixed point by the Banach contraction principle. As the fixed
point is the Bellman optimality equation, the iterative application of the Bellman backup operator (value
iteration) converges to the optimal value function v*.

We consider the metric space (V,d), where V is the vector space over the value function vectors and d is
a metric induced by an L., norm:

Yo eV ||v||e = r£1€a§<|v(s)|
Yoy, v2 € V i d(v1,v2) = ||[v1 — V2| = rgleagdvl(s) — va(s)]
The operator B* is a y-contraction which means that:
Yvi,v2 € V 1 d(B*(v1), B*(v2)) <7 -d(v1,v2)
We show that it is true.

Lemma 5.2. The mazximal absolute difference of two functions is greater than or equal to the absolute
difference of mazxima of them.

max |f () — g(z)| > | max f(z) — max g(z)|
Proof.

f(@) < |f(z) - g(a)| + g(a)
max f(z) < max(|f(2) ~ ()] + 9())

< max |f(z) — g(z)| + maxg(z)
max f(x) — max g(z) < max|f(z) - g(=)]
Similarly (we swap f and g),
max g(x) —max f(z) < max|g(z) — f(2)| = max|f(z) —g(z)],
thus

max |f(x) — g(z)| > | max f(z) — max g(z)|.

Theorem 5.3. The Bellman backup operator B* is a vy-contraction.

Proof. By definition of L., norm,
[1B%(v1) = B*(v2)lloc = max|B"(vi(s)) — B"(v2(s))]-

For every s € S,

B* — B* = ! _ /
|B*(v1(s)) (v2(9))] aglj(}i) R(s,a) +~ Z (s',r ] s,a) - vi(s) arenj(}i) R(s,a) +~ Z (s',r | s,a) - va(s)

s'est s'est
reR reR
/
Sma(x Rsa—i—vg p(s',r | s,a) vi(s) — 75 p(s',r | s,a) - va(s)
acA(s)
s'est s'est
reR re€R

=~ max Z p(s',r | s,a) - (vi(s') —va(s'))].

acA(s)
s'est
reER



We used the [maximal absolute difference lemmal on the second line.

1B (0) = B (va) | < max [ 7 mae | 37 55,7 [ 5.0 (0(5) ~ 0a(s)
s'est
reR

= vymax ma s’ "y — !
v 3 p(6r 50 () = ()
s'est
TER

< ymax ma s',r|s,a)||lvi —v
77565}‘(116,4(};) : p( ) ‘ ) )H 1 2Hoo
s'est
reR

=7 |lv1 — 2|l

O

Therefore, B* is a ~-contraction. By the Banach contraction principle, we deduce that the iterative
application of the Bellman backup operator converges to a single fixed point for arbitrary initial state-
value function v € V:

lim (B*)*(v) = v*

k—o0

But we know the fixed point is the solution v* to the [Bellman optimality equationl That means the
iterative application of the Bellman backup operator converges to an optimal state-value function v* and
that the Bellman optimality equation has a unique solution. O

5.6 Greedy policy

We can directly use the policy improvement theorem to construct a policy 7 € AS which meets the
conditions of the theorem.

For all s € S:

7' (s) = arg max ¢, (s, a)
acA(s)

= arg max E p(s’,r | s,a)[r + v ()]
acA(s) sest
reR

We show that the greedy policy meets the conditions of the theorem. For all s € S,

4 (5,7 (8)) = Jnax 4x(8,0) > qx(s,7(s)) = vr(s)

The greedy policy meets the conditions of the policy improvement theorem, so it is at least as good as
the original policy 7.

Moreover, unless the policy 7 is already optimal, it is better than the original policy w. Assume that the
greedy policy 7’ has the same state-value function as 7. Then

Upr = Uy

Vs €S : v (s) = max Z p(s'sr | s,a)[r + - v (s))

s'est
reR

VUpr = Ux,

by the [Bellman optimality equationl

The process of making a new policy 7’(s) that improves on an original policy, by making it greedy with
respect to the value function of the original policy 7, is called policy improvement.



6 Policy iteration

Policy evaluation can be used to obtain a state-value function v, policy improvement can be used to
obtain a better policy from v,. When alternating policy evaluation and policy improvement steps, the
resulting policy and state-value function converge to the optimal 7, and v, (a finite MDP has only a finite
number of policies and policy improvement always improves the policy unless it is already the optimal
one):

E I E I E I E
o — Ung =7 M1 —> Uy —> T2 —> +*+ —> Ty — Uk

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7*

Algorithm parameter: threshold € > 0 determining accuracy of policy evaluation
1. Initialization
Initialize V(s) € R and 7(s) € A(s) arbitrarily for all s € S, V(L) =0.

2. Policy Evaluation
repeat

A = 0;

foreach s € S do
v="V(s);

V(s) = 2w (87 | 8,m(s))[r + - V(s));

if |[v —V(s)| > A then
| A= -V(s)|;

end if

end foreach

until A < ¢;
3. Policy Improvement
policy-stable = true;
foreach s € S do
old-action = 7(s);
m(s) = argmax, Y., .p(s',7 | s,a)[r +v- V(s
if old-action # 7(s) then
‘ policy-stable = false;
end if

end foreach

if policy-stable then
| return V =v*,m~n*

end if
go to 2.

7 Value iteration

Policy iteration converges to the optimal policy in the limit, but policy evaluation is expensive (it converges
in the limit). Value iteration is a way to find an optimal policy without policy evaluation nor policy
improvement steps. It uses the [Bellman optimality equation| as an update rule.




7.1 Synchronous value iteration

Value iteration (for deterministic policies) is defined as:

vo(s) = { arbitrary s € S,

0 s= 1.
vgpr1(s) = max p(s’' 7 | s,a)[r+-vi(s)]
acA(s)
s'est
TER

and vg (L) = 0 for all k, if present.

7.2 Convergence

Proof. The iterative application of the [Bellman backup operator] is equivalent to value iteration. As it
converges to a single fixed point v*, which is the state-value function of the optimal policy, also the value
iteration algorithm converges to the state-value function of the optimal policy. O

7.3 Asynchronous value iteration

As with policy evaluation, also value iteration converges in its asynchronous form. The algorithm itera-
tively approximates the optimal state-value function and when the updates are reasonably small, it returns
the greedy policy based on the calculated state-value function. In the limit, the state-value function and
thus the greedy policy are optimal.

Value Iteration, for estimating © ~ 7*

Algorithm parameter: threshold € > 0 determining accuracy of estimation
Initialize V (s), for all s € ST, arbitrarily except that V(L) =0
repeat
A = 0;
foreach s € S do
v =V(s);
V(s) =maxq Yy, . p(s',r | s,a)[r + vV (s)];
A = max(A, [v— V(s)]);
end foreach
until A < ¢
Output a deterministic policy, m ~ 7*, such that
m(s) = argmax, Y .p(s',7 | s,a)[r +yV(s')]

Links and sources

e http://incompleteideas.net/book/the-book.html - Reinforcement Learning Chapter 4 - Sutton,
Barto

e https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html| - Original
Gridworld Demo

e https://www.fi.muni.cz/~xivora/reinforcejs/gridworld_dp.html - RL Book Gridworld Demo

e https://www.andrew.cmu.edu/course/10-703/slides/lecture4 valuePolicyDP-9-10-2018.p
df| - policy evaluation convergence proof

e https://www.springer.com/gp/book/9783319015859|- Banach contraction principle proof

e https://www.cse.iitb.ac.in/~shivaram/resources/ijcai-2017-tutorial-policyiteratio
n/tapi.pdf - policy improvement theorem proof

e https://www.cs.cmu.edu/~arielpro/15381f16/c_slides/781f16-11.pdf - Bellman backup
operator is a contraction proof

e http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf| - value
iteration convergence proof (not used in this text)

e https://inst.eecs.berkeley.edu/~cs294-40/fa08/scribes/lecture3.pdf| - asynchronous
value iteration convergence proof sketch (for an interested reader)


http://incompleteideas.net/book/the-book.html
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
https://www.fi.muni.cz/~xivora/reinforcejs/gridworld_dp.html
https://www.andrew.cmu.edu/course/10-703/slides/lecture4_valuePolicyDP-9-10-2018.pdf
https://www.andrew.cmu.edu/course/10-703/slides/lecture4_valuePolicyDP-9-10-2018.pdf
https://www.springer.com/gp/book/9783319015859
https://www.cse.iitb.ac.in/~shivaram/resources/ijcai-2017-tutorial-policyiteration/tapi.pdf
https://www.cse.iitb.ac.in/~shivaram/resources/ijcai-2017-tutorial-policyiteration/tapi.pdf
https://www.cs.cmu.edu/~arielpro/15381f16/c_slides/781f16-11.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf
https://inst.eecs.berkeley.edu/~cs294-40/fa08/scribes/lecture3.pdf
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