
CaverDock

User Guide for version 1.1

http://loschmidt.chemi.muni.cz/caverdock/ March 2020

1

How to cite?

� Filipovic, J., Vavra, O., Plhak, J., Bednar, D., Marques, S.M., Brezovsky, J., Matyska,
L., Damborsky, J., CaverDock: A Novel Method for the Fast Analysis of Ligand Trans-
port. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019.
https://doi.org/10.1109/TCBB.2019.2907492

� Vavra, O., Filipovic, J., Plhak, J., Bednar, D., Marques, S.M., Brezovsky, J., Stourac, J.,
Matyska, L., Damborsky, J., CaverDock: A Molecular Docking-based Tool to Analyse
Ligand Transport through Protein Tunnels and Channels. Bioinformatics, 2019. https:
//doi.org/10.1093/bioinformatics/btz386

Release Notes

CaverDock 1.1

� signi�cantly improved heuristic for upper-bound computation (CaverDock generates
smoother energetic pro�les), improved objective function

� multiple upper-bound trajectories (di�ering at the beginning or the end of the tunnel)
are computed and saved

� script for automatic adding of �exible residues

� pattern restraint can be applied to selected ligand atoms only (usable for docking with
partially set position)

� user can control how similar is the initial snapshot to the dock_like conformation

� CaverDock reports its execution settings (for better reproducibility of experiments)

� improved parallel scaling of upper-bound computation

CaverDock 1.01

� bug�x in upper-bound trajectory computation (the bug has sometimes caused permature
end of backtracking and hence worser upper-bound trajectories)

� CaverDock �nishes with exit codes 0 (all OK), 1 (wrong input), 2 (cannot compute
trajectories) and 3 (cannot compute upper-bound trajectory)

CaverDock 1.0

� the �rst version of CaverDock

1 INTRODUCTION 2

1 Introduction

CaverDock is a tool designed for rapid analysis of ligand transport processes in receptors [2, 3].
It models the transportation of a ligand � a substrate, a product, an inhibitor, a co-factor or
a co-solvent � from the outside environment into the receptor active or binding site (or vice

versa).
The input for the calculation is a receptor structure in the PDB format and a ligand

structure in the PDBQT format. The outputs are the ligand's trajectory and the energetic
pro�le of the process. CaverDock implements a novel algorithm based on molecular docking
that produces a contiguous ligand trajectory and estimates the binding energy along the
pathway.

The current version of CaverDock uses Caver [4] for the pathway identi�cation and a
heavily modi�ed Autodock Vina [1] as the docking engine. The tool is much faster than
molecular dynamic simulations (usually 2-20 min per job), making it suitable even for virtual
screening. The software is extremely easy to use since in its minimalistic con�guration it
requires only the setup for AutoDock Vina and the geometry of the tunnel.

2 Installation

In the current version, CaverDock is distributed as pre-compiled packages, which can be
installed into the system by a standard way (e.g. using dpkg + apt). The package includes
CaverDock binaries, the tunnel discretizer, scripts for a more comfortable CaverDock usage,
this documentation and an example folder, containing a simple example to demonstrate the
CaverDock work�ow described in the Section 3.

Several tools and libraries serve as prerequisites for CaverDock, they can be installed with
the following command.

Listing 1: Install pre-requisites

sudo apt-get install libopenmpi-dev libboost-all-dev \
python-docopt libcgal-dev python-scipy autodocktools

3 Quick start

The typical CaverDock work�ow consists of the following steps:

� calculation of receptor's tunnels with CAVER. Selection of tunnel(s) for CaverDock
analysis and their export into a PDB �le;

� discretization of the tunnel(s) to a set of discs with CaverDock's tool Discretizer;

� preparation of input �les for docking (by conversion of PDB to PDBQT format, option-
ally setting the side-chain �exibility);

� con�guration and execution of CaverDock;

� visualization and interpretation of results.

3.1 Tunnels calculation 3

In the following text, we describe the individual steps of the work�ow. You may test
the work�ow mentioned in this section using the example input stored in the example folder
packed with CaverDock. Any step may be omitted as the folder also contains intermediate
and �nal results.

3.1 Tunnels calculation

The creation and selection of tunnels can be done locally by CAVER software or using the
web portal [5]. For more details on CAVER usage, see CAVER User Guide [6]. You can �nd
the already exported tunnels in the example packed with the CaverDock tool.

3.2 Tunnels discretization

Having one or more tunnels exported, they must be discretized to set of cuts (discs evenly
cutting the tunnel). The discretizer tool requires a tunnel in PDB format as the input and
produces a discretized tunnel for CaverDock. Please note that CAVER considers the active
site as the tunnel's beginning and the surface of the receptor as the tunnel's end. This direction
of the tunnel is also adopted in CaverDock. See Listing 2 for an example of the discretizer
execution and Figure 1 for an illustration of discretizer output.

Listing 2: Discretizer execution

discretizer.py -f tunnel1.pdb -o tunnel1.dsd

Figure 1: Visualization of the tunnel discretization.

3.3 CaverDock execution 4

3.3 CaverDock execution

Finally, CaverDock must be con�gured and executed. The minimalistic con�guration must
contain a speci�cation of the search box and names of the receptor, the ligand and the tunnel
�le. Please note that the search box must contain the whole ligand's trajectory (i.e. the
whole tunnel) together with the area of the possible movement of side-chains. Although the
con�guration �le can be prepared manually or with MGLTools, CaverDock package contains
a script which assembles the con�guration �le with basic settings automatically.

Listing 3: Con�guration preparation

cd-prepareconf -r receptor.pdbqt -l ligand.pdbqt \
-t tunnel1.dsd > caverdock.conf

You can include any of the CaverDock command-line options as a parameter in the con-
�guration. For example, saving the logs from the computation to �les can be turned on by
calling CaverDock with command-line option --log logName or by adding a line log=logName
into the con�guration.

With the prepared con�guration �le, CaverDock may be executed. CaverDock uses MPI1

for parallel execution. For tunnel analysis, it must be executed in at least two processes (by
setting mpirun parameter -np to 2 or more).

Listing 4: CaverDock execution

mpirun -np 9 caverdock --con�g caverdock.conf --out test --log log

CaverDock can be run at a personal notebook or a desktop computer; its execution com-
monly takes from minutes to dozens of minutes. For large-scale execution or highly complex
receptors and ligands, it might be more convenient to run it at a computational cluster.

CaverDock generates several output �les:

� the lower-bound trajectory called outName-lb.pdbqt;

� the upper-bound trajectory called outName-ub.pdbqt;

� alternative upper-bound trajectories found by the heuristic
called outName-ub-alternatives.pdbqt;

� the upper-bound trajectory containing the snapshot with the lowest energy called outName-min.pdbqt;

� a partial lower-bound or upper-bound trajectory called outName-failed.pdbqt, if Caver-
Dock failed to �nd the lower-bound or upper-bound trajectory;

� a check-point �le with the lower-bound trajectory called outName-lb.txt that can be
loaded in future executions with --load_lb outName-lb.txt;

� a �le with ranges of energies for all discs called outName-ranges.dat;

� a �le with information about bottlenecks for each disc called bottlenecksName.noOfDisc
if CaverDock was called with option --dump_bottlenecks bottlenecksName;

1Implementation of Message Passing Interface, such as OpenMPI: https://www.open-mpi.org/

3.4 Results visualization 5

� logs with detailed information about CaverDock run called logName.noOfProcess if
CaverDock was called with option --log logName;

where outName can be set with parameter --out outName.

3.4 Results visualization

Files outName-lb.pdbqt and outName-ub.pdbqt are created upon successful processing of the
tunnel by CaverDock. The �rst �le contains a trajectory estimating the lower-bound of the
energy pro�le. The lower-bound trajectory is not contiguous; however, it samples the tunnel
without any gap in the ligand movement. The second trajectory is contiguous and estimates
the upper-bound of the energy pro�le (it is the best trajectory found; however, a trajectory
with better energy pro�le may exist). You can explore the geometry of trajectories by standard
tools for viewing PDBQT �les (PMV and some versions of PyMOL), and you can also create
graphs of transport energy.

Energies of all snapshots as well as their positions in a tunnel are stored in PDBQT �les
(lines beginning with REMARK CAVERDOCK). One can easily extract the data to text with
a simple script.

Listing 5: Extraction of energies

cd-energypro�le -d tunnel1.dsd -t outName-ub.pdbqt -s 0 > energy.dat

The energies should be extracted from PDBQT �le containing an upper-bound trajectory (it
contains the geometry of upper-bound trajectory and both upper and lower-bound energies).
After the extraction, one can easily create graphs with any tool, such as Gnuplot.

Listing 6: Visualization of energies with Gnuplot

gnuplot -e "set xlabel \"distance\"; set ylabel \"energy\"; plot "\
"\"energy.dat\" u 1:4 w l t \"upper-bound\", \"\" u 1:6 w l "\
"t \"lower-bound\"" -p

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

 0 2 4 6 8 10 12

b
in

d
in

g
 e

n
e
rg

y
 (

k
c
a
l/
m

o
l)

distance from active site (A)

lower-bound
upper-bound

Figure 2: Visualization of energy barriers along the trajectory. The upper-bound trajectory
is shown in red, the lower-bound trajectory is shown in green.

Moreover, the script cd-reportgenerator generates a LATEXand PDF �le that contains:

4 RESULTS INTERPRETATION 6

� details about experiment setup: CaverDock version, git commit hash, values of options

� the energy pro�le with lower-bound and upper-bound trajectory

� if bottleneck �le is provided, the energy pro�le contains labels of aminoacids at the
bottlenecks of the tunnel

� if the name of alternative trajectories is provided (out-ub-alternatives.pdbqt), the
energy pro�le depicting pro�les of all alternative trajectories

� the �gure with a range of energies of viable snapshots for each disc

� experiment summary (when, where and for how long it ran)

In order to generate the report later, you need to save the log from the run by redirecting
the output or by setting --log name and optionally save the bottlenecks if you want to examine
them later in the report by setting --dump_bottlenecks.

The report can be generated by calling the script, creating report.tex and report.pdf.

Listing 7: Generating a report from the run

cd-reportgenerator -l log.0 -d tunnel1.dsd -t outName-ub.pdbqt -r outName-ranges.dat -a
outName-ub-alternatives.pdbqt

4 Results interpretation

To fully understand CaverDock results, one needs to be familiar with the basic principles of
CaverDock's method, which is used to analyze a ligand's movement through a tunnel. The
method uses restrained docking, with two types of restraints:

� placement of a ligand atom at the 2D disc in 3D space;

� placement of the whole ligand in upper-bound vicinity of the de�ned snapshot.

Figure 3: A scheme depicting CaverDock method providing the lower-bound (left) and the
upper-bound (right) trajectories.

First, CaverDock computes the so-called lower-bound trajectory. With this trajectory,
a ligand atom (closest to the ligand center by default) is iteratively placed and consequent
discs. This method samples the tunnel �nely; however, a ligand trajectory may contain
discontinuities (a ligand can, e.g. �ip when moved to a di�erent disc). Thus, some bottlenecks
may not be detected (Figure 3 left). Second, CaverDock starts to search for a contiguous

5 COMMAND LINE OPTIONS 7

trajectory by docking to consequent discs, but always in the vicinity of the previous snapshot
(Figure 3 right).

Snapshots of the lower-bound trajectory are computed for each disc separately; thus, the
trajectory search space is relatively small. On the other hand, the position of each snapshot
of the contiguous trajectory depends on the previous snapshot. As there are exponentially
many trajectories with respect to the number of discs, an exhaustive search of all contiguous
trajectories is not feasible. CaverDock uses the heuristic method to prune the space of possible
trajectories. The heuristic does not guarantee that the trajectory with the lowest energy is
found; thus, we call a contiguous trajectory upper-bound trajectory, as it upper-bound energy
of transport process (the actual energy is the same or lower).

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

b
in

d
in

g
 e

n
e

rg
y
 (

k
c
a

l/
m

o
l)

distance (A)

upper-bound
lower-bound

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

b
in

d
in

g
 e

n
e

rg
y
 (

k
c
a

l/
m

o
l)

distance (A)

upper-bound
lower-bound

Figure 4: Examples of two distinct trajectories obtained using CaverDock. Left: similar lower
and upper-bound, right: di�erent lower and upper-bound.

Ideally, the lower-bound and upper-bound energies approximately agree (Figure 4 left).
If the di�erence is higher than expected(Figure 4 right), we need to explore the trajectory
and examine whether the bottleneck which appeared in the upper-bound trajectory is rather
an artefact of the computational method, or if it is created by a real barrier in the tunnel.
We can also try to improve the precision of the CaverDock computation using the procedure
described in the Section 7.

5 Command line options

The main function of CaverDock is to analyze the transportation of a ligand through a tunnel.
However, it can also be executed for a single docking. In the single docking mode, CaverDock
performs single docking with restraints, which can be used as a building block for other tools
using restrained docking.

The parameters accepted by CaverDock can be divided into three categories:

� docking options, derived from AutoDock Vina;

� options con�guring tunnel analysis;

� options for restrained docking.

5.2 Tunnel analysis options 8

5.1 Docking options

CaverDock accepts the same parameters as Autodock Vina, which are used to con�gure,
how the docking is performed. When only those parameters are given, and only one process
is executed2, CaverDock works exactly like AutoDock Vina. When a tunnel analysis or a
single restrained docking is executed, docking options described in this section must also be
de�ned, as they parametrize docking internally used in CaverDock. The list of basic docking
parameters can be found in Table 1. For more information about AutoDock Vina docking and
all docking parameters, we refer to AutoDock Vina Users Guide [8].

--receptor arg Rigid part of the receptor (in PDBQT format).
--flex arg Flexible side chains, if any (in PDBQT format).
--ligand arg Ligand (in PDBQT format).
--center_x arg

--center_y arg

--center_z arg

Coordinates of the center of the search box. The search
box must contain space of the whole tunnel and all �exi-
ble residues with their potential movement. The CaverDock
package contains a script prepareconf.py which computes
the search box automatically (Section 3.3).

--size_x arg

--size_y arg

--size_z arg

Size of the search box in Å. The search box must contain
space of the whole tunnel and all �exible residues with their
potential movement. The CaverDock package contains a
script prepareconf.py which computes the search box au-
tomatically (Section 3.3).

--out arg Output �le(s) pre�x. When docked to the tunnel, a �le with
the su�x -lb.pdbqt is generated for the lower-bound tra-
jectory, -ub.pdbqt for the upper-bound trajectory and occa-
sionally -failed.pdbqt if the upper-bound trajectory is not
computed (the failed trajectory contains the longest known
contiguous trajectory).

--exhaustiveness arg Exhaustiveness of the global optimization algorithm (a
higher number means a higher number of tested conforma-
tions). Usually values from the interval 1�8 are su�cient.

--cpu arg Number of threads used per process.
--log Writes a log �le(s), usable for debugging.

Table 1: Docking parameters.

5.2 Tunnel analysis options

In this section, we introduce all parameters related to the analysis of ligand transport through a
tunnel. For the transport analysis, at least two processes must be executed (using mpirun -np 2

or greater). Note that the only required parameter is --tunnel, other parameters can be used
to change the default settings. The basic parameters allow de�ning the type of the computed
trajectory and the optimization strategy or hinting the initial position of a ligand (Table 2),
whereas advanced parameters a�ect restraints applied to the docking (Table 3).

2by direct execution of the binary or executing it via mpirun -np 1

5.2 Tunnel analysis options 9

--tunnel arg The �le containing discretized tunnel. This parameter is
required.

--final_state arg The �nal state of trajectory search. May be set
to LB (compute the lower-bound trajectory only) or
SMOOTHED (default), computing the lower and the
upper-bound trajectories.

--optimization_strategy arg Strategy for the upper-bound trajectory optimization.
CaverDock may minimize the highest energy in a trajec-
tory as a primary criterion and the cumulative energetic
barrier as a secondary criterion (MAX, default value) or
the cumulative energetic barrier across a whole trajectory
(HILL).

--dock_like arg PDBQT �le de�ning the ideal position of the ligand in the
active site. The starting disc is selected to bring a ligand
closest to the active site. This parameter may help when
the tunnel obtained from CAVER is too deep (and thus
CaverDock pushes the ligand against the energetic barrier
at the bottom of the tunnel).

--dump_bottlenecks arg Dump the bottlenecks observed along the trajectory.
There are multiple �les generated: in the �le arg, a
list of bottleneck residues and a list of bottlenecks for
�nal upper-bound trajectory are given. For n disks, �les
arg.0.., arg.n-1 are generated: they contain the bottle-
necks for the snapshots used in the �nal trajectory as well
as the snapshots generated during the trajectory search
and not used in the output trajectory. Reporting the bot-
tlenecks in unused snapshots may help the user to recog-
nize which residues prevent CaverDock from moving the
ligand in alternative pathways.

Table 2: Basic tunnel analysis parameters.

Whereas the basic tunnel analysis options can be set by beginner users and should not
a�ect the robustness of the CaverDock computation, a suboptimal setting of advanced options
may lead to very a slow computation or a failure of the search for contiguous conformation.
Thus, these should be set carefully.

--backtrack_threshold arg The energy increment over the lower-bound trajec-
tory, which leads to the execution of backtracking.
A lower value, lower energy of the upper-bound
trajectory and higher computation time can be ex-
pected. The default value is 1 kcal/mol.

5.3 Restrained docking options 10

--backtrack_limit arg The minimal number of steps (visited discs) which
must be performed after backtracking, before new
backtracking is executed. Values higher than 1 for-
bid frequent executions of backtracking from unfea-
sible areas. The default value is 5.

--cont_threshold arg The maximal atom movement (in Angstroms) be-
tween adjacent snapshots, which is considered to be
contiguous. The default value is 0.8Å.

--pattern_limit arg The maximal distance (in Angstroms) between ad-
jacent snapshots, which is not penalized by a con-
tiguity restraint. The default value is 0.6Å, must
be smaller than --cont_threshold and higher than
the maximal distance of discs created during a tun-
nel discretization.

--dock_like_limit arg The maximal distance (in Angstroms) between the
�rst snapshot and the ideal position of the ligand
(de�ned by --dock_like), which is not penalized a
restraint. The default value is 2.0Å

--allow_flex_discontinuity Allows the receptor side-chain residues to perform
non-contiguous movements even when the upper-
bound trajectory is computed. The default behav-
ior is that a contiguous movement is required for
both the ligand and the side-chain residues.

--parallel_workers_lb arg The number of processes solving each docking task
of a lower-bound trajectory computation in parallel
(alternative to exhaustiveness with better scaling).
The default value is 4.

--parallel_workers_smooth arg The number of processes solving each docking task
of an upper-bound trajectory computation in par-
allel (alternative to exhaustiveness, scales better).
The default value is 4.

--early_exit Allows CaverDock to immediately halt when lower-
bound at some disc cannot be computed. The pa-
rameter can be used with screening, where rapid
discarding of narrow tunnels is required.

Table 3: Advanced tunnel analysis parameters.

5.3 Restrained docking options

In this section, parameters applicable to perform a single docking with restraints are in-
troduced. Note that those parameters are not employed in the standard usage scenario of
CaverDock (an analysis of the whole trajectory). However, they may be used for debugging
or building a tool on the top of CaverDock.

There are essentially two types of restraints implemented: a disc, which �xes a ligand's
atom and a pattern, which restricts the positions of all ligand's atoms. When the disc is

6 AUTOMATIC FLEXIBILITY 11

de�ned, docking is performed in the way that a selected ligand atom must be placed in close
vicinity of the disc. The discs may de�ne a cut of a tunnel, or a point in space (when the disc
radius is set to a very small number). The pattern holds the whole ligand in the vicinity of
pattern atoms. So, it is possible to search only for the ligand conformations which are close
to the one de�ned by the pattern.

--ccenter_x arg

--ccenter_y arg

--ccenter_z arg

Coordinates of the center of a disc attracting a ligand (its
central atom, or the atom selected by catomnum parameter).

--cnormal_x arg

--cnormal_y arg

--cnormal_z arg

The normal vector of a disc attracting a ligand (its central
atom, or the atom selected by catomnum parameter).

--cradius arg The radius of a disc attracting a ligand (its central atom, or
atom selected by catomnum parameter).

--catomnum arg The ID of an atom in PDB, which is attracted to a disc.
--ctemplate arg PDB or PDBID of the template, which restricts the ligand

atoms movement (they must remain in a vicinity of the tem-
plate atoms, de�ned by --ctemplate_limit).

--ctemplate_limit arg The distance (in Angstroms) of the docked ligand atoms to
their counterparts in a template (de�ned by --ctemplate),
which is tolerated without applying an attractive force to the
template.

--ctemplate_restrict arg The subset of template's atoms, which are used to restrict
position of ligand atoms movement. De�ned as a list of atom
IDs delimited by "_", e.g. 1_3_4 applies the template to the
�rst, the third and the fourth atoms only.

Table 4: Restrained docking parameters.

6 Automatic Flexibility

CaverDock 1.1 contains the experimental support for automatic addition of �exible residues.
The script cd-flexibilize iterativelly adds �exible residdues by performing following proto-
col:

� compute trajectory with CaverDock;

� if convergence criterion met, �nish the protocol;

� search for side-chain residues forming bottlenecks;

� construct receptor �le with more �exible side-chain residues;

� repeat the protocol.

The script begins with a rigid receptor and in each iteration adds a number of �exible
residues de�ned by --addflex parameter (1 by default). The number of iterations is upper-
bound by parameter --maxiters (4 by default), or the script may �nish when the highest
energy of the computed trajectory is under threshold de�ned by parameter --stopenergy.

7 BEST PRACTICES 12

Together with the con�guration of �exible residues addition described above, the script
requires caverdock con�g �le passed by -c (must not contain receptor �le), the geometry of a
rigid receptor passed by -r and number of processes used for MPI de�ned by -p. The example
of �exibilize script execution is given in Listing 8.

Listing 8: Flexibilize script execution

cd-�exibilize -c caverdock.conf -r receptor.pdbqt -p 3 --maxiters=2 --stopenergy=-3

The resulting trajectory produced by the �exibilize script is stored in �les out-lb.pdbqt
and out-ub.pdbqt, where out is the output name set by user in con�guration �le. The
intermediate trajectories (with less �exible residues than the �nal trajectory) are also saved
with su�x rigid or flex-i (where i is iteration number).

7 Best practices

7.1 Improving energy

CaverDock has been parametrized to bring a good mix of computational e�ciency and pre-
cision of computation. However, there is still some room for hand-tuning the CaverDock
computation. One can tune the CaverDock parameters to increase the precision of its com-
putation and the structure of molecules to ease the computation of the ligand movement.

7.2 Improving lower-bound energy

The lower-bound energy depends on a tunnel geometry and the docking ability to �nd good
local minima. To improve (decrease) the energy of the lower-bound trajectory, several argu-
ments can be tuned:

� --exhaustiveness can be set to a higher value which increases the number of random
walks of Markov-chain Monte Carlo global search algorithm and increases the probability
of �nding good local minima;

� --parallel_workers_lb can be set to a higher value and should have a similar e�ect
to --exhaustiveness.

If the energy of the lower-bound trajectory is too high even with high exhaustiveness, the
ligand probably cannot pass through the tunnel in the real-world, or there is some issue with
the tunnel or the receptor geometry. Three typical issues are described below.

� The tunnel obtained from CAVER forces the ligand to move too deeply into the tun-
nel, where it reaches the energetic barrier at the tunnel bottom. This situation can be
detected by exploring the energy graph: the energy is very high in the area of the begin-
ning of the tunnel (i.e. around the position zero at x-axis). In such case, --dock_like
parameter can be used to set the correct starting disc, so the ligand will not be pushed
against the tunnel bottom.

� Side-chain residues are forming a bottleneck. We can detect this issue by exploring the
bottleneck dump. In such a case, side-chain residues forming the bottleneck should be
set to be �exible by MGTools [7].

7.3 Improving upper-bound energy 13

� The backbone residues are forming a bottleneck. We can detect this issue by exploring
the bottleneck dump. In such a case, we need to use a di�erent geometry of the receptor
(e.g. one obtained from an MD simulation). This is a typical issue when the receptor
structure is taken from a crystal with tunnels closed due to intramolecular interactions
and crystal packing.

7.3 Improving upper-bound energy

When we are satis�ed with the lower-bound energy, we can focus on the upper-bound energy.
If the di�erence between the lower-bound and the upper-bound energies is too high, we can
tune several CaverDock parameters:

� --backtrack_threshold can be set to a lower value, if we consider 1 kcal/mol already as
an undesired di�erence between the lower-bound and the upper-bound energies. Beware
that tuning this value may result in longer computation times.

� --backtrack_limit can be set to a lower value so that CaverDock will execute back-
tracking more aggressively. Beware that tuning this value may result in longer compu-
tation times.

� --multiple_search can be set to a larger value so that CaverDock will execute more
instances of forward movements or backtrackings. Beware that tuning this value may
result in longer computation times if insu�cient cores are used by CaverDock.

Together with the CaverDock parameters, we should also check the geometry of the tunnels
and the receptor (Section 7.2), as some bottlenecks, as well as issues with a tunnel bottom,
may arise only when a contiguous trajectory is computed.

7.4 Improving computation time

The CaverDock is usually quite fast on a standard desktop computer (its execution commonly
takes from minutes to dozens of minutes). However, the execution time can be improved by
the following actions.

� Use as low �exible side-chain residues as possible. The computational time of a docking
grows rapidly with the number of degrees of freedom of the system. Using �exible side-
chain residues may greatly improve the energy pro�le; however, we recommend setting
�exibility only on residues, which are proved to form a bottleneck in a particular tunnel
(i.e. they are reported with --dump_bottlenecks option).

� Use the right number of parallel processes. CaverDock uses MPI; thus, it can use multiple
cores of a desktop machine or even multiple nodes of a cluster. The number of processes
(passed by -np parameter of mpirun) should be set to a number of virtual cores plus
one (e.g. use -np 9 on a machine with 8 cores). Please note that computing lower-
bound trajectory scales very well (CaverDock can utilize a hundred of cores in a typical
scenario), whereas upper-bound trajectory scales up to the number of concurrently ex-
ecuted docking multiplied by concurrent searches (set by --parallel_workers_smooth

and --multiple_search, respectively).

8 TROUBLESHOOTING 14

� Try increasing the number of parallel workers instead of exhaustiveness. The default
number of processes solving the same docking scenario in parallel is 4. If one wants
to increase the exhaustiveness of docking, the values of --parallel_workers_lb and
--parallel_workers_smooth parameters may be increased instead of the value of --exhaustiveness.

The tips described above improve the CaverDock speed in general. However, some issues
result from the properties of analyzed biochemical systems. We summarize typical issues and
suggest possible solutions in the listing below.

� Backtracking is executed very frequently (this can be observed in CaverDock log �les).
When an upper-bound trajectory is computed, CaverDock tries to keep its energy as close
to the lower-bound as possible. In some cases, it is not possible, and CaverDock executes
a lot of backtracking trying to �nd a better trajectory without any success. The number
of executed backtracking runs can be decreased by parameters --backtrack_threshold
(higher di�erence of the lower-bound and upper-bound energies may be required to
start backtracking) or --backtrack_limit (the frequency of backtracking execution
may be lowered). Beware that usually high computational times and a high number of
backtracking executions are related to suboptimal geometry of the tunnel or the receptor
(Section 7.2 for geometry optimization tips).

� The number of degrees of freedom is very high. If the number of �exible side-chain
residues is high, we can �x some residues in such a position which does not form a
bottleneck and make them rigid. We may also try to compute a contiguous ligand
movement with a non-contiguous movement of side-chain residues by using parameter
--allow_flex_discontinuity (which removes some restraints in the search space). If
the origin of the high number of degrees of freedom is mainly the complexity and the size
of a ligand, this system may be too complex to be e�ciently analyzed by CaverDock.

8 Troubleshooting

8.1 CaverDock cannot compute the lower-bound trajectory

There are several possible reasons, which may prevent CaverDock from computing the lower-
bound trajectory.

� A part of the tunnel is too narrow and therefore it forms a strong repulsive barrier. This
situation needs manual inspection: CaverDock saves only the part of the lower-bound
trajectory, which was successfully computed. The missing part of the trajectory probably
contains a strong repulsive barrier such as a residue preventing the ligand from moving
through the tunnel. The receptor geometry needs to be �xed by adding �exibility to
side-chain residues or using a di�erent snapshot of the receptor.

� The ligand is forced to move against the active site bottom. This problem arises from a
geometrical analysis of the tunnel where the geometrical approximation of the tunnel is
too deep. An easy solution is to use the --dock_like parameter to navigate CaverDock
where to start with the tunnel analysis.

� The ligand is too complex to be successfully docked. CaverDock can be re-executed with
higher exhaustiveness or a higher number of parallel workers.

8.2 CaverDock cannot compute the upper-bound trajectory 15

� The computation fails due to the stochastic nature of CaverDock. In this case, starting
CaverDock once again should solve the problem.

8.2 CaverDock cannot compute the upper-bound trajectory

When an upper-bound trajectory cannot be computed, the user should inspect the lower-
bound trajectory �rst. When the lower-bound trajectory already contains a high energetic
barrier, the tunnel or the receptor geometry needs to be modi�ed (Section 7.2). If it is not
possible to improve the lower-bound trajectory, the selected ligand is likely not able to pass
through the tunnel.

When the lower-bound trajectory does not contain any signi�cant barrier, and the upper-
bound trajectory is still not computed, CaverDock may not able to analyze the trajectory
because of a high ligand complexity, or there is a bottleneck not detected by the lower bound
trajectory. This type of bottlenecks can be found by inspecting the lower-bound trajectory
in the vicinity of the disc, where the computation of the upper-bound trajectory has failed3.
There should be visible non-contiguities in the lower-bound trajectory, which overpass the
bottleneck (e.g. ligand �ip, as shown in Fifure 3). The bottleneck needs to be manually
identi�ed and �xed (e.g. by using �exible side-chain residues).

9 FAQ

9.1 Is CaverDock execution deterministic?

In the default settings, it is not deterministic (i.e., re-executing CaverDock may result in
di�erent trajectories). There is, however, a way how to make CaverDock deterministic. It must
be executed in two processes only (using mpirun -np 2), and the random number generator
must be set to a constant seed (using --seed x, where x is any number, which must be the
same for all deterministic executions). Please note that when CaverDock is executed only for
single docking (possibly with restraints), setting a constant seed is su�cient.

9.2 Why does CaverDock return two types of energy?

A heuristics drives the CaverDock computation of an upper-bound trajectory. It means that
CaverDock cannot guarantee that the contiguous trajectory is optimal. Thus, CaverDock is
computing also a lower-bound trajectory: a scenario, which can be unrealistically optimistic
due to non-continuities in the trajectory. The real energy (with respect to the given force-�eld
and the geometry of the input molecules) is at most as high as the energy of the upper-bound
trajectory and at least as low as the energy of the lower-bound trajectory.

References

[1] O. Trott, A. J. Olson, AutoDock Vina: Improving the Speed and Accuracy of Docking
with a New Scoring Function, E�cient Optimization and Multithreading. Journal of

Computational Chemistry 31 455-461 (2010).

3CaverDock reports a number of the last disc, for which the upper-bound trajectory was computed. The
number of snapshots in the lower-bound trajectory is equal to the number of the disc.

REFERENCES 16

[2] Vavra, O., Filipovic, J., Plhak, J., Bednar, D., Marques, S.M., Brezovsky, J., Stourac,
J., Matyska, L., Damborsky, J., CaverDock: A Molecular Docking-based Tool to Anal-
yse Ligand Transport through Protein Tunnels and Channels. Bioinformatics, 2019.
https://doi.org/10.1093/bioinformatics/btz386

[3] Filipovic, J., Vavra, O., Plhak, J., Bednar, D., Marques, S.M., Brezovsky, J., Matyska,
L., Damborsky, J., CaverDock: A Novel Method for the Fast Analysis of Ligand Trans-
port. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019.
https://doi.org/10.1109/TCBB.2019.2907492

[4] E. Chovancova, A. Pavelka, P. Benes, O. Strnad, J. Brezovsky, B. Kozlikova, A. Gora,
V. Sustr, M. Klvana, P. Medek, L. Biedermannova, J. Sochor, J. Damborsky, CAVER
3.0: A Tool for Analysis of Transport Pathways in Dynamic Protein Structures. PLOS

Computational Biology 8: e1002708 (2012).

[5] CAVER Web Portal. https://loschmidt.chemi.muni.cz/caverweb/

[6] CAVER User Guide. http://www.caver.cz/�l/download/manual/caver_userguide.pdf

[7] MGLTools. http://mgltools.scripps.edu/

[8] AutoDock Vina Users Guide. http://vina.scripps.edu/manual.html

