
CaverDock

User Guide for version 1.0

http://loschmidt.chemi.muni.cz/caverdock/ 2017

1 INTRODUCTION 1

How to cite?

• Filipovic, J., Vavra, O., Plhak, J., Bednar, D., Marques, S., Brezovsky, J., Matyska, L.,
Damborsky, J., A Novel Method for Analysis of Ligand Binding and Unbinding Based
on Molecular Docking. (in preparation).

• Vavra, O., Filipovic, J., Plhak, J., Bednar, D., Marques, S., Brezovsky, J., Matyska, L.,
Damborsky, J., CAVERDOCK: A New Tool for Analysis of Ligand Binding and Un-
binding Based on Molecular Docking. PLOS Computational Biology (in preparation).

1 Introduction

CaverDock is a tool designed for a rapid analysis of transport processes in proteins [2, 3]. It
models the transportation of a ligand – a substrate, a product, an inhibitor, a co-factor or
a co-solvent – from the outside environment into the protein active or binding site (or vice
versa).

The input for the calculation is a protein structure in the PDB format and a ligand
structure in the PDBQ format. The outputs are a ligand’s trajectory and energetic profile.
CaverDock implements a novel algorithm which is based on molecular docking and is able
to produce a contiguous ligand trajectory and estimation of the binding energy along the
pathway.

The current version of CaverDock uses Caver [4] for the pathway identification and a
heavily modified Autodock Vina [1] as the docking engine. The tool is much faster than
molecular dynamic simulations (usually 2-20 min per job), making it suitable even for virtual
screening. The software is extremely easy to use, since in its minimalistic configuration it
requires only the setup for AutoDock Vina and the geometry of the tunnel.

2 Installation

In current version, CaverDock is distributed as pre-compiled binaries only. There are several
tools and libraries that need to be installed in the system:

• Python 2.7 (3.x is currently not compatible with vPython)

• SciPy

• vPython

• docopt

• CGAL

• boost

• MPI

• MGLTools

On Ubuntu 16.04, dependencies can be installed by as follows.

3 QUICK START 2

Listing 1: Dependencies installation

sudo apt−get i n s t a l l l ibopenmpi−dev l i bboo s t−a l l−dev \
python−v i s u a l python−docopt l i b c g a l−dev python−s c ipy \
autodocktoo l s

CaverDock archive contains several folders:

• bin, where the binary of caver-dock is placed;

• discretizer, containing sources of the discretizer;

• scripts, where several scripts for a more comfortable CaverDock usage are located;

• doc contains this documentation;

• example containing a simple example to demonstrate the CaverDock workflow described
in the Section 3.

In the root folder, there is a script setting all paths. The last step of the installation is
to execute this script, so CaverDock and additional scripts can be called without using an
absolute path.

Listing 2: Path setup

source caverdock . bashrc

3 Quick start

The typical CaverDock workflow consists of the following steps:

• Calculation of protein’s tunnels with CAVER. Selection of tunnel(s) for CaverDock
analysis and their export into a PDB file.

• Discretization of tunnel(s) to a set of discs with CaverDock’s tool Discretizer.

• Preparation of input files for docking (by conversion of PDB to PDBQT format, op-
tionally setting the side-chain flexibility).

• Configuration and execution of CaverDock.

• Visualization of results from CaverDock computation.

In the following text, we will describe the individual steps of the workflow. Each reader
may test the workflow mentioned in this section using the example input stored in the example
folder packed with CaverDock. Any step may be omitted as the folder contains also interme-
diate and final results.

3.1 Tunnels calculation

The creation and selection of tunnels can be done locally by CAVER software or using the
web portal [5]. For more details on CAVER usage, see CAVER User Guide [6]. You can find
the already exported tunnels in the example packed with the CaverDock tool.

3.2 Tunnels discretization 3

3.2 Tunnels discretization

Having one or more tunnels exported, they must be discretized to set of cuts (discs evenly
cutting the tunnel). The discretizer tool requires a tunnel in PDB format as the input and
produces a discretized tunnel for CaverDock. It is recommended to switch visualization on
(option -d) and check if the tunnel is discretized correctly (a visualized tunnel can be rotated
by mouse movement when the right mouse button is pressed). See Listing 3 for an example
of the discretizer execution and Figure 1 for an illustration of visual output.

Listing 3: Discretizer execution

d i s c r e t i z e r . py −f tunne l1 . pdb −d −o tunne l1 . dsd

Figure 1: Visualization of the tunnel discretization.

3.3 Molecules preparation

The molecules of the receptor and the ligand must be prepared for molecular docking. The
procedure is the same as with Autodock Vina – scripts in MGLTools [7] can be used for this
purpose, as shown in Listing 4.

Listing 4: Molecules preparation

p r e p a r e r e c e p t o r4 . py −r r e c ep to r . pdb
pr epa r e l i g and4 . py − l l i gand . mol2

3.4 CaverDock execution 4

3.4 CaverDock execution

Finally, CaverDock must be configured and executed. The minimalistic configuration must
contain a specification of the search box and names of a receptor, a ligand and a tunnel
file. Please note that the search box must contain the whole ligand’s trajectory (i.e. the
whole tunnel) together with the area of the possible movement of side-chains. Although the
configuration file can be prepared manually or with MGLTools, CaverDock package contains
a script which assembles the configuration file with basic settings automatically.

Listing 5: Configuration preparation

preparecon f . py −r r e c ep to r . pdbqt − l l i gand . pdbqt \
−t tunnel1 . dsd > caverdock . conf

With the prepared configuration file, CaverDock may be executed. CaverDock uses MPI1

for parallel execution. For tunnel analysis, it must be executed in at least two processes (by
setting mpirun parameter -np to 2 or more).

Listing 6: CaverDock execution

mpirun −np 9 caverdock −−c o n f i g caverdock . conf −−out t e s t

3.5 Results visualization

Files test-lb.pdbqt and test-ub.pdbqt are created upon a successful processing of the tunnel by
CaverDock. The first file contains a trajectory estimating the lower-bound of energy profile.
The lower-bound trajectory is not contiguous, however, it samples the tunnel without any gap
in the ligand movement. The second trajectory is contiguous and estimates the upper-bound
of the energy profile (it is the best trajectory found, however, a trajectory with better energy
profile may exist). We can explore the geometry of trajectories by standard tools allowing
to view PDBQT files (PMV and some versions of PyMOL) and we can also create graphs of
transport energy.

Energies of all snapshots as well as their positions in a tunnel are stored in PDBQT files
(lines beginning with REMARK CAVERDOCK). One can easily extract the data to text
with a simple script.

Listing 7: Extraction of energies

e n e r g y p r o f i l e . py −d tunne l1 . dsd −t t e s t−ub . pdbqt −s 0 > energy . dat

The energies should be extracted from PDBQT file containing an upper-bound trajectory
(it contains geometry of upper-bound trajectory and both upper and lower-bound energies).
After the extraction, one can easily create graphs with any tool, such as gnuplot.

Listing 8: Visualization of energies with gnuplot

gnuplot −e ” s e t x l a b e l \” d i s t anc e \” ; s e t y l a b e l \” energy \” ; p l o t ”\
”\” energy . dat \” u 1 :4 w l t \”upper−bound \” , \”\” u 1 :6 w l ”\
” t \” lower−bound\”” −p

1Implementation of Message Passing Interface, such as OpenMPI: https://www.open-mpi.org/

4 RESULTS INTERPRETATION 5

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

 0 2 4 6 8 10 12

b
in

d
in

g
 e

n
e
rg

y
 (

k
c
a
l/
m

o
l)

distance from active site (A)

upper-bound
lower-bound

Figure 2: Visualization of energy barriers along the trajectory. The upper-bound trajectory
is shown in red, the lower-bound trajectory is shown in green.

4 Results interpretation

To fully understand CaverDock results, one needs to be familiar with basic principles of the
CaverDock’s method, which is used to analyze a ligand’s movement through a tunnel. The
method uses constrained docking, with two types of constraints:

• placement of a ligand atom at 2D disc in 3D space;

• placement of the whole ligand in upper-bound vicinity of defined snapshot.

Figure 3: A scheme depicting CaverDock method providing the lower-bound (left) and the
upper-bound (right) trajectories.

First, CaverDock computes the so called lower-bound trajectory. With this trajectory,
a ligand atom (closest to the ligand center by default) is iteratively placed and consequent
discs. This method samples the tunnel finely, however, a ligand trajectory may contain
discontinuities (a ligand can e.g. flip when moved to a different disc). Thus, some bottlenecks
may not be detected (Figure 3 left). Second, CaverDock starts to search for a contiguous
trajectory by docking to consequent discs, but always in a vicinity of the previous snapshot
(Figure 3 right).

Snapshots of the lower-bound trajectory are computed for each disc separately, thus, the
trajectory search space is relatively small. On the other hand, the position of each snapshot
of the contiguous trajectory depends on the previous snapshot. As there are exponentially
many trajectories with respect to the number of discs, an exhaustive search of all contiguous
trajectories is not feasible. CaverDock uses the heuristic method to prune the space of possible

5 COMMAND LINE OPTIONS 6

trajectories. The heuristics does not guarantee that the trajectory with the lowest energy is
found, thus, we call a contiguous trajectory upper-bound trajectory, as it upper-bound energy
of transport process (the actual energy is the same or lower).

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

b
in

d
in

g
 e

n
e

rg
y
 (

k
c
a

l/
m

o
l)

distance (A)

upper-bound
lower-bound

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

b
in

d
in

g
 e

n
e

rg
y
 (

k
c
a

l/
m

o
l)

distance (A)

upper-bound
lower-bound

Figure 4: Examples of two distinct trajectories obtained using CaverDock. Left: similar lower
and upper-bound, right: different lower and upper-bound.

Ideally, the lower-bound and upper-bound energies approximately agree (Figure 4 left).
If the difference is higher than expected(Figure 4 right), we need to explore the trajectory
and examine whether the bottleneck which appeared in the upper-bound trajectory is rather
an artifact of the computational method, or if it is created by a real barrier in the tunnel.
We can also try to improve the precision of the CaverDock computation using the procedure
described in the Section 6.

5 Command line options

The main function of CaverDock is to analyze the transportation of a ligand through a tunnel.
However, it can be executed also for single docking. In the single docking mode, CaverDock
allows to perform single docking with constraints, which can be used as a building block for
other tools using constrained docking.

The parameters accepted by CaverDock can be divided into three categories:

• docking options, derived from AutoDock Vina;

• options configuring tunnel analysis;

• options for constrained docking.

5.1 Docking options

CaverDock accepts the same parameters as Autodock Vina, which are used to configure,
how the docking is performed. When only those parameters are given and only one process
is executed2, CaverDock works exactly like AutoDock Vina. When a tunnel analysis or a
single constrained docking is executed, docking options described in this section must also be
defined, as they parametrize docking internally used in CaverDock. The list of basic docking

2by a direct execution of the binary, or executing it via mpirun -np 1

5.2 Tunnel analysis options 7

parameters can be found in Table 1. For more information about AutoDock Vina docking
and all docking parameters, we refer to AutoDock Vina Users Guide [8].

--receptor arg Rigid part of the receptor (in PDBQT format).

--flex arg Flexible side chains, if any (in PDBQT format).

--ligand arg Ligand (in PDBQT format).

--center x arg

--center y arg

--center z arg

Coordinates of the center of the search box. The search
box must contain space of the whole tunnel and all flexible
residues with their potential movement. The CaverDock
package contains a script prepareconf.py which computes
the search box automatically (Section 3.4).

--size x arg

--size y arg

--size z arg

Size of the search box in Å. The search box must contain
space of the whole tunnel and all flexible residues with their
potential movement. The CaverDock package contains a
script prepareconf.py which computes the search box au-
tomatically (Section 3.4).

--out arg Output file(s) prefix. When docked to the tunnel, a file
with the suffix -lb.pdbqt is generated for the lower-bound
trajectory, -up.pdbqt for the upper-bound trajectory and
occasionally -failed.pdbqt if the upper-bound trajectory
is not computed (the failed trajectory contains the longest
known contiguous trajectory).

--exhaustiveness arg Exhaustiveness of the global optimization algorithm (a
higher number means a higher number of tested conforma-
tions). Usually values from the interval 1–8 are sufficient.

--cpu arg Number of threads used per process.

--log Writes a log file(s), usable for debugging.

Table 1: Docking parameters.

5.2 Tunnel analysis options

In this section, we introduce all parameters related to the analysis of a ligand transport
through a tunnel. For the transport analysis, at least two processes must be executed (us-
ing mpirun --np 2 or greater). Note that the only required parameter is --tunnel, other
parameters can be used to change the default settings. The basic parameters allow users to
define the type of the computed trajectory and the optimization strategy or to hint the initial
position of a ligand (Table 2), whereas advanced parameters affect constraints applied to the
docking (Table 3).

--tunnel arg The file containing discretized tunnel. This parameter is
required.

--final state arg The final state of trajectory search. May be set
to LB (compute the lower-bound trajectory only) or
SMOOTHED (default), computing the lower and the
upper-bound trajectories.

5.2 Tunnel analysis options 8

--optimization strategy

arg

Strategy for the upper-bound trajectory optimization.
CaverDock may minimize the highest energy in a tra-
jectory (MAX, default value) or the integral of energy
across a whole trajectory (INTEGRAL).

--dock like arg PDBQT file defining ideal position of the ligand in the
active site. The starting disc is selected to bring a ligand
closest to the active site. This parameter may help when
the tunnel obtained from CAVER is too deep (and thus
CaverDock pushes the ligand against the energetic barrier
at the bottom of the tunnel).

--dump bottlenecks arg Dump the bottlenecks observed along the trajectory.
There are multiple files generated: in the file arg, a
list of bottleneck residues and a list of bottlenecks for
final upper-bound trajectory are given. For n disks, files
arg.0.., arg.n-1 are generated: they contain the bottle-
necks for the snapshots used in the final trajectory as well
as the snapshots generated during the trajectory search
and not used in the output trajectory. Reporting the bot-
tlenecks in unused snapshots may help the user to recog-
nize which residues prevent CaverDock from moving the
ligand in alternative pathways.

Table 2: Basic tunnel analysis parameters.

Whereas the basic tunnel analysis options can be set by beginner users and should not
affect the robustness of the CaverDock computation, a suboptimal setting of advanced options
may lead to very a slow computation or a failure of the search for contiguous conformation.
Thus, these should be set carefully.

--backtrack threshold arg The energy increment over the lower-bound trajec-
tory, which leads to the execution of backtracking.
A lower value, a lower energy of the upper-bound
trajectory and higher computation time can be ex-
pected. The default value is 1 kcal/mol.

--backtrack limit arg The minimal number of steps (visited discs) which
must be performed after backtracking, before a new
backtracking is executed. Values higher than 1 for-
bid frequent executions of backtracking from un-
feasible areas. The default value is 5.

--cont threshold arg The maximal atom movement (in Angstroms) be-
tween adjacent snapshots, which is considered to
be contiguous. The default value is 0.8 Å.

5.3 Constrained docking options 9

--pattern limit arg The maximal distance (in Angstroms) between ad-
jacent snapshots, which is not penalized by a con-
tiguity constraint. The default value is 0.6 Å, must
be smaller than --cont threshold and higher than
the maximal distance of discs created during a tun-
nel discretization.

--allow flex discontinuity Allows the receptor side-chain residues to perform
non-contiguous movements even when the upper-
bound trajectory is computed. The default behav-
ior is that a contiguous movement is required for
both the ligand and the side-chain residues.

--parallel workers lb arg The number of processes solving each docking task
of a lower-bound trajectory computation in parallel
(alternative to exhaustiveness with better scaling).
The default value is 4.

--parallel workers smooth arg The number of processes solving each docking task
of an upper-bound trajectory computation in par-
allel (alternative to exhaustiveness, scales better).
The default value is 4.

Table 3: Advanced tunnel analysis parameters.

5.3 Constrained docking options

In this section, parameters applicable to perform a single docking with constraints are in-
troduced. Note that those parameters are not employed in the standard usage scenario of
CaverDock (an analysis the whole trajectory). However, they may be used for debugging or
building a tool on the top of CaverDock.

There are essentially two types of constraints implemented: a disc, which fixes a ligand’s
atom and a pattern, which restricts the positions of all ligand’s atoms. When the disc is
defined, docking is performed in the way that a selected ligand atom must be placed in a
close vicinity of the disc. The discs may define a cut of a tunnel, or a point in space (when
the disc radius is set to a very small number). The pattern holds the whole ligand in a vicinity
of pattern atoms. So, it is possible to search only for the ligand conformations which are close
to the one defined by the pattern.

--ccenter x arg

--ccenter y arg

--ccenter z arg

Coordinates of the center of a disc attracting a ligand (its
central atom, or the atom selected by catomnum parameter).

--cnormal x arg

--cnormal y arg

--cnormal z arg

The normal vector of a disc attracting a ligand (its central
atom, or the atom selected by catomnum parameter).

--cradius arg The radius of a disc attracting a ligand (its central atom, or
atom selected by catomnum parameter).

--catomnum arg The ID of an atom in PDB, which is attracted to a disc.

6 BEST PRACTICES 10

--ctemplate arg PDB or PDBID of the template, which restricts the ligand
atoms movement (they must remain in a vicinity of the tem-
plate atoms, defined by --ctemplate limit).

--ctemplate limit arg The distance (in Angstroms) of the docked ligand atoms to
their counterparts in a template (defined by –ctemplate),
which is tolerated without applying an attractive force to
the template.

Table 4: Constrained docking parameters.

6 Best practices

6.1 Improving energy

CaverDock has been parametrized to bring a good mix of computational efficiency and pre-
cision of computation. However, there is still some room for hand-tuning the CaverDock
computation. One can tune the CaverDock parameters to increase the precision of its com-
putation and the structure of molecules to ease the computation of the ligand movement.

6.2 Improving lower-bound energy

The lower-bound energy depends on a tunnel geometry and the docking ability to find a
good local minima. To improve (decrease) the energy of the lower-bound trajectory, several
arguments can be tuned:

• --exhaustiveness can be set to a higher value which increases the number of random
walks of Markov-chain Monte Carlo global search algorithm and increases the probabil-
ity of finding a good local minima;

• --parallel workers lb can be set to a higher value and should have similar effect to
--exhaustiveness.

If the energy of the lower-bound trajectory is too high even with high exhaustiveness, it is
very probable that the ligand cannot pass through the tunnel in thereal-world, or there is
some issue with the tunnel or the receptor geometry. Three typical issues are described below.

• The tunnel obtained from CAVER forces the ligand to move too deeply into the tun-
nel, where it reaches the energetic barrier at the tunnel bottom. This situation can be
detected by exploring the energy graph: the energy is very high in the area of the begin-
ning of the tunnel (i.e. around the position zero at x-axis). In such case, --dock like

parameter can be used to set the correct starting disc, so the ligand will not be pushed
against the tunnel bottom.

• There are side-chain residues forming a bottleneck. We can detect this issue by exploring
the bottleneck dump. In such case, side-chain residues forming the bottleneck should
be set to be flexible by MGTools [7].

• The backbone residues are forming a bottleneck. We can detect this issue by exploring
the bottleneck dump. In such case, we need to use a different geometry of the receptor

6.3 Improving upper-bound energy 11

(e.g. one obtained from an MD simulation). This is a typical issue when the receptor
structure is taken from a crystal with tunnels closed due to intramolecular interactions
and crystal packing.

6.3 Improving upper-bound energy

When we are satisfied with the lower-bound energy, we can focus on the upper-bound energy.
If the difference between the lower-bound and the upper-bound energies is too high, we can
tune several CaverDock parameters:

• --backtrack threshold can be set to a lower value, if we consider 1 kcal/mol already as
an undesired difference between the lower-bound and the upper-bound energies. Beware
that tuning this value may result in longer computation times.

• --backtrack limit can be set to a lower value, so CaverDock will execute backtracking
more aggressively. Beware that tuning this value may result in longer computation
times.

Together with the CaverDock parameters, we should also check the geometry of the tunnels
and the receptor (Section 6.2), as some bottlenecks as well as issues with a tunnel bottom
may arise only when a contiguous trajectory is computed.

6.4 Improving computation time

The CaverDock is usually quite fast on a standard desktop computer (its execution commonly
takes from minutes to dozens of minutes). However, the execution time can be improved by
the following actions.

• Use as low flexible side-chain residues as possible. The computational time of a docking
grows rapidly with the number of degrees of freedom of the system. Using flexible side-
chain residues may greatly improve the energy profile, however we recommend setting
flexibility only on residues, which are proved to form a bottleneck in a particular tunnel
(i.e. they are reported with --dump bottlenecks option).

• Use the right number of parallel processes. CaverDock uses MPI, thus, it can use
multiple cores of a desktop machine or even multiple nodes of a cluster. The number of
processes (passed by -np parameter of mpirun) should be set to a number of virtual cores
plus one (e.g. use -np 9 on a machine with 8 cores). Please note that computing lower-
bound trajectory scales very well (CaverDock can utilize a hundred of cores in a typical
scenario), whereas upper-bound trajectory scales up to the number of concurrently
executed docking set by --parallel workers smooth.

• Try increasing the number of parallel workers instead of exhaustiveness. The de-
fault numbers of processes solving the same docking scenario in parallel is 4. If one
wants to increase the exhaustiveness of docking, the values of --parallel workers lb

and --parallel workers smooth parameters may be increased instead of the value of
--exhaustiveness.

The tips described above improve the CaverDock speed in general. However, some issues
result from the properties of analyzed biochemical systems. We summarize typical issues and
suggest possible solutions in the listing below.

7 TROUBLESHOOTING 12

• Backtracking is executed very frequently (this can be observed in CaverDock log files).
When an upper-bound trajectory is computed, CaverDock tries to keep its energy as
close to the lower-bound as possible. In some cases, it is not possible and Caver-
Dock executes a lot of backtracking trying to find a better trajectory without any
success. The number of executed backtracking runs can be decreased by parameters
--backtrack threshold (higher difference of the lower-bound and upper-bound ener-
gies may be required to start backtracking) or --backtrack limit (the frequency of
backtracking execution may be lowered). Beware that usually high computational times
and high number of backtracking executions are related to suboptimal geometry of the
tunnel or the receptor (Section 6.2 for geometry optimization tips).

• The number of degrees of freedom is very high. If the number of flexible side-chain
residues is high, we can fix some residues in such a position which does not form a
bottleneck and make them rigid. We may also try to compute a contiguous ligand
movement with a non-contiguous movement of side-chain residues by using parameter
--allow flex discontinuity (which removes some constraints in the search space).
If the origin of the high number of degrees of freedom is mainly the complexity and the
size of a ligand, it is possible that this system is too complex to be efficiently analyzed
by CaverDock.

7 Troubleshooting

7.1 CaverDock cannot compute the lower-bound trajectory

There are several possible reasons, which may prevent CaverDock from computing the lower-
bound trajectory.

• A part of the tunnel is too narrow and therefore it forms a strong repulsive barrier.
This situation needs manual inspection: CaverDock saves only the part of the lower-
bound trajectory which was successfully computed. The missing part of the trajectory
probably contains a strong repulsive barrier such as a residue preventing the ligand
from moving through the tunnel. The receptor geometry needs to be fixed by adding
flexibility to side-chain residues, or using a different snapshot of the receptor.

• The ligand is forced to move against the active site bottom. This problem arises from a
geometrical analysis of the tunnel where the geometrical approximation of the tunnel is
too deep. An easy solution is to use the --dock like parameter to navigate CaverDock
where to start with the tunnel analysis.

• The ligand is too complex to be successfully docked. CaverDock can be re-executed
with higher exhaustiveness, or a higher number of parallel workers.

• The computation fails due to the stochastic nature of CaverDock. In this case, starting
CaverDock once again should solve the problem.

7.2 CaverDock cannot compute the upper-bound trajectory

When an upper-bound trajectory cannot be computed, the user should inspect the lower-
bound trajectory first. When the lower-bound trajectory already contains a high energetic

8 FAQ 13

barrier, the tunnel or the receptor geometry needs to be modified (Section 6.2). If it is not
possible to improve the lower-bound trajectory, the selected ligand is likely not able to pass
through the tunnel.

When the lower-bound trajectory does not contain any significant barrier and the upper-
bound trajectory is still not computed, CaverDock is either not able to analyze the trajectory
because of a high ligand complexity, or there is a bottleneck not detected by the lower bound
trajectory. This type of bottlenecks can be found by inspecting the lower-bound trajectory
in the vicinity of the disc, where the computation of the upper-bound trajectory has failed3.
There should be visible non-contiguities in the lower-bound trajectory, which overpass the
bottleneck (e.g. ligand flip, as shown in Fifure 3). The bottleneck needs to be manually
identified and fixed (e.g. by using flexible side-chain residues).

8 FAQ

8.1 Is CaverDock execution deterministic?

In the default settings, it is not deterministic (so re-executing CaverDock may result in dif-
ferent trajectories). There is, however, a way how to make CaverDock deterministic. It must
be executed in two processes only (using mpirun -np 2) and the random number generator
must be set to a constant seed (using --seed x, where x is any number, which must be the
same for all deterministic executions). Please note than when CaverDock is executed only for
single docking (possibly with constraints), setting a constant seed is sufficient.

8.2 Why does CaverDock return two types of energy?

The CaverDock computation of an upper-bound trajectory is driven by a heuristics. It means
that CaverDock cannot guarantee that the contiguous trajectory is optimal. Thus, CaverDock
is computing also a lower-bound trajectory: a scenario, which can be unrealistically optimistic
due to non-continuities in the trajectory. The real energy (with respect to the given force-field
and the geometry of the input molecules) is at most as high as the energy of the upper-bound
trajectory and at least as low as the energy of the lower-bound trajectory.

References

[1] O. Trott, A. J. Olson, AutoDock Vina: Improving the Speed and Accuracy of Docking
with a New Scoring Function, Efficient Optimization and Multithreading. Journal of
Computational Chemistry 31 455-461 (2010).

[2] O. Vavra, J. Filipovic, J. Plhak, D. Bednar, S. Marques, J. Brezovsky, L. Matyska, J.
Damborsky, CAVERDOCK: A New Tool for Analysis of Ligand Binding and Unbinding
Based on Molecular Docking. In preparation.

[3] J. Filipovic, O. Vavra, J. Plhak, D. Bednar, S. Marques, J. Brezovsky, L. Matyska, J.
Damborsky, A Novel Method for Analysis of Ligand Binding and Unbinding Based on
Molecular Docking. In preparation.

3CaverDock reports a number of the last disc, for which the upper-bound trajectory was computed. The
number of snapshot in the lower-bound trajectory is equal to the number of the disc.

REFERENCES 14

[4] E. Chovancova, A. Pavelka, P. Benes, O. Strnad, J. Brezovsky, B. Kozlikova, A. Gora,
V. Sustr, M. Klvana, P. Medek, L. Biedermannova, J. Sochor, J. Damborsky, CAVER
3.0: A Tool for Analysis of Transport Pathways in Dynamic Protein Structures. PLOS
Computational Biology 8: e1002708 (2012).

[5] CAVER Web Portal. https://loschmidt.chemi.muni.cz/caverweb/

[6] CAVER User Guide. http://www.caver.cz/fil/download/manual/caver userguide.pdf

[7] MGLTools. http://mgltools.scripps.edu/

[8] AutoDock Vina Users Guide. http://vina.scripps.edu/manual.html

