DG: Analysis and Slicing of LLVM Bitcode*

Marek Chalupa

Masaryk University, Brno, Czech Republic, chalupa@fi.muni.cz

Abstract. DG is a library written in C4++ that provides several types
of program analysis for LLVM bitcode. The main parts of DG are a
parametric points-to analysis, a call graph construction, a data depen-
dence analysis, and a control dependence analysis. The project includes
several tools built around the analyses, the main one being a static slicer
for LLVM bitcode. This paper describes what analyses are implemented
in DG and its use cases with the focus on program slicing.

1 Introduction

DG is a library providing data structures and algorithms for program analysis.
The library was created during the re-implementation of the static slicer in the
tool SYMBIOTIC [§] and its original purpose was the construction of dependence
graphs [12] for LLVM bitcode [14]. During the development, we re-designed DG
from a single-purpose library for the construction of dependence graphs to a
library providing data structures and basic algorithms for program analysis.

The main parts of DG are a parametric points-to analysis and a call graph
construction, a data dependence analysis based on the transformation of writes to
memory into static single assignment (SSA) form [I8], and a control dependence
analysis providing two different algorithms with different characteristics. The
results of these analyses can be used to construct a dependence graph [12] of the
program that supports forward and backward slicing, among others.

Most of the implemented algorithms are designed to be independent of the
programming language. Currently, DG has an LLVM backend that allows using
the algorithms with LLVM infrastructure.

Analyses in DG have a public API that is used also in communication be-
tween analyses inside DG. As a result, a particular implementation of analysis
can be easily replaced by an external analysis. The benefit of being able to
integrate an external analysis is that one can use features of DG (e.g., pro-
gram slicing) along with features of the external analysis (e.g., better speed or
precision). At this moment, DG integrates a points-to analysis from the SVF
library [19].

LLVM DG works with LLVM [I4], which is a strongly typed assembly-like
intermediate language for compilers. Instructions in LLVM are arranged into
labeled basic blocks to which we can jump using the br instruction. Variables
on the stack are created by the alloca instruction and can be later accessed via

* The work is supported by The Czech Science Foundation grant GA18-02177S.

=
]
LU (I |}

alloca 132
alloca 132
alloca 1i32%

store 0 to %y
store %y to %p

he =

call @nondet ()

store %c to %x
br label Y%while.cond

while.cond:
%0 = load %x
%cmp = icmp sgt %0, O

I
l
I
I
| (store
|
|
|
|
|

store
%c to %hx

!
|
|
|
|
|
|
|
!
|
I
!
|
|
GEDS
!
|
|
1
!
!

br Ycmp, label %while.body
’ ’ hile. d:
label %while.end whLe.con
while.body: ”
%dec = add %0, -1 Ao
store Ydec to %x - l I
br label %while.cond :
while.body: |
while.end: ! ¥ l
%1 = load %
%2 = load %1 EERC i) Yo w0t [
%cmpl = icmp eq %2, O

call Q@assert (il %cmpl)

Fig.1. A simplified LLVM bitcode and its dependence graph. For clarity, we left
out nodes with no dependencies. Black dashed edges are use dependencies, red edges
are data dependencies, and blue edges are control dependencies. The dashed control
dependence is present in the graph only when NTSCD algorithm is used. Highlighted
are the nodes that are in the slice with respect to the call of assert (using SCD).

the load and store instructions. The meaning of the rest of the instructions
used in this paper should be clear from the text. An example of LLVM bitcode
can be found in Figure

In the rest of the paper, we describe the main analyses in DG and its use cases.

2 Points-to Analysis

Points-to analysis is a cornerstone of many other program analyses. It answers
the queries: “What is the memory referenced by the pointer?”. For each points-
to analysis, we can identify the following basic traits. Points-to analysis is flow-
sensitive (FS) if it takes into account the flow of control in the program and
thus computes information specifically for each program location. Otherwise, it
is flow-insensitive (FI). It is field-sensitive if it differentiates between individual
elements of aggregate objects, e.g., arrays or structures.

In DG, we have implemented a parametric points-to analysis framework [0]
that supports FS and FI analysis and has dynamically configurable field-
sensitivity. Moreover, the analysis can construct a call graph of the program.
The FS analysis has also an option to track what memory has been freed [9].

3 Data Dependence Analysis

Data dependence analysis is a crucial part of program slicing. Informally, we
say that instruction r is data dependent on instruction w if r reads values from
memory that may have been written by w. In Figure|l] for example, instruction
%0 = load %x is data dependent on instructions store %c to %x and store %dec to %x as
it may read values written by both of these instructions.

In DG, the data dependence analysis constructs SSA representation of writes
to memory, the so-called memory SSA form [I6]. The input to the data depen-
dence analysis in DG is a program whose instructions are annotated with infor-
mation about what memory may/must be written, and what memory may be
read by the instructions. These annotations are derived from the results of the
points-to analysis.

Our analysis algorithm is based on the algorithm of Braun [5]. We extended
the Braun’s algorithm, which works only with scalar variables, to handle ag-
gregated data structures, heap-allocated objects and accesses to memory via
pointers, and also accesses to unknown memory objects (occurring due to a
lack of information about the accessed memory). Also, the algorithm has been
modified to handle procedure calls, therefore it yields interprocedural results.

4 Control Dependence Analysis

Informally, control dependence arises between two program instructions if
whether one is executed depends on a jump performed at the other. There are
several formal notions of control dependence. In DG, we implement analyses
that compute two of them. The first one is standard control dependence (SCD)
as defined by Ferrante et al. [I2] and the other is non-termination sensitive con-
trol dependence (NTSCD) introduced by Ranganath et al. [I7]. The difference
between these two is that NTSCD takes into account also the possibility that
an instruction is not executed because of a non-terminating loop.

For example, in Figure [1} instructions in while.body basic block are (standard
and non-termination sensitive) control dependent on the br %emp instruction from
while.cond block as the jump performed by the br %emp instruction may avoid their
execution. If the loop in the program does not terminate, we will never get to
while.end basic block, and therefore NTSCD marks also instructions from this
block to be dependent on the br %cmp instruction.

The classical algorithms compute control dependencies per instruction. For
efficiency, our implementation allows also control dependencies between basic
blocks, where if basic block A depends on basic block B than it represents that
all instructions from the basic block A depend on the jump instruction at the
end of the basic block B. See, for example, the control dependence edge between
while.cond and while.body basic blocks in Figure [T}

We have also an implementation of the computation of interprocedural con-
trol dependencies that arise e.g., when calling abort () inside procedures. This
analysis runs independently of SCD and NTSCD analysis.

5 Dependence Graphs and Program Slicing

The results of hitherto mentioned analyses can be used to construct a depen-
dence graph of the program. A dependence graph is a directed graph that has
instructions of the program as nodes and there is an edge from node n; to node
ng if no depends on n;.

In DG, we distinguish three types of dependencies. The first two types are
control and data dependencies as computed by control and data dependence
analysis. The last dependence is use dependence that is the syntactic relation
between instruction and its operands. For instance, in Figure [I] there is use
dependence from instruction %y = alloca 132 t0 %0 = 1oad %y as the later uses %y.

Program Slicing Static backward program slicing [21] is a method that re-
moves parts of a program that cannot affect a given set of instructions (called
slicing criteria). Dependence graphs are a suitable representation for program
slicing [12] as they capture dependencies between instructions. The set of instruc-
tions that comprise a slice is obtained by traversing the graph in the backward
direction from nodes corresponding to slicing criteria. In our example in Figure
the slice with respect to the call to function assert contains all instructions that
are backward reachable from the call node in the dependence graph. Depending
on whether we use SCD or NTSCD, the slice contains either the highlighted
instructions (SCD) or all instructions (NTSCD).

One of the prominent features of our slicer is that we produce executable
slices. That is, unlike tools that just output the set of instructions in the slice,
we produce a valid sliced bitcode that can be run or further analyzed.

6 Evaluation and Use Cases

We evaluated the effectiveness of our analyses by running our slicer on a set of
8107 reachability benchmarks from Software Verification Competition E These
benchmarks range from small artificial programs (tens of instructions) to com-
plex code generated from Linux kernel modules (up to 130000 of instructions).
The average size of a benchmark is approximately 5320 instructions. Each bench-
mark contains calls to an error function which we used as slicing criteria (all
together if there were multiple calls). The experiments ran on a machine with
Intel i7-8700 CPU @ 3.2 GHz. Fach benchmark run was constrained to 6 GB of
memory and 120s of CPU time.

Figure [2 on the left shows a quantile plot of the CPU time of slicing with
different setups of pointer and control dependence analyses. Slicing is mostly
very fast — more than 75 % of benchmarks is sliced in 1s (more than 80 % for FI
setups). However, in each setup are benchmarks on which slicing either timeouts
(around 380 benchmarks for FI setups and 280 for F'S setups) or crashed e.g., due
to hitting the memory limit (around 860 for FI setups and 1400 for F'S setups).

! https://github.com /sosy-lab /sv-benchmarks, rev. 6c4d8bc

https://github.com/sosy-lab/sv-benchmarks

=
o
N

—— FIPTA + SCD

FI PTA + NTSCD J)
— 10 # <
) —— FSPTA + SCD / 5
o —— FS PTA + NTSCD £
£ 10° [v]
= g

o
& 10t g
#*

102 —
0 1000 2000 3000 4000 5000 6000 7000 00 02 04 o6 08 10
n-th fastest benchmark # size [%]

Fig. 2. The plot on the left shows CPU time of slicing using F'S or FI points-to analysis
(PTA) and NTSCD or SCD control dependence analysis. On the right is depicted the
ratio of the number of instructions after and before slicing for FI PTA + SCD setup.

In Figure[2]on the right is depicted the distribution of the ratio of the number
of instructions after and before slicing for FI PTA + SCD setup (the slicer’s
default). On average, for this setup, the size of the sliced bitcode was reduced
to 67 % of the size before slicing, but there are also numerous cases of reduction
to less than 30 %. F'S points-to analysis has no big influence on these numbers.

Use cases Since its creation, DG has proved to be useful in many cases, e.g.,
software verification and bug finding [7), [8, [0, 20, [15] cyber-security [3} [13] cyber-
physical systems analysis [10], and network software analysis [11].

Availability DG library and documentation is available under the MIT license
at https://github.com/mchalupa/dgl.

7 Related Work

Many analyses, including memory SSA construction and various alias analyses,
are contained directly in the LLVM project. However, these analyses are usually
only intraprocedural and thus too imprecise for sensible program slicing.

Now we survey the projects providing backward program slicing for LLVM.
ParaSlicer [2] and llvm-slicing [22] are projects written in Haskell that make
use of procedure summaries to generate more precise slices than the classical
slicing algorithms. These slicers only output a list of instructions that should be
in the slice. SemSlice [] is a slicer for semantic slicing of LLVM bitcode. The
bottle-neck of semantic slicing is the use of SMT solving, which can be inefficient.
Finally, there is the obsolete slicer from Symbiotic called LLVMSlicer [I] which
is no longer maintained.

Acknowledgements The author would like to thank Jan Strejcek for his valu-
able comments on the paper. Further, many thanks go to other contributors to
the DG library, mainly Tomas Jasek, Lukas Tomovi¢, and Martina Vitovska.

https://github.com/mchalupa/dg

References

B

10.

11.

12.

13.

14.

15.

LLVMSlicer. URL https://github.com/jslay /LLVMSlicer.

ParaSlicer. URL https://archive.codeplex.com/?p=paraslicer.

M. Ahmadvand, A. Hayrapetyan, S. Banescu, and A. Pretschner. Practical in-
tegrity protection with oblivious hashing. In ACSAC"18, pages 40-52. ACM, 2018.
https://doi.org/10.1145/3274694.3274732!

B. Beckert, T. Bormer, S. Gocht, M. Herda, D. Lentzsch, and M. Ulbrich. SemSlice:
Exploiting relational verification for automatic program slicing. In N. Polikarpova
and S. Schneider, editors, IFM’17, volume 10510 of Lecture Notes in Computer
Science, pages 312-319. Springer, 2017. https://doi.org/10.1007/978-3-319-66845-
1_20.

M. Braun, S. Buchwald, S. Hack, R. Leila, C. Mallon, and A. Zwinkau. Simple
and efficient construction of static single assignment form. In R. Jhala and K. D.
Bosschere, editors, CC’13, volume 7791 of Lecture Notes in Computer Science,
pages 102-122. Springer, 2013. https://doi.org/10.1007/978-3-642-37051-9_6.

M. Chalupa. Slicing of LLVM Bitcode. Master’s thesis, Masaryk University, Faculty
of Informatics, Brno, 2016. URL https://is.muni.cz/th/vik1f/|

M. Chalupa and J. Strejcéek. Evaluation of program slicing in software verification.
In W. Ahrendt and S. L. T. Tarifa, editors, IFM’19, volume 11918 of Lecture Notes
in Computer Science, pages 101-119. Springer, 2019. https://doi.org/10.1007/978-
3-030-34968-4_6.

M. Chalupa, T. Jagek, L. Tomovi¢, M. Hruska, V. Sokov4, P. Ayaziovd, J. Strejéek,
and T. Vojnar. Symbiotic 7: Integration of predator and more (competition contri-
bution). In A. Biere and D. Parker, editors, Proceedings of the 26th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’20), volume 12079 of Lecture Notes in Computer Science, pages 413-417.
Springer, 2020. https://doi.org/10.1007/978-3-030-45237-7_31.

M. Chalupa, J. Strejéek, and M. Vitovska. Joint forces for memory safety
checking revisited. Int. J. Softw. Tools Technol. Transf., 22(2):115-133, 2020.
https://doi.org/10.1007/s10009-019-00526-2.

L. Cheng, K. Tian, D. Yao, L. Sha, and R. A. Beyah. Checking is believ-
ing: Event-aware program anomaly detection in cyber-physical systems. CoRR,
abs/1805.00074, 2018.

B. Deng, W. Wu, and L. Song. Redundant logic elimination in network functions.
In A. Wang, E. Rozner, and H. Zeng, editors, SOSR’20, pages 34—40. ACM, 2020.
https://doi.org/10.1145/3373360.3380832.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319-349, 1987.
H. Hamadeh, A. Almomani, and A. Tyagi. Probabilistic verification of outsourced
computation based on novel reversible pufs. In A. Brogi, W. Zimmermann, and
K. Kritikos, editors, ESOCC’20, volume 12054 of Lecture Notes in Computer Sci-
ence, pages 30-37. Springer, 2020. https://doi.org/10.1007/978-3-030-44769-4_3.
C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO’04), pages 75-88. IEEE
Computer Society, 2004.

Z.1i,D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin. VulDeeLocator: A deep learning-
based fine-grained vulnerability detector. CoRR, abs/2001.02350, 2020. URL http:
/ /arxiv.org/abs/2001.02350.

https://github.com/jslay/LLVMSlicer
https://archive.codeplex.com/?p=paraslicer
https://doi.org/10.1145/3274694.3274732
https://doi.org/10.1007/978-3-319-66845-1_20
https://doi.org/10.1007/978-3-319-66845-1_20
https://doi.org/10.1007/978-3-642-37051-9_6
https://is.muni.cz/th/vik1f/
https://doi.org/10.1007/978-3-030-34968-4_6
https://doi.org/10.1007/978-3-030-34968-4_6
https://doi.org/10.1007/978-3-030-45237-7_31
https://doi.org/10.1007/s10009-019-00526-2
https://doi.org/10.1145/3373360.3380832
https://doi.org/10.1007/978-3-030-44769-4_3
http://arxiv.org/abs/2001.02350
http://arxiv.org/abs/2001.02350

16.

17.

18.

19.

20.

21.
22.

D. Novillo. Memory SSA - A Unified Approach for Sparsely Representing Memory
Operations, 2006.

V. P. Ranganath, T. Amtoft, A. Banerjee, M. B. Dwyer, and J. Hatcliff. A new
foundation for control-dependence and slicing for modern program structures. In
Proceedings of the 14th European Symposium on Programming (ESOP’05), volume
3444 of Lecture Notes in Computer Science, pages 77-93. Springer, 2005.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redun-
dant computations. In J. Ferrante and P. Mager, editors, POPL’88, pages 12-27.
ACM Press, 1988. [https://doi.org/10.1145/73560.73562.

Y. Sui and J. Xue. SVF: interprocedural static value-flow analysis in LLVM. In
A. Zaks and M. V. Hermenegildo, editors, CC’16, pages 265-266. ACM, 2016.
https://doi.org/10.1145/2892208.2892235!

D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar. Chopped symbolic execution.
In M. Chaudron, I. Crnkovic, M. Chechik, and M. Harman, editors, ICSE’18, pages
350-360. ACM, 2018. |https://doi.org/10.1145/3180155.3180251.

M. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352-357, 1984.

Y. Zhang. Sympas: Symbolic program slicing. CoRR, abs/1903.05333, 2019. URL
http: //arxiv.org/abs/1903.05333.

https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/3180155.3180251
http://arxiv.org/abs/1903.05333

	DG: Analysis and Slicing of LLVM Bitcode

