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Organization of This Course

Sources:
I Lectures (slides, notes)
I based on several sources (hard to obtain)
I slides are prepared for lectures, lots of stuff on

the greenboard
(⇒ attend the lectures)

Homework:
I a larger homework project

Evaluation:
I Homework project

(have to do to be allowed to the exam)

I Oral exam
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Real-Time Systems

Definition 1 (Time)
Mirriam-Webster: Time is the measured or measurable period during
which an action, process, or condition exists or continues.

Definition 2 (Real-time)
Real-time is a quantitative notion of time measured using
a physical clock.
Example: After an event occurs (eg. temperature exceeds 500 degrees) the
corresponding action (cooling) must take place within 100ms.

Compare with qualitative notion of time (before, after, eventually, etc.)

Definition 3 (Real-time system)
A real-time system must deliver services in a timely manner.
Not necessarily fast, must satisfy some quantitative timing constraints
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Real-time Embedded Systems

Definition 4 (Embedded system)
An embedded system is a computer system designed for
specific control functions within a larger system, usually
consisting of electronic as well as mechanical parts.

Most (not all) real-time
systems are embedded

Most (not all) embedded
systems are real-time
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(Few) Examples of Real-time Embedded Systems

I Industrial

I chemical plant control
I automated assembly line (e.g. robotic assembly, inspection)

I Medical

I pacemaker,
I medical monitoring devices

I Transportation systems

I computers in cars (ABS, MPFI, cruise control, airbag ...)
I aircraft (FMS, fly-by-wire ...)

I Military applications

I controllers in weapons, missiles, ...
I radar and sonar tracking

I Multimedia – multimedia center, videoconferencing

I ...
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(Non-)Real-time (non-)embedded systems

There are real time systems that are not embedded:
I trading systems
I ticket reservation
I multimedia (on PC)
I ...

There are embedded systems that are (possibly) not real-time

e.g. a weather station sends data once a day without any deadline –
not really real-time system

Caveat: Aren’t all systems real-time in a sense?
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Characteristics of Real-Time Embedded Systems

Real-time systems often are

I safety critical
I Serious consequences may result if services are not

delivered on timely basis
I Bugs in embedded real-time systems are often difficult to fix

... need to validate their correctness

I concurrent
I Real-world devices operate in parallel – better to model this

parallelism by concurrent tasks in the program

... validation may be difficult, formal methods often needed

I reactive
I Interact continuously with their environment (as opposed to

information processing systems)

... “traditional” validation methods do not apply
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Validating Time Requirements and Predictability

I Given real-time requirements and an implementation on
HW and SW, how to show that the requirements are met?

... testing might not suffice:
Maiden flight of space shuttle, 12 April 1981: 1/67 probability that a
transient overload occurs during initialization; and it actually did!

I We need a formal model and validation ...

I ... we need predictable behavior!
It is difficult to obtain
I caches, DMA, unmaskable interrupts
I memory management
I scheduling anomalies
I difficult to compute worst-case execution time
I ...
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Types of Timing Requirements

Time sharing systems: minimize average response time
The goal of scheduling in standard op. systems such as Linux and Windows

Often it is not enough to minimize average response time!
(A man drowned crossing a stream with an average depth of 15cm.)

“hard” real-time tasks must be always finished before their deadline!
e.g. airbag in a car: whenever a collision is detected, the airbag must be
deployed within 10ms

Not all tasks in a real-time system are critical, only the quality of
service is affected by missing a deadline

Most “soft” real-time tasks should finish before their deadlines.
e.g. frame rate in a videoconf. should be kept above 15fps most of the time

Many real-time systems combine “hard” and “soft” real-time tasks.

i.e. we optimize performance w.r.t. “soft” real-time tasks under the constraint
that “hard” real-time tasks are finished before their deadlines
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Examples of Real-Time Systems

I Digital process control
I anti-lock braking system

I Higher-level command and control
I helicopter flight control

I Real-time databases
I Stock trading systems
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Digital Process Control

Computer controls the flow in the pipe in real-time
11



Digital Process Control

The controller (computer) controls the plant using the actuator
(valve) based on sampled data from the sensor (flow meter)
I y(t) – the measured state of the plant
I r(t) – the desired state of the plant
I Calculate control output u(t) as a function of y(t), r(t)

e.g. uk = uk−2 + α(rk − yk ) + β(rk−1 − yk−1) + γ(rk−2 − yk−2)
where α, β, γ are suitable constants

12



Digital Process Control

I Pseudo-code for the controller:

set timer to interrupt periodically with period T
foreach timer interrupt do
analogue-to-digital conversion of y(t) to get yk
compute control output uk based on rk and yk
digital-to-analogue conversion of uk to get u(t)

end

I Effective control of the plant depends on:
I The correct reference input and control law computation
I The accuracy of the sensor measurements

I Resolution of the sampled data (i.e. bits per sample)
I Frequency of interrupts (i.e. 1/T )

I T is the sampling period
I Small T better approximates the analogue behavior
I Large T means less processor-time demand

... but may result in unstable control
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Example

r(t) = 1 for t ≥ 0
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Anti-Lock Braking System

I The controller monitors the speed sensors in wheels
Right before a wheel locks up, it experiences a rapid deceleration

I If a rapid deceleration of a wheel is observed, the controller
alternately
I reduces pressure on the corresponding brake until

acceleration is observed
I then applies brake until deceleration is observed
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Multi-Rate DPC – Helicopter Flight Control

There are also three velocity components

Two control loops: pilot’s control (30Hz) and stabilization (90Hz)

16



Multi-Rate DPC – Helicopter Flight Control
Do the following in each 1/180-second cycle:
I Validate sensor data; in the presence of failures, reconfigure the system

I Do the following 30-Hz avionics tasks, each one every six cycles:
I keyboard input and mode selection
I data normalization and coordinate transformation
I tracking reference update

I Do the following 30-Hz avionics tasks, each one every six cycles:
I control laws of the outer pitch-control loop
I control laws of the outer roll-control loop
I control laws of the outer yaw- and collective-control loop

I Do each of the following 90-Hz computations once every two cycles,
using outputs produced by 30-Hz computations and avionics tasks:
I control laws of the inner pitch-control loop
I control laws of the inner roll- and collective-control loop

I Compute the control laws of the inner yaw-control loop, using outputs
produced by 90-Hz control-law computations as inputs

I Output commands
I Carry out built-in-test
I Wait until the beginning of the next cycle

17



Multi-Rate DPC – Helicopter Flight Control
Do the following in each 1/180-second cycle:
I Validate sensor data; in the presence of failures, reconfigure the system
I Do the following 30-Hz avionics tasks, each one every six cycles:
I keyboard input and mode selection
I data normalization and coordinate transformation
I tracking reference update

I Do the following 30-Hz avionics tasks, each one every six cycles:
I control laws of the outer pitch-control loop
I control laws of the outer roll-control loop
I control laws of the outer yaw- and collective-control loop

I Do each of the following 90-Hz computations once every two cycles,
using outputs produced by 30-Hz computations and avionics tasks:
I control laws of the inner pitch-control loop
I control laws of the inner roll- and collective-control loop

I Compute the control laws of the inner yaw-control loop, using outputs
produced by 90-Hz control-law computations as inputs

I Output commands
I Carry out built-in-test
I Wait until the beginning of the next cycle

17



Multi-Rate DPC – Helicopter Flight Control
Do the following in each 1/180-second cycle:
I Validate sensor data; in the presence of failures, reconfigure the system
I Do the following 30-Hz avionics tasks, each one every six cycles:
I keyboard input and mode selection
I data normalization and coordinate transformation
I tracking reference update

I Do the following 30-Hz avionics tasks, each one every six cycles:
I control laws of the outer pitch-control loop
I control laws of the outer roll-control loop
I control laws of the outer yaw- and collective-control loop

I Do each of the following 90-Hz computations once every two cycles,
using outputs produced by 30-Hz computations and avionics tasks:
I control laws of the inner pitch-control loop
I control laws of the inner roll- and collective-control loop

I Compute the control laws of the inner yaw-control loop, using outputs
produced by 90-Hz control-law computations as inputs

I Output commands
I Carry out built-in-test
I Wait until the beginning of the next cycle

17



Multi-Rate DPC – Helicopter Flight Control
Do the following in each 1/180-second cycle:
I Validate sensor data; in the presence of failures, reconfigure the system
I Do the following 30-Hz avionics tasks, each one every six cycles:
I keyboard input and mode selection
I data normalization and coordinate transformation
I tracking reference update

I Do the following 30-Hz avionics tasks, each one every six cycles:
I control laws of the outer pitch-control loop
I control laws of the outer roll-control loop
I control laws of the outer yaw- and collective-control loop

I Do each of the following 90-Hz computations once every two cycles,
using outputs produced by 30-Hz computations and avionics tasks:
I control laws of the inner pitch-control loop
I control laws of the inner roll- and collective-control loop

I Compute the control laws of the inner yaw-control loop, using outputs
produced by 90-Hz control-law computations as inputs

I Output commands
I Carry out built-in-test
I Wait until the beginning of the next cycle

17



Multi-Rate DPC – Helicopter Flight Control
Do the following in each 1/180-second cycle:
I Validate sensor data; in the presence of failures, reconfigure the system
I Do the following 30-Hz avionics tasks, each one every six cycles:
I keyboard input and mode selection
I data normalization and coordinate transformation
I tracking reference update

I Do the following 30-Hz avionics tasks, each one every six cycles:
I control laws of the outer pitch-control loop
I control laws of the outer roll-control loop
I control laws of the outer yaw- and collective-control loop

I Do each of the following 90-Hz computations once every two cycles,
using outputs produced by 30-Hz computations and avionics tasks:
I control laws of the inner pitch-control loop
I control laws of the inner roll- and collective-control loop

I Compute the control laws of the inner yaw-control loop, using outputs
produced by 90-Hz control-law computations as inputs

I Output commands
I Carry out built-in-test
I Wait until the beginning of the next cycle

17



Higher-Level Command and Control

Controllers organized into a hierarchy
I At the lowest level we place the digital control systems that

operate on the physical environment
I Higher level controllers monitor the behavior of lower levels
I Time-scale and complexity of decision making increases as one

goes up the hierarchy (from control to planning)
18



Real-Time Database System
I Databases that contain perishable data, i.e. relevance of

data deteriorates with time
Air traffic control, stock price quotation systems, tracking systems, etc.

I The temporal quality of data is quantified by age of an
image object, i.e. the length of time since last update

I temporal consistency
I absolute = max. age is bounded by a fixed threshold
I relative = max. difference in ages is bounded by a threshold

e.g. planning system correlating traffic density and flow of vehicles

I Users of database compete for access – various models
for trading consistency with time demands exist.

19
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Stock-Trading System

I A system for selling/buying stock at public prices

I Prices are volatile in their movement
I Stop orders:
I set upper limit on prices for buying – buy for the best

available price once the limit is reached
e.g. stock currently trading at $30 should be bought when the
price rises above $35

I set lower limit on prices for selling – sell for the best
available price once the limit is reached
e.g. stock currently trading at $30 should be sold when the price
sinks below $25

I Depending on the delay, the available price may be
different from the limit
successful stop orders depend on the timely delivery of stock trade data
and the ability to trade on the changing prices in a timely manner
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Structure of Real-Time (Embedded) Applications

21



Types of Real-Time Systems

I Purely cyclic

I every task executes periodically; I/O operations are polled;
demands in resources do not vary

e.g. digital controllers

I Mostly cyclic

I most tasks execute periodically; system also responds to
external events (fault recovery and external commands)
asynchronously

e.g. avionics

I Asynchronous and somewhat predictable

I durations between consecutive executions of a task as well
as demands in resources may vary considerably. These
variations have either bounded range, or known statistics.

e.g. radar signal processing, tracking
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Types of Real-Time Systems

I The type of application affects how we schedule tasks and
prove correctness

I It is easier to reason about applications that are more
cyclic, synchronous and predictable
I Many real-time systems are designed in this manner
I Safe, conservative, design approach, if it works
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Real-Time Systems Failures

I AT&T long distance calls

I Therac-25 medical accelerator disaster

I Patriot missile mistiming
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AT&T Long Distance Calls

114 computer-operated electronic
switches scattered across USA
Handling up to 700,000 calls an hour

The problem:

I the switch in New York City neared its load limit
I entered a four-second maintenance reset
I sent “do not disturb” to neighbors
I after the reset, the switch began to distribute calls (quickly)

I then another switch received one of these calls from New York
I began to update its records that New York was back on line
I a second call from New York arrived less than 10 milliseconds after the

first, i.e. while the first hadn’t yet been handled;
this together with a SW bug caused maintenance reset

I the error was propagated further ....

The reason for failure: The system was unable to react to closely
timed messages
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Therac-25 medical accelerator disaster

Therac-25 = a machine for radiotheratpy
I between 1985 and 1987 (at least) six accidents involving

enormous radiation overdoses to patients
I Half of these patients died due to the overdoses
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Therac-25 – the modes

1. electron mode
I electron beam (low current)
I various levels of energy (5 to 25-MeV)
I scanning magnets used to spread the beam to a safe

concentration

2. photon mode
I only one level of energy (25-MeV), much larger

electron-beam current
I electron beam strikes a metal foil to produce X-rays

(photons)
I the X-ray beam is "flattened" by a device below the foil

3. light mode – just light beam used to illuminate the field on
the surface of the patient’s body that will be treated

All devices placed on a turntable, supposed to be rotated to the
correct position before the beam is started up
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Therac-25 – turntable

28



The Software

The software responsible for
I Operator
I Monitoring input and editing changes from an operator
I Updating the screen to show current status of machine
I Printing in response to an operator commands

I Machine
I monitoring the machine status
I placement of turntable
I strength and shape of beam
I operation of bending and scanning magnets
I setting the machine up for the specified treatment
I turning the beam on
I turning the beam off (after treatment, on operator

command, or if a malfunction is detected)

Software running several safety critical tasks in parallel!
Insufficient hardware protection (as opposed to previous models)!!
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Therac-25 – software

I The Therac-25 runs on a real-time operating system

I Four major components of software: stored data, a scheduler,
a set of tasks, and interrupt services (e.g. the computer clock
and handling of computer-hardware-generated errors)

I The software segregated the tasks above into

I critical tasks: e.g. setup and operation of the beam
I non-critical tasks: e.g. monitoring the keyboard

I The scheduler directs all non-interrupt events and orders
simultaneous events

I Every 0.1 seconds tasks are initiated and critical tasks are
executed first, with non-critical tasks taking up any remaining
time

Communication between tasks based on shared variables
(without proper atomic test-and-set instructions)
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What happened?

There were several accidents due to various bugs in software

One of them proceeded as follows (much simplified):
I the operator entered parameters for X-rays treatment

I the machine started to set up for the treatment

I the operator changed the mode from X-rays to electron (within
the interval from 1s to 8s from the end of the original editing)

I the patient received X-ray “treatment” with turntable in the
electron position (i.e. unshielded)

The cause:

I The turntable and treatment parameters were set by different
concurrent procedures Hand and Datent, respectively.

I If the change in parameters came in the “right” time, only Hand
reacted to the change.
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Patriot missile mistiming
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Patriot missile mistiming

I Patriot – Air defense missile system

I Failed to intercept a scud missile on February 25, 1991 at
Dhahran, Saudi Arabia
(missile hit US army barracks, 28 persons killed)

I The problem was caused by incorrect measurement of time

Simplified principle of function:

I Patriot’s radar detects an airborne object

I the object is identified as a scud missile (according to speed,
size, etc.)

I the range gate computes an area in the air space where the
system should next look for it

I finding the object in the calculated area confirms that it is a scud

I then the scud is intercepted
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Patriot Missile Mistiming
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Patriot Missile Mistiming
Prediction of the new area:

I a function of velocity and time of the last radar detection
I velocity represented as a real number
I the current time kept by incrementing whole number

counter counting tenths of seconds
I computation in 24bit fixed floating point numbers

The time converted to 24bit real number and multiplied with 1/10
represented in 24bit (i.e. the real value of 1/10 was 0.099999905)
I the system was already running for 100 hours, i.e. the counter

value was 360000, i.e. 360000 · 0.099999905 = 35999.6568
I the error was 0.3432 seconds, which means 687 m off MACH 5

scud missile
I the problem was not only in wrong conversion but in the fact that

at some points correct conversion was used (after incomplete
bug fix), so the errors did not cancel out

As a result, the tracking gate looked into wrong area
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Starliner

I Developed by Boeing & NASA
I Seven passengers, or a mix of

crew and cargo, for missions
to low-Earth orbit

I A timing issue occured on the last Orbital Flight Test on
December 20, 2019

I What is supposed to happen:
I Atlas V leaves Starliner on a suborbital trajectory.
I Starliner’s own propulsion system takes the spacecraft into

orbit and to ISS.
I What happened:
I Mission Elapsed Timer (MET), or clock, on Starliner was

set to the wrong time and did not trigger the engines to fire
correctly.

I Other onboard systems compensated and it reached orbit,
but had depleted so much fuel there was not enough to
continue the journey.
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(Rough) Course Outline

I Real-time scheduling
I Time and priority driven
I Resource control
I Multi-processor (a bit)

I A little bit on programming real-time systems
I Real-time operating systems
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Outline – Scheduling

The Scheduling problem:
Input:
I available processors, resources
I set of tasks/jobs

with their requirements, deadlines, etc.

Question: How to assign processors and resources to
tasks/jobs so that all requirements are met?

Example:
I 1 processor, one critical section shared by job 1 and job 3

I job 1: release time 1, computation time 4, deadline 8

I job 2: release time 1, computation time 2, deadline 5

I job 3: release time 0, computation time 3, deadline 4

I ...
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Outline – Scheduling

I We consider a formal model of systems with parallel jobs
that possibly contend for shared resources
consider periodic as well as aperiodic jobs

I Consider various algorithms that schedule jobs to meet
their timing constraints
offline and online algorithms, RM, EDF, etc.
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Outline – Programming

Basic information about RTOS and RT programming languages

I RTOS – overview

I real-time in non-real-time operating systems
I implementation of theoretical concepts in freeRTOS

I RT in programming languages – short overview
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Real-Time Scheduling
Formal Model

[Some parts of this lecture are based on a real-time systems course
of Colin Perkins

http://csperkins.org/teaching/rtes/index.html]
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Real-Time Scheduling – Formal Model

I Introduce an abstract model of real-time systems
I abstracts away unessential details
I sets up consistent terminology

I Three components of the model
I A workload model that describes applications supported by

the system
i.e. jobs, tasks, ...

I A resource model that describes the system resources
available to applications
i.e. processors, passive resources, ...

I Algorithms that define how the application uses the
resources at all times
i.e. scheduling and resource access protocols
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Basic Notions

I A job is a unit of work that is scheduled and executed by
a system
compute a control law, transform sensor data, etc.

I A task is a set of related jobs which jointly provide some
system function
check temperature periodically, keep a steady flow of water

I A job executes on a processor
CPU, transmission link in a network, database server, etc.

I A job may use some (shared) passive resources
file, database lock, shared variable etc.
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Life Cycle of a Job

READY RUN

WAITING

COMPL.

scheduling

preemption
wait for a busy
resource

signal free
resource

release

completed
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Jobs – Parameters

We consider finite, or countably infinte number of jobs J1, J2, . . .

Each job has several parameters.

There are four types of job parameters:
I temporal
I release time, execution time, deadlines

I functional
I Laxity type: hard and soft real-time
I preemptability, (criticality)

I interconnection
I precedence constraints

I resource
I usage of processors and passive resources
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Job Parameters – Execution Time

Execution time ei of a job Ji – the amount of time required to
complete the execution of Ji when it executes alone and has all
necessary resources

I Value of ei depends upon complexity of the job and speed of the
processor on which it executes; may change for various reasons:

I Conditional branches
I Caches, pipelines, etc.
I ...

I Execution times fall into an interval [e−i ,e
+
i ]; we assume that

we know this interval (WCET analysis) but not necessarily ei

We usually validate the system using only e+
i for each job

i.e. assume ei = e+
i
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Job Parameters – Release and Response Time

Release time ri – the instant in time when a job Ji becomes
available for execution
I Release time may jitter, only an interval [r−i , r

+
i ] is known

I A job can be executed at any time at, or after, its release time,
provided its processor and resource demands are met

Completion time Ci – the instant in time when a job completes
its execution

Response time – the difference Ci − ri between the completion
time and the release time

Time
Ji Ji

r−i r+i

Release time ri Completion time Ci

Response time
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Job Parameters – Deadlines

Absolute deadline di – the instant in time by which a job must
be completed

Relative deadline Di – the maximum allowable response time
i.e. Di = di − ri

Feasible interval is the interval (ri ,di]

Time
Ji Ji

r−i r+i

Release time ri

Completion time Ci

Response time

Absolute deadline di

Rel. deadline Di

A timing constraint of a job is specified using release time
together with relative and absolute deadlines.
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Laxity Type – Hard Real-Time

A hard real-time constraint specifies that a job should never
miss its deadline.

Examples: Flight control, railway signaling, anti-lock brakes, etc.

Several more precise definitions occur in literature:

I A timing constraint is hard if the failure to meet it is considered
a fatal error
e.g. a bomb is dropped too late and hits civilians

I A timing constraint is hard if the usefulness of the results falls off
abruptly (may even become negative) at the deadline
Here the nature of abruptness allows to soften the constraint

Definition 5
A timing constraint is hard if the user requires formal validation
that the job meets its timing constraint.
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Laxity Type – Soft Real-Time

A soft real-time constraint specifies that a job could
occasionally miss its deadline

Examples: stock trading, multimedia, etc.

Several more precise definitions occur in literature:
I A timing constraint is soft if the failure to meet it is undesirable

but acceptable if the probability is low

I A timing constraint is soft if the usefulness of the results
decreases at a slower rate with tardiness of the job
e.g. the probability that a response time exceeds 50 ms is less than 0.2

Definition 6
A timing constraint is soft if either validation is not required, or
only a demonstration that a statistical constraint is met suffices.
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Jobs – Preemptability

Jobs may be interrupted by higher priority jobs

I A job is preemptable if its execution can be interrupted
I A job is non-preemptable if it must run to completion once

started
(Some preemptable jobs have periods during which they cannot be
preempted)

I The context switch time is the time to switch between jobs
(Most of the time we assume that this time is negligible)

Reasons for preemptability:
I Jobs may have different levels of criticality

e.g. brakes vs radio tunning

I Priorities may make part of scheduling algorithm
e.g. resource access control algorithms
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Jobs – Precedence Constraints

Jobs may be constrained to execute in a particular order

I This is known as a precedence constraint
I A job Ji is a predecessor of another job Jk and Jk a

successor of Ji (denoted by Ji < Jk ) if Jk cannot begin
execution until the execution of Ji completes

I Ji is an immediate predecessor of Jk if Ji < Jk and there is
no other job Jj such that Ji < Jj < Jk

I Ji and Jk are independent when neither Ji < Jk nor Jk < Ji

A job with a precedence constraint becomes ready for
execution when its release time has passed and when all
predecessors have completed.

Example: authentication before retrieving an information, a signal
processing job in radar surveillance system precedes a tracker job
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Tasks – Modeling Reactive Systems

Reactive systems – run for unlimited amount of time

A system parameter: number of tasks
I may be known in advance (flight control)
I may change during computation (air traffic control)

We consider three types of tasks
I Periodic – jobs executed at regular intervals, hard deadlines

I Aperiodic – jobs executed in random intervals, soft deadlines

I Sporadic – jobs executed in random intervals, hard deadlines

... precise definitions later.
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Processors

A processor, P, is an active component on which jobs are scheduled

The general case considered in literature:

m processors P1, . . . ,Pm, each Pi has its type and speed.

We mostly concentrate on single processor scheduling

I Efficient scheduling algorithms

I In a sense subsumes multiprocessor scheduling where tasks are
assigned statically to individual processors
i.e. all jobs of every task are assigned to a single processor

Multi-processor scheduling is a rich area of current research, we
touch it only lightly (later).
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Resources
A resource, R, is a passive entity upon which jobs may depend

In general, we consider n resources R1, . . . ,Rn of distinct types

Each Ri is used in a mutually exclusive manner

I A job that acquires a free resource locks the resource

I Jobs that need a busy resource have to wait until the resource is
released

I Once released, the resource may be used by another job
(i.e. it is not consumed)

(More generally, each resource may be used by k jobs concurrently, i.e., there are k
units of the resource)

Resource requirements of a job specify

I which resources are used by the job

I the time interval(s) during which each resource is required
(precise definitions later)
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Scheduling

Schedule assigns, in every time instant, processors and
resources to jobs.

More formally, a schedule is a function

σ : {J1, . . .} ×R
+
0 → P({P1, . . . ,Pm,R1, . . . ,Rn})

so that for every t ∈ R+
0 there are rational 0 ≤ t1 ≤ t < t2 such

that σ(Ji , ·) is constant on [t1, t2).

(We also assume that there is the least time quantum in which scheduler
does not change its decisions, i.e. each of the intervals [t1, t2) is larger than a
fixed ε > 0.)
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Valid and Feasible Schedule

A schedule is valid if it satisfies the following conditions:
I Every processor is assigned to at most one job at any time

I Every job is assigned to at most one processor at any time

I No job is scheduled before its release time

I The total amount of processor time assigned to a given job is
equal to its actual execution time

I All the precedence and resource usage constraints are satisfied

A schedule is feasible if all jobs with hard real-time constraints
complete before their deadlines

A set of jobs is schedulable if there is a feasible schedule for
the set.
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Scheduling – Algorithms

Scheduling algorithm computes a schedule for a set of jobs
A set of jobs is schedulable according to a scheduling algorithm
if the algorithm produces a feasible schedule

Definition 7
A scheduling algorithm is optimal if it always produces
a feasible schedule whenever such a schedule exists.
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Real-Time Scheduling
Individual Jobs
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Scheduling of Individual Jobs

We start with scheduling of finite sets of jobs {J1, . . . , Jm} for
execution on single processor systems.

Each Ji has a release time ri , an execution time ei and
an absolute deadline di .
We assume hard real-time constraints.

The question: Is there an optimal scheduling algorithm?

We proceed in the direction of growing generality:

1. No resources, independent, synchronized (i.e. ri = 0 for all i)

2. No resources, independent but not synchronized

3. No resources but possibly dependent

4. The general case
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No resources, Independent, Synchronized

J1 J2 J3 J4 J5
ei 1 1 1 3 2
di 3 10 7 8 5

Is there a feasible schedule?

Note: Preemption does not help in synchronized case.

Theorem 8
If there are no resource contentions, then executing
independent jobs in the order of non-decreasing deadline
(EDD) produces a feasible schedule (if it exists).
Proof.
Let σ be a schedule. Inversion is a pair (Ja , Jb) such that Ja
precedes Jb in σ but db < da .
Note that σ is EDD iff it does not contain any inversion.
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Proof cont.
Assume k > 0 inversions in σ.
Let (Ja , Jb) be an inversion such that Ja is scheduled right before Jb .
There is always at least one such inversion (homework).

Let ta < tb be the time instants when Ja , Jb start to be executed in σ.
Recall: Ca ,Cb are completion times of Ja , Jb , and ea ,eb are execution times.

Note that Ca ≤ da and that Cb ≤ db < da .

Define a new schedule σ′ in which:

I All jobs except Ja , Jb are scheduled as in σ,

I Jb starts at ta ,

I Ja starts at ta + eb .

Observe that σ′ is still feasible:

I Jb is completed at ta + eb < ta + eb + ea = tb + eb = Cb ≤ db

I Ja is completed at ta + eb + ea = Cb ≤ db < da

Note that σ′ has k − 1 inversions. By repeating the above procedure k
times, we obtain an EDD schedule. �
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No resources, Independent, Synchronized

Is there any simple schedulability test?

{J1, . . . , Jn} where d1 ≤ · · · ≤ dn is schedulable iff
∀i ∈ {1, . . . ,n} :

∑i
k=1 ek ≤ di
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No resources, Independent (No Synchro)

J1 J2 J3
ri 0 0 2
ei 1 2 2
di 2 5 4

I find a (feasible) schedule (with and without preemption)
I determine response time of each job in your schedule

Preemption makes a difference.
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No resources, Independent (No Synchro)

Earliest Deadline First (EDF) scheduling:
At any time instant, a job with the earliest absolute deadline is
executed

Here EDF works in the preemptive case but not in
the non-preemptive one.

J1 J2
ri 0 1
ei 4 2
di 7 5
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No Resources, Independent (No Synchro)

Theorem 9
If there are no resource contentions, jobs are independent and
preemption is allowed, the EDF algorithm finds a feasible
schedule (if it exists).
Proof.
We show that any feasible schedule σ can be transformed in finitely
many steps to EDF schedule which is feasible.

Let σ be a feasible schedule but not EDF. Assume, w.l.o.g., that for
every k ∈N at most one job is executed in the interval [k , k + 1) and
that all release times and deadlines are inN.
(Otherwise rescale by the least common multiple.)
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No Resources, Independent (No Synchro)

Proof cont.
We say that σ violates EDF at k if one of the following conditions
holds:

1. No job is executed in [k , k + 1) and there is a job Jb ready for
execution in [k , k + 1)

2. There are two jobs Ja and Jb that satisfy:

I Ja and Jb are ready for execution at k
I Ja is executed in [k , k + 1)
I db < da

Let k ∈N be the least time instant such that σ violates EDF at k .

Assume, w.l.o.g. that Jb has the minimum deadline among all jobs
ready for execution at k .
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No Resources, Independent (No Synchro)

Proof cont.
Consider the above two cases separately:

ad 1. Let us define a new schedule σ′ which is the same as σ except
that Jb is executed in the empty interval [k , k + 1).

ad 2. There is k < ` < db such that Jb is executed in [`, ` + 1).
Let us define a new schedule σ′ which is the same as σ except:

I executes Jb in [k , k + 1)
I executes Ja in [`, ` + 1)

In both cases the σ′ is feasible and does not violate EDF at any
k ′ ≤ k .

Finitely many steps transform any feasible schedule to EDF. �
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No resources, Independent (No Synchro)

The non-preemptive case is NP-hard.

Heuristics are needed, such as the Spring algorithm, that
usually work in much more general setting (with resources etc.)

Use the notion of partial schedule where only a subset of jobs
has been scheduled.

Exhaustive search through partial schedules
I start with an empty schedule
I in every step either
I add a job which maximizes a heuristic function H among

jobs that have not yet been tried in this partial schedule
I or backtrack if there is no such a job

I After failure, backtrack to previous partial schedule
Heuristic function identifies plausible jobs to be scheduled
(earliest release, earliest deadline, etc.)
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No Resources, Dependent (No Synchro)

Example:

J1 J2 J3 J4 J5 J6

ei 1 1 1 1 1 1
di 2 5 4 3 5 6

Dependencies:

J1

J2 J3

J4 J5 J6

Does EDF work?
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No resources, Dependent (No Synchro)

Theorem 10
Assume that there are no resource contentions and jobs are
preemptable. There is a polynomial time algorithm which decides
whether a feasible schedule exists and if yes, then computes one.

Idea: Reduce to independent jobs by changing release times
and deadlines. Then use EDF.

Observe that if Ji < Jk then replacing
I rk with max{rk , ri + ei}

(Jk cannot be scheduled for execution before ri + ei because Ji cannot
be finished before ri + ei)

I di with min{di ,dk − ek }

(Ji must be finished before dk − ek so that Jk can be finished before dk )

does not change feasibility.

Replace systematically according to the precedence relation.
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No Resources, Dependent (No Synchro)
Define r ∗k ,d

∗

k systematically as follows:
I Pick Jk whose all predecessors have been processed and

compute r ∗k := max{rk ,maxJi<Jk r ∗i + ei}. Repeat for all jobs.
I Pick Jk whose all successors have been processed and

compute d∗k := min{dk ,minJk<Ji d∗i − ei}. Repeat for all jobs.

Example:

J1 J2 J3 J4 J5 J6

ei 1 1 1 1 1 1
di 2 5 4 3 5 6

Dependencies:

J1

J2 J3

J4 J5 J6

Do you need the precedence constraints?
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No Resources, Dependent (No Synchro)

Define r ∗k ,d
∗

k systematically as follows:

I Pick Jk whose all predecessors have been processed and
compute r ∗k := max{rk ,maxJi<Jk r ∗i + ei}. Repeat for all jobs.

I Pick Jk whose all successors have been processed and
compute d∗k := min{dk ,minJk<Ji d∗i − ei}. Repeat for all jobs.

This gives a new set of jobs J∗1, . . . , J
∗
m where each J∗k has the

release time r ∗k and the absolute deadline d∗k .
We impose no precedence constraints on J∗1, . . . , J

∗
m.

Lemma 11
{J1, . . . , Jm} is feasible iff {J∗1, . . . , J

∗
m} is feasible. If EDF schedule

is feasible on {J∗1, . . . , J
∗
m}, then the same schedule is feasible

on {J1, . . . , Jm}.
The same schedule means that whenever J∗i is scheduled at time t, then Ji is
scheduled at time t.
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No Resources, Dependent (No Synchro)

Recall: r ∗k := max{rk ,maxJi<Jk r ∗i + ei} and
d∗k := min{dk ,minJk<Ji d∗i − ei}

Proof of Lemma 11.
⇒: It is easy to show that in no feasible schedule on {J1, . . . , Jm} any
job Jk can be executed before r ∗k and completed after d∗k (otherwise,
precedence constraints would be violated).

⇐: Assume that EDF σ is feasible on {J∗1, . . . , J
∗
m}. Let us use σ

on {J1, . . . , Jm}.
I.e. Ji is executed iff J∗i is executed.

Timing constraints of {J1, . . . , Jm} are satisfied since rk ≤ r ∗k and
dk ≥ d∗k for all k .
Precedence constraints: Assume that Js < Jt . Then J∗s
executes completely before J∗t since r ∗s < r ∗s + es ≤ r ∗t and
d∗s ≤ d∗t − et < d∗t and σ is EDF on {J∗1 . . . , J

∗
m}.
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Resources, Dependent, Not Synchronized

Even the preemptive case is NP-hard
I reduce the non-preemptive case without resources to the

preemptive with resources
I Use a common resource R.
I Whenever a job starts its execution it locks the resource R.
I Whenever a job finishes its execution it releases the

resourse R.

Could be solved using heuristics, e.g. the Spring algorithm.
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Real-Time Scheduling
Scheduling of Reactive Systems

[Some parts of this lecture are based on a real-time systems course
of Colin Perkins

http://csperkins.org/teaching/rtes/index.html]
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Reminder of Basic Notions

I Jobs are executed on processors and need resources

I Parameters of jobs
I temporal:

I release time – ri
I execution time – ei
I absolute deadline – di
I derived params: relative deadline (Di), completion time,

response time, ...
I functional:

I laxity type: hard vs soft
I preemptability

I interconnection
I precedence constraints (independence)

I resource
I what resources and when are used by the job

I Tasks = sets of jobs

78



Scheduling Reactive Systems

We have considered scheduling of individual jobs
From this point on we concentrate on reactive systems
i.e. systems that run for unlimited amount of time

Recall that a task is a set of related jobs that jointly provide
some system function.

I We consider various types of tasks
I Periodic
I Aperiodic
I Sporadic

I Differ in execution time patterns for jobs in the tasks

I Must be modeled differently
I Differing scheduling algorithms
I Differing impact on system performance
I Differing constraints on scheduling
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Periodic Tasks

A periodic task Ti is a sequence of jobs Ji,1, Ji,2, . . . Ji,n, . . . with
the constant differences between release times of consecutive
jobs, the constant execution times, and the constant relative
deadlines of all jobs.

Time
Ji,1

ri,1

Ji,2

ri,2

Ji,3

ri,3

Ji,4

ri,4

· · ·
ϕi

I The phase ϕi of a task Ti is the release time ri,1 of the first
job Ji,1 in the task Ti ;
tasks are in phase if their phases are equal

I The period pi of a task Ti is the length of the constant time
interval between release times of consecutive jobs in Ti

I The execution time ei of a task Ti is the constant execution
time of all jobs in Ti

I The relative deadline Di is the constant relative deadline of
all jobs in Ti

80



Periodic Tasks

A periodic task Ti is a sequence of jobs Ji,1, Ji,2, . . . Ji,n, . . . with
the constant differences between release times of consecutive
jobs, the constant execution times, and the constant relative
deadlines of all jobs.

Time
Ji,1

ri,1

Ji,2

ri,2

Ji,3

ri,3

Ji,4

ri,4

· · ·
ϕi

I The phase ϕi of a task Ti is the release time ri,1 of the first
job Ji,1 in the task Ti ;
tasks are in phase if their phases are equal

I The period pi of a task Ti is the length of the constant time
interval between release times of consecutive jobs in Ti

I The execution time ei of a task Ti is the constant execution
time of all jobs in Ti

I The relative deadline Di is the constant relative deadline of
all jobs in Ti

80



Periodic Tasks – Notation

The 4-tuple Ti = (ϕi ,pi ,ei ,Di) refers to a periodic task Ti with phase
ϕi , period pi , execution time ei , and relative deadline Di

For example: jobs of T1 = (1,10,3,6) are
I released at times 1, 11, 21, . . .,
I execute for 3 time units,
I have to be finished in 6 time units (the first by 7, the second by 17, ...)

Default phase of Ti is ϕi = 0 and default relative deadline is di = pi

T2 = (10,3,6) satisfies ϕ = 0, pi = 10, ei = 3, Di = 6, i.e. jobs of T2 are
I released at times 0, 10, 20, . . .,
I execute for 3 time units,
I have to be finished in 6 time units (the first by 6, the second by 16, ...)

T3 = (10,3) satisfies ϕ = 0, pi = 10, ei = 3, Di = 10, i.e. jobs of T3 are
I released at times 0, 10, 20, . . .,
I execute for 3 time units,
I have to be finished in 10 time units (the first by 10, the second by 20, ...)
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Periodic Tasks – Hyperperiod

The hyper-period H of a set of periodic tasks is the least
common multiple of their periods
If tasks are in phase, then H is the time instant after which the pattern of job
release/execution times starts to repeat

0 5 10 15 20 25 30

H H
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Aperiodic and Sporadic Tasks

I Many real-time systems are required to respond to
external events

I The tasks resulting from such events are sporadic and
aperiodic tasks
I Sporadic tasks – hard deadlines of jobs

e.g. autopilot on/off in aircraft

The usual goal is to decide, whether a newly released job
can be feasibly scheduled with the remaining jobs in the
system

I Aperiodic tasks – soft deadlines of jobs
e.g. sensitivity adjustment of radar surveilance system

The usual goal is to minimize the average response time
For rigorous analysis we typically assume that the inter-arrival
times between aperiodic jobs are distributed according to a known
distribution.
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Scheduling – Classification of Algorithms

I Off-line vs Online
I Off-line – sched. algorithm is executed on the whole task

set before activation
I Online – schedule is updated at runtime every time a new

task enters the system

The main division is on
I Clock-Driven
I Priority-Driven
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Scheduling – Clock-Driven

I Decisions about what jobs execute when are made at specific
time instants

I these instants are chosen before the system begins
execution

I Usually regularly spaced, implemented using a periodic
timer interrupt

I Scheduler awakes after each interrupt, schedules jobs to
execute for the next period, then blocks itself until the next
interrupt
E.g. the helicopter example with the interrupt every 1/180 th of a
second

I Typically in clock-driven systems:

I All parameters of the real-time jobs are fixed and known
I A schedule of the jobs is computed off-line and is stored for

use at runtime; thus scheduling overhead at run-time can
be minimized

I Simple and straight-forward, not flexible
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Scheduling – Priority-Driven

I Assign priorities to jobs, based on some algorithm
I Make scheduling decisions based on the priorities, when events

such as releases and job completions occur
I Priority scheduling algorithms are event-driven
I Jobs are placed in one or more queues; at each event, the

ready job with the highest priority is executed
(The assignment of jobs to priority queues, along with rules such as
whether preemption is allowed, completely defines a priority-driven alg.)

I Priority-driven algs. make locally optimal scheduling decisions
I Locally optimal scheduling is often not globally optimal
I Priority-driven algorithms never intentionally leave idle

processors
I Typically in priority-driven systems:
I Some parameters do not have to be fixed or known
I A schedule is computed online; usually results in larger

scheduling overhead as opposed to clock-driven scheduling
I Flexible – easy to add/remove tasks or modify parameters
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Clock-Driven & Priority-Driven Example

T1 T2 T3
pi 3 5 10
ei 1 2 1

Clock-Driven:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

· · ·

· · ·

· · ·

Priority-driven: T1 � T2 � T3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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Real-Time Scheduling
Scheduling of Reactive Systems

Priority-Driven Scheduling

88



Current Assumptions

I Single processor
I Fixed number, n, of independent periodic tasks

i.e. there is no dependency relation among jobs
I Jobs can be preempted at any time and never suspend

themselves
I No aperiodic and sporadic jobs
I No resource contentions

Moreover, unless otherwise stated, we assume that
I Scheduling decisions take place precisely at
I release of a job
I completion of a job

(and nowhere else)

I Context switch overhead is negligibly small
i.e. assumed to be zero

I There is an unlimited number of priority levels
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Fixed-Priority vs Dynamic-Priority Algorithms

A priority-driven scheduler is on-line
i.e. it does not precompute a schedule of the tasks

I It assigns priorities to jobs after they are released and places the
jobs in a ready job queue in the priority order
with the highest priority jobs at the head of the queue

I At each scheduling decision time, the scheduler updates the
ready job queue and then schedules and executes the job at the
head of the queue
i.e. one of the jobs with the highest priority

Fixed-priority = all jobs in a task are assigned the same priority

Dynamic-priority = jobs in a task may be assigned different priorities

Note: In our case, a priority assigned to a job does not change. There are
job-level dynamic priority algorithms that vary priorities of individual jobs – we
won’t consider such algorithms.
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Fixed-priority Algorithms – Rate Monotonic
Best known fixed-priority algorithm is rate monotonic (RM) scheduling
that assigns priorities to tasks based on their periods
I The shorter the period, the higher the priority
I The rate is the inverse of the period, so jobs with higher rate

have higher priority

RM is very widely studied and used

Example 12
T1 = (4,1), T2 = (5,2), T3 = (20,5)
with rates 1/4, 1/5, 1/20, respectively

The priorities: T1 � T2 � T3

0 4 8 12 16 20

T3

T2

T1
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Fixed-priority Algorithms – Deadline Monotonic

The deadline monotonic (DM) algorithm assigns priorities to
tasks based on their relative deadlines
I the shorter the deadline, the higher the priority

Observation: When relative deadline of every task matches its
period, then RM and DM give the same results

Proposition 1
When the relative deadlines are arbitrary DM can sometimes
produce a feasible schedule in cases where RM cannot.

Proof.
Consider e.g. T1 = (3,1,1) and T2 = (2,1). �
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Dynamic-priority Algorithms – EDF

Earliest Deadline First (EDF) assigns priorities to jobs based on
their current absolute deadlines
I At the time of a scheduling decision, the job queue is

ordered by the earliest deadline
the earlier the deadline, the larger the priority

We focus on EDF in this course!
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EDF – Example

T1 = (2,1) and T2 = (5,2.5)

0 1 2 3 4 5 6 7 8 9 10

T2

T1

Note that the processor is 100% “utilized”, not surprising :-)
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Other Dynamic-priority Algorithms - LST

Least Slack Time (LST): The job queue is ordered by least
slack time.
The slack time of a job Ji at time t is equal to di − t − x where x is the
remaining computation time of Ji at time t

There is also a strict LST which reassigns priorities to jobs whenever
their slacks change relative to each other – difficult to implement
This algorithm does not satisfy our assumptions!
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Summary of Priority-Driven Algorithms
We consider:
Dynamic-priority:

I EDF = at the time of a scheduling decision, the job queue is
ordered by the earliest deadline

Fixed-priority:

I RM = assigns priorities to tasks based on their periods

I DM = assigns priorities to tasks based on their relative deadlines

(In all cases, ties are broken arbitrarily.)

We consider the following questions:

I Are the algorithms optimal?

I How to efficiently (or even online) test for schedulability?

To measure abilities of scheduling algorithms and to get fast online
tests of schedulability we use a notion of utilization
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Utilization
I Utilization ui of a periodic task Ti with period pi and

execution time ei is defined by ui := ei/pi
ui is the fraction of time a periodic task with period pi and execution time
ei keeps a processor busy

I Total utilization UT of a set of tasks T = {T1, . . . ,Tn} is
defined as the sum of utilizations of all tasks of T , i.e. by

UT :=

n∑
i=1

ui

I U is a schedulable utilization of an algorithm ALG if all sets
of tasks T satisfying UT ≤ U are schedulable by ALG.
Maximum schedulable utilization UALG of an algorithm ALG
is the supremum of schedulable utilizations of ALG.
I If UT < UALG , then T is schedulable by ALG.
I If U > UALG , then there is T with UT ≤ U that is not

schedulable by ALG.
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Utilization – Example

I T1 = (2,1) then u1 = 1
2

I T1 = (11,5,2,4) then u1 = 2
5

(i.e., the phase and deadline do not play any role)

I T = {T1,T2,T3} where T1 = (2,1),T2 = (6,1),T3 = (8,3)
then

UT =
1
2

+
1
6

+
3
8

=
25
24
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Real-Time Scheduling
Priority-Driven Scheduling

Dynamic-Priority
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Optimality of EDF

Theorem 13
Let T = {T1, . . . ,Tn} be a set of independent, preemptable
periodic tasks with Di ≥ pi for i = 1, . . . ,n. The following
statements are equivalent:

1. T can be feasibly scheduled on one processor
2. UT ≤ 1
3. T is schedulable using EDF

(i.e., in particular, UEDF = 1)

Proof.

1.⇒2. We prove that UT > 1 implies that T is not schedulable

2.⇒3. We prove that if EDF fails to feasibly schedule, then UT > 1

3.⇒1. Trivial

�
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Proof of 1.⇒2.
Assume that UT =

∑N
i=1

ei
pi
> 1.

Consider a time instant t > maxi ϕi
(i.e. a time when all tasks are already "running")

Observe that the number of jobs of Ti that are released in the time
interval [0, t ] is

⌈ t−ϕi

pi

⌉
. Thus a single processor needs

∑n
i=1

⌈ t−ϕi

pi

⌉
· ei

time units to finish all jobs released before or at t .

However, the the total time to finish all jobs released before or at t is
n∑

i=1

⌈
t − ϕi

pi

⌉
·ei ≥

n∑
i=1

(t−ϕi)·
ei

pi
=

n∑
i=1

tui−ϕiui =

n∑
i=1

tui−

n∑
i=1

ϕiui = t ·UT−
n∑

i=1

ϕiui

Here
∑n

i=1 ϕiui does not depend on t .

Note that limt→∞

(
t · UT −

∑n
i=1 ϕiui

)
− t = ∞. So there exists t such

that t · UT −
∑n

i=1 ϕiui > t + maxi Di .

So in order to complete all jobs released before or at t we need more
time than t + maxi Di . However, the latest deadline of a job released
before or at t is t + maxi Di . So at least one job misses its deadline.
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Proof of 2.⇒3. – Simplified
Let us start with a proof of a special case (see the assumptions A1 and A2
below). Then a complete proof will be presented.

We prove ¬3.⇒ ¬2. assuming that Di = pi for i = 1, . . . ,n.
(Note that the general case immediately follows.)

Assume that T is not schedulable according to EDF.
(Our goal is to show that UT > 1.)

This means that there must be at least one job that misses its
deadline when EDF is used.

Simplifying assumptions:

A1 Suppose that all tasks are in phase, i.e. the phase ϕ` = 0 for
every task T`.

A2 Suppose that the first job Ji,1 of a task Ti misses its deadline.

By A1, Ji,1 is released at 0 and misses its deadline at pi . Assume
w.l.o.g. that this is the first time when a job misses its deadline.
(To simplify even further, you may (privately) assume that no other job has its
deadline at pi .)
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Proof of 2.⇒3. – Simplified
Let G be the set of all jobs released in [0,pi ] with deadlines in [0,pi ].

Crucial observations:

I G contains Ji,1

I Only jobs of G can be executed in [0,pi ]

Jobs that do not belong to G cannot be executed in [0,pi ] as Ji,1 is not
completed in [0,pi ] and only jobs of G can preempt Ji,1.

I The processor is never idle in [0,pi ]

The processor is not idle because Ji,1 is ready for computation
throughout [0,pi ].

Denote by EG the total execution time of G, that is, the sum of
execution times of all jobs in G.

Corollary of the crucial observation: EG > pi because otherwise
Ji,1 (and all jobs that could possibly preempt it) would be completed
by pi .

Let us compute EG .
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Proof of 2.⇒3. – Simplified

Since we assume ϕ` = 0 for every T`, the first job of T` is released
at 0, and thus

⌊
pi
p`

⌋
jobs of T` belong to G.

E.g., if p` = 2 and pi = 5 then three jobs of T` are released in [0,5] (at times
0, 2, 4) but only 2 =

⌊
5
2

⌋
=

⌊
pi
p`

⌋
of them have their deadlines in [0,pi ].

Thus the total execution time EG of all jobs in G is

EG =

n∑
`=1

⌊
pi

p`

⌋
e`

But then

pi < EG =

n∑
`=1

⌊
pi

p`

⌋
e` ≤

n∑
`=1

pi

p`
e` ≤ pi

n∑
`=1

u` ≤ pi · UT

which implies that UT > 1.
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Proof of 2.⇒3. – Complete

Now let us drop the simplifying assumptions A1 and A2 !

We prove ¬3.⇒ ¬2. assuming that Di = pi for i = 1, . . . ,n
(note that the general case immediately follows)

Assume that T is not schedulable by EDF.
(We show that UT > 1)

Suppose that a job Ji,k of Ti misses its deadline at time t = ri,k + pi .
Assume that this is the earliest deadline miss.

Let t− be the end of the last interval before t in which either jobs with
deadlines after t are being executed, or the processor is idle.

Let G be the set of all jobs released in [t−, t ] with deadlines in [t−, t ].
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Proof of 2.⇒3. – Complete (cont.)

I G contains Ji,k

Note that t− ≤ ri,k because otherwise either Ji,k or another job
with a deadline at, or before t would be executed just before t−.

I Only jobs of G can be executed in [t−, t ]

Indeed, by definition of t−:
I All jobs (possibly) executed in [t−, t ] must have their

deadlines at, or before t by the definition of t−.
I If an idle interval precedes t−, then all jobs with deadlines

at, or before t must be released at, or after t− because
otherwise one of them would have been executed just
before t−.

I If a job with its deadline after t is executed just before t−,
then all jobs with deadlines at, or before t must be released
in [t−, t ] because otherwise one of them would have been
executed just before t−.

I The processor is never idle in [t−, t ] by definition of t−

Denote by EG the sum of all execution times of all jobs in G.
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Proof of 2.⇒3. – Complete (cont.)

Now EG > t − t− because otherwise Ji,k would complete in [t−, t ].

How to compute EG?

For a task T`, denote by R` the earliest release time of a job in T` in
the interval [t−, t ].

For every T`, exactly
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⌋
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Density and EDF

What about tasks with Di < pi ?

Density of a task Ti with period pi , execution time ei and relative
deadline Di is defined by

ei/min(Di ,pi)

Total density ∆T of a set of tasks T is the sum of densities of
tasks in T
Note that if Di < pi for some i, then ∆T > UT

Theorem 14
A set T of independent, preemptable, periodic tasks can be
feasibly scheduled on one processor if ∆T ≤ 1.
Note that this is NOT a necessary condition!
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Schedulability Test For EDF

The problem: Given a set of independent, preemptable, periodic
tasks T = {T1, . . . ,Tn} where each Ti has a period pi , execution time
ei , and relative deadline Di , decide whether T is schedulable by EDF.

Solution using utilization and density:

If pi ≤ Di for each i, then it suffices to decide whether UT ≤ 1.

Otherwise, decide whether ∆T ≤ 1:
I If yes, then T is schedulable with EDF
I If not, then T does not have to be schedulable

Note that
I Phases of tasks do not have to be specified
I Parameters may vary: increasing periods or deadlines, or

decreasing execution times does not prevent schedulability
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Schedulability Test for EDF – Example

Consider a digital robot controller
I A control-law computation
I takes no more than 8 ms
I the sampling rate: 100 Hz, i.e. computes every 10 ms

Feasible? Trivially yes ....
I Add Built-In Self-Test (BIST)
I maximum execution time 50 ms
I want a minimal period that is feasible (max one second)

With 250 ms still feasible ....
I Add a telemetry task
I maximum execution time 15 ms
I want to minimize the deadline on telemetry

period may be large

Reducing BIST to once a second, deadline on telemetry
may be set to 100 ms ....
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Real-Time Scheduling
Priority-Driven Scheduling

Fixed-Priority
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Fixed-Priority Algorithms

Recall that we consider a set of n tasks T = {T1, . . . ,Tn}

Any fixed-priority algorithm schedules tasks of T according to fixed
(distinct) priorities assigned to tasks.
We write Ti A Tj whenever Ti has a higher priority than Tj .

To simplify our reasoning, assume that

all tasks are in phase, i.e. ϕk = 0 for all Tk .

We will remove this assumption at the end.
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Fixed-Priority Algorithms – Reminder
Recall that Fixed-Priority Algorithms do not have to be optimal.
Consider T = {T1,T2} where T1 = (4,2) and T2 = (6,3)

UT = 1 and thus T is schedulable by EDF

If T1 A T2, then J2,1 misses its deadline
If T2 A T1, then J1,1 misses its deadline

We consider the following algorithms:
I RM = assigns priorities to tasks based on their periods

the priority is inversely proportional to the period pi

I DM = assigns priorities to tasks based on their relative deadlines
the priority is inversely proportional to the relative deadline Di

(In all cases, ties are broken arbitrarily.)

We consider the following questions:
I Are the algorithms optimal?
I How to efficiently (or even online) test for schedulability?
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Maximum Response Time

Which job of a task Ti has the maximum response time?

As all tasks are in phase, the first job of Ti is released together with
(first) jobs of all tasks that have higher priority than Ti .

This means, that Ji,1 is the most preempted of jobs in Ti .

It follows, that Ji,1 has the maximum response time.
Note that this relies heavily on the assumption that tasks are in phase!

Thus in order to decide whether T is schedulable, it suffices to test
for schedulability of the first jobs of all tasks.
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Optimality of RM for Simply Periodic Tasks

Definition 15
A set {T1, . . . ,Tn} is simply periodic if for every pair Ti , T` satisfying
pi > p` we have that pi is an integer multiple of p`

Example 16
The helicopter control system from the first lecture.

Theorem 17
A set T of n simply periodic, independent, preemptable tasks with
Di = pi is schedulable on one processor according to RM iff UT ≤ 1.
i.e. on simply periodic tasks RM is as good as EDF
Note: Theorem 17 is true in general, no "in phase" assumption is needed.
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Proof of Theorem 17

By Theorem 13, every schedulable set T satisfies UT ≤ 1.

We prove that if T is not schedulable according to RM, then UT > 1.

Assume that a job Ji,1 of Ti misses its deadline at Di = pi . W.l.o.g., we
assume that T1 A · · · A Tn according to RM.

Let us compute the total execution time of Ji,1 and all jobs that
possibly preempt it:

E = ei +

i−1∑
`=1

⌈
pi

p`

⌉
e` =

i∑
`=1

pi

p`
e` = pi

i∑
`=1

u` ≤ pi

n∑
`=1

u` = piUT

Now E > pi because otherwise Ji,1 meets its deadline. Thus

pi < E ≤ piUT

and we obtain UT > 1.
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Optimality of DM (RM) among Fixed-Priority Algs.

Theorem 18
A set of independent, preemptable periodic tasks with Di ≤ pi that are
in phase (i.e., ϕi = 0 for all i = 1, . . . ,n) can be feasibly scheduled on
one processor according to DM if it can be feasibly scheduled by
some fixed-priority algorithm.

Proof.
Assume a fixed-priority feasible schedule with T1 A · · · A Tn.

Consider the least i such that the relative deadline Di of Ti is larger
than the relative deadline Di+1 of Ti+1.

Swap the priorities of Ti and Ti+1.

The resulting schedule is still feasible.

DM is obtained by using finitely many swaps. �

Note: If the assumptions of the above theorem hold and all relative deadlines
are equal to periods, then RM is optimal among all fixed-priority algorithms.
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Fixed-Priority Algorithms: Schedulability

We consider two schedulability tests:
I Schedulable utilization URM of the RM algorithm.
I Time-demand analysis based on response times.
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Schedulable Utilization for RM

Theorem 19
Let us fix n ∈N and consider only independent, preemptable
periodic tasks with Di = pi .

I If T is a set of n tasks satisfying UT ≤ n(21/n
− 1), then UT

is schedulable according to the RM algorithm.
I For every U > n(21/n

− 1) there is a set T of n tasks
satisfying UT ≤ U that is not schedulable by RM.

Note: Theorem 19 holds in general, no "in phase" assumption is needed.
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I For every U > n(21/n

− 1) there is a set T of n tasks
satisfying UT ≤ U that is not schedulable by RM.

Note: Theorem 19 holds in general, no "in phase" assumption is needed.
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Schedulable Utilization for RM

It follows that the maximum schedulable utilization URM over
independent, preemptable periodic tasks satisfies

URM = inf
n

n(21/n
− 1) = lim

n→∞
n(21/n

− 1) = ln 2 ≈ 0.693

Note that UT ≤ n(21/n
− 1) is a sufficient but not necessary condition for

schedulability of T using the RM algorithm (an example will be given later)

We say that a set of tasks T is RM-schedulable if it is
schedulable according to RM.
We say that T is RM-infeasible if it is not RM-schedulable.
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Proof – Special Case
To simplify, we restrict to two tasks and always assume p1 ≤ p2 ≤ 2p1.
(the latter condition is w.l.o.g., proof omitted)

Outline: Given p1,p2,e1, denote by max_e2 the maximum execution
time so that T = {(p1,e1), (p2,max_e2)} is RM-schedulable.
We define Up1,p2

e1
to be UT where T = {(p1,e1), (p2,max_e2)}.

We say that T fully utilizes the processor, any increase in an execution time
causes RM-infeasibility.

Now we find the (global) minimum minU of Up1,p2
e1

w.r.t. all
parameters p1,p2,e1.
Note that this suffices to obtain the desired result:
I Given a set of tasks T = {(p1,e1), (p2,e2)} satisfying UT ≤ minU

we get UT ≤ minU ≤ Up1,p2
e1

, and thus the execution time e2
cannot be larger than max_e2. Thus, T is RM-schedulable.

I Given U > minU, there must be p1,p2,e1 satisfying
minU ≤ Up1,p2

e1
< U where Up1,p2

e1
= UT for a set of tasks

T = {(p1,e1), (p2,max_e2)}.
However, now increasing e1 by a sufficiently small ε > 0 makes
the set RM-infeasible without making utilization larger than U.
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Proof – Special Case (Cont.)
First, minimize w.r.t. e1 (p1,p2 fixed). Two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1) is p2 − 2e1. Which
gives the utilization

Up1,p2
e1

=
e1

p1
+

max_e2

p2
=

e1

p1
+

p2 − 2e1

p2
=

e1

p1
+

p2

p2
−

2e1

p2
= 1 +

e1

p2

(
p2

p1
− 2

)
As p2

p1
− 2 ≤ 0, the utilization Up1,p2

e1
is minimized by maximizing e1.

2. e1 ≥ p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1) is p1 − e1. Which
gives the utilization

Up1,p2
e1

=
e1

p1
+

max_e2

p2
=

e1

p1
+

p1 − e1

p2
=

e1

p1
+

p1

p2
−

e1

p2
=

p1

p2
+

e1

p2

(
p2

p1
− 1

)
As p2

p1
− 1 ≥ 0, the utilization Up1,p2

e1
is minimized by minimizing e1.

In both cases, the minimum of Up1,p2
e1

is attained at e1 = p2 − p1.
(Both expressions defining Up1 ,p2

e1
give the same value for e1 = p2 − p1.)
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Proof – Special Case (Cont.)
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Proof – Special Case (Cont.)
Substitute e1 = p2 − p1 into the expression for Up1,p2

e1
:

Up1,p2
p2−p1

=
p1

p2
+

p2 − p1

p2

(
p2

p1
− 1

)
=

p1

p2
+

(
1 −

p1

p2

) (
p2

p1
− 1

)
=

p1

p2
+

p1

p2

(
p2

p1
− 1

) (
p2

p1
− 1

)
=

p1

p2

1 +

(
p2

p1
− 1

)2
Denoting G =

p2
p1
− 1 we obtain

Up1,p2
p2−p1

=
p1

p2
(1 + G2) =

1 + G2

p2/p1
=

1 + G2

1 + G

Differentiating w.r.t. G we get

G2 + 2G − 1
(1 + G)2

which is equal to zero at G = −1±
√

2. Here only G = −1 +
√

2 > 0 is
acceptable since the other root is negative.
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Proof – Special Case (Cont.)
Thus the minimum value of Up1,p2

e1
is

1 + (
√

2 − 1)2

1 + (
√

2 − 1)
=

4 − 2
√

2
√

2
= 2(

√

2 − 1)

It is attained at periods satisfying

G =
p2

p1
− 1 =

√

2 − 1 i.e. satisfying p2 =
√

2p1.

The execution time e1 which at full utilization of the processor (due to
max_e2) gives the minimum utilization is

e1 = p2 − p1 = (
√

2 − 1)p1

and the corresponding max_e2 = p1 −e1 = p1 − (p2 −p1) = 2p1 − p2.

Scaling to p1 = 1, we obtain a completely determined example

p1 = 1 p2 =
√

2 ≈ 1.41 e1 =
√

2−1 ≈ 0.41 max_e2 = 2−
√

2 ≈ 0.59

that maximally utilizes the processor (no execution time can be
increased) but has the minimum utilization 2(

√
2 − 1).
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p1 = 1 p2 =
√

2 ≈ 1.41 e1 =
√

2−1 ≈ 0.41 max_e2 = 2−
√

2 ≈ 0.59

that maximally utilizes the processor (no execution time can be
increased) but has the minimum utilization 2(

√
2 − 1).
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Proof – Special Case (Cont.)
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Proof Idea of Theorem 19
Fix periods p1 < · · · < pn so that (w.l.o.g.) pn ≤ 2p1. Then the
following set of tasks has the smallest utilization among all task sets
that fully utilize the processor (i.e., any increase in any execution time
makes the set unschedulable).

0 p1 2p1

0 p2

0 p3

0 pn−1

0 pn

...

T3

T2

T1

Tn

Tn−1

ek = pk+1 − pk for k = 1, . . . ,n − 1

en = pn − 2
n−1∑
k=1

ek = 2p1 − pn
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Time-Demand Analysis

Consider a set of n tasks T = {T1, . . . ,Tn}.
Recall that we consider only independent, preemptable, in phase (i.e. ϕi = 0
for all i) tasks without resource contentions.

Assume that Di ≤ pi for every i, and consider an arbitrary
fixed-priority algorithm. W.l.o.g. assume T1 A · · · A Tn.

Idea: For every task Ti and every time instant t ≥ 0, compute the total
execution time wi(t) (the time demand) of the first job Ji,1 and of all
higher-priority jobs released up to time t .

If wi(t) ≤ t for some time t ≤ Di , then Ji,1 is schedulable, and hence all
jobs of Ti are schedulable.
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Time-Demand Analysis

I Consider one task Ti at a time, starting with highest priority and
working to lowest priority.

I Focus on the first job Ji,1 of Ti .
If Ji,1 makes it, all jobs of Ti will make it due to ϕi = 0.

I At time t for t ≥ 0, the processor time demand wi(t) for this job
and all higher-priority jobs released in [0, t ] is bounded by

wi(t) = ei +

i−1∑
`=1

⌈
t
p`

⌉
e` for 0 < t ≤ pi

(Note that the smallest t for which wi(t) ≤ t is the response time of Ji,1,
and hence the maximum response time of jobs in Ti).

I If wi(t) ≤ t for some t ≤ Di , the job Ji,1 meets its deadline Di .

I If wi(t) > t for all 0 < t ≤ Di , then the first job of the task cannot
complete by its deadline.
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Time-Demand Analysis – Example

Example: T1 = (3,1), T2 = (5,1.5), T3 = (7,1.25), T4 = (9,0.5)

This set of tasks is schedulable by RM even though
U{T1,...,T4} = 0.85 > 0.757 = URM(4) 128



Time-Demand Analysis

I The time-demand function wi(t) is a staircase function

I Steps in the time-demand for a task occur at multiples of
the period for higher-priority tasks

I The value of wi(t) − t linearly decreases from a step until
the next step

I If our interest is the schedulability of a task, it suffices to
check if wi(t) ≤ t at the time instants when a higher-priority
job is released and at Di

I Our schedulability test becomes:
I Compute wi(t)
I Check whether wi(t) ≤ t for some t equal either to Di , or to

j · pk where k = 1,2, . . . , i and j = 1,2, . . . , bDi/pk c
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Time-Demand Analysis – Comments

I Time-demand analysis schedulability test is more complex than
the schedulable utilization test but more general:

I Works for any fixed-priority scheduling algorithm, provided
the tasks have short response time (Di ≤ pi)
Can be extended to tasks with arbitrary deadlines

I Still more efficient than exhaustive simulation.

I Assuming that the tasks are in phase the time demand analysis
is complete.

We have considered the time demand analysis for tasks in phase. In
particular, we used the fact that the first job has the maximum
response time.

This is not true if the jobs are not in phase, we need to identify the so
called critical instant, the time instant in which the system is most
loaded, and has its worst response time.
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Critical Instant – Formally
A critical instant tcrit of a task Ti is a time instant in which a job Ji,k in
Ti is released so that Ji,k either does not meet its deadline, or has
the maximum response time of all jobs in Ti .

Theorem 20
Assume Di ≤ pi for every i and use a fixed-priority algorithm. A critical
instant of a task Ti occurs when one of its jobs Ji,k is released at the
same time with a job from every higher-priority task.

Note that the situation described in the theorem does not have to
occur if tasks are not in phase!
To get such a critical instant, we set phases of all tasks to zero, which
gives a new set of tasks T ′ = {T ′1, . . . ,T

′
n}. Denote jobs of T ′i by J′i,k .

Corollary 21
Assume Di ≤ pi for every i and use a fixed-priority algorithm.
Consider a critical instant tcrit of a task Ti .

I If the job Ji,k released at tcrit misses its deadline, then J′i,1 misses
its deadline.

I Otherwise, the response time of Ji,k is at most as large as the
response time of J′i,1.
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Critical Instant and Schedulability Tests

Now we can (partially) decide schedulability of a given set of periodic
tasks T = {T1, . . . ,Tn} (assuming Di ≤ pi) as follows:

Set phases of all tasks to zero, which gives a new set of tasks
T
′ = {T ′1, . . . ,T

′
n}.

Decide schedulability of T ′, e.g., using the timed-demand analysis.

I If T ′ if schedulable, then also T is schedulable.

I If T ′ is not schedulable, then T does not have to be schedulable.
But may be schedulable, which make the time-demand analysis
incomplete in general for tasks not in phase.
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Dynamic vs Fixed Priority

I EDF
I pros:

I optimal
I very simple and complete test for schedulability

I cons:
I difficult to predict which job misses its deadline
I strictly following EDF in case of overloads assigns higher

priority to jobs that missed their deadlines
I larger scheduling overhead

I DM (RM)
I pros:

I easier to predict which job misses its deadline (in particular,
tasks are not blocked by lower priority tasks)

I easy implementation with little scheduling overhead
I (optimal in some cases often occurring in practice)

I cons:
I not optimal
I incomplete and more involved tests for schedulability
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