
IA158 Real Time Systems
Tomáš Brázdil

1

Organization of This Course

Sources:
I Lectures (slides, notes)

I based on several sources (hard to obtain)
I slides are prepared for lectures, lots of stuff on

the greenboard
(⇒ attend the lectures)

Homework:
I a larger homework project

Evaluation:
I Homework project

(have to do to be allowed to the exam)

I Oral exam

2

Organization of This Course

Sources:
I Lectures (slides, notes)

I based on several sources (hard to obtain)
I slides are prepared for lectures, lots of stuff on

the greenboard
(⇒ attend the lectures)

Homework:
I a larger homework project

Evaluation:
I Homework project

(have to do to be allowed to the exam)

I Oral exam

2

Organization of This Course

Sources:
I Lectures (slides, notes)

I based on several sources (hard to obtain)
I slides are prepared for lectures, lots of stuff on

the greenboard
(⇒ attend the lectures)

Homework:
I a larger homework project

Evaluation:
I Homework project

(have to do to be allowed to the exam)

I Oral exam

2

Real-Time Systems

Definition 1 (Time)
Mirriam-Webster: Time is the measured or measurable period during
which an action, process, or condition exists or continues.

Definition 2 (Real-time)
Real-time is a quantitative notion of time measured using
a physical clock.
Example: After an event occurs (eg. temperature exceeds 500 degrees) the
corresponding action (cooling) must take place within 100ms.

Compare with qualitative notion of time (before, after, eventually, etc.)

Definition 3 (Real-time system)
A real-time system must deliver services in a timely manner.
Not necessarily fast, must satisfy some quantitative timing constraints

3

Real-Time Systems

Definition 1 (Time)
Mirriam-Webster: Time is the measured or measurable period during
which an action, process, or condition exists or continues.

Definition 2 (Real-time)
Real-time is a quantitative notion of time measured using
a physical clock.
Example: After an event occurs (eg. temperature exceeds 500 degrees) the
corresponding action (cooling) must take place within 100ms.

Compare with qualitative notion of time (before, after, eventually, etc.)

Definition 3 (Real-time system)
A real-time system must deliver services in a timely manner.
Not necessarily fast, must satisfy some quantitative timing constraints

3

Real-Time Systems

Definition 1 (Time)
Mirriam-Webster: Time is the measured or measurable period during
which an action, process, or condition exists or continues.

Definition 2 (Real-time)
Real-time is a quantitative notion of time measured using
a physical clock.
Example: After an event occurs (eg. temperature exceeds 500 degrees) the
corresponding action (cooling) must take place within 100ms.

Compare with qualitative notion of time (before, after, eventually, etc.)

Definition 3 (Real-time system)
A real-time system must deliver services in a timely manner.
Not necessarily fast, must satisfy some quantitative timing constraints

3

Real-time Embedded Systems

Definition 4 (Embedded system)
An embedded system is a computer system designed for
specific control functions within a larger system, usually
consisting of electronic as well as mechanical parts.

Most (not all) real-time
systems are embedded

Most (not all) embedded
systems are real-time

4

Real-time Embedded Systems

Definition 4 (Embedded system)
An embedded system is a computer system designed for
specific control functions within a larger system, usually
consisting of electronic as well as mechanical parts.

Most (not all) real-time
systems are embedded

Most (not all) embedded
systems are real-time

4

(Few) Examples of Real-time Embedded Systems

I Industrial

I chemical plant control
I automated assembly line (e.g. robotic assembly, inspection)

I Medical

I pacemaker,
I medical monitoring devices

I Transportation systems

I computers in cars (ABS, MPFI, cruise control, airbag ...)
I aircraft (FMS, fly-by-wire ...)

I Military applications

I controllers in weapons, missiles, ...
I radar and sonar tracking

I Multimedia – multimedia center, videoconferencing

I ...

5

(Few) Examples of Real-time Embedded Systems

I Industrial

I chemical plant control
I automated assembly line (e.g. robotic assembly, inspection)

I Medical

I pacemaker,
I medical monitoring devices

I Transportation systems

I computers in cars (ABS, MPFI, cruise control, airbag ...)
I aircraft (FMS, fly-by-wire ...)

I Military applications

I controllers in weapons, missiles, ...
I radar and sonar tracking

I Multimedia – multimedia center, videoconferencing

I ...

5

(Few) Examples of Real-time Embedded Systems

I Industrial

I chemical plant control
I automated assembly line (e.g. robotic assembly, inspection)

I Medical

I pacemaker,
I medical monitoring devices

I Transportation systems

I computers in cars (ABS, MPFI, cruise control, airbag ...)
I aircraft (FMS, fly-by-wire ...)

I Military applications

I controllers in weapons, missiles, ...
I radar and sonar tracking

I Multimedia – multimedia center, videoconferencing

I ...

5

(Few) Examples of Real-time Embedded Systems

I Industrial

I chemical plant control
I automated assembly line (e.g. robotic assembly, inspection)

I Medical

I pacemaker,
I medical monitoring devices

I Transportation systems

I computers in cars (ABS, MPFI, cruise control, airbag ...)
I aircraft (FMS, fly-by-wire ...)

I Military applications

I controllers in weapons, missiles, ...
I radar and sonar tracking

I Multimedia – multimedia center, videoconferencing

I ...

5

(Few) Examples of Real-time Embedded Systems

I Industrial

I chemical plant control
I automated assembly line (e.g. robotic assembly, inspection)

I Medical

I pacemaker,
I medical monitoring devices

I Transportation systems

I computers in cars (ABS, MPFI, cruise control, airbag ...)
I aircraft (FMS, fly-by-wire ...)

I Military applications

I controllers in weapons, missiles, ...
I radar and sonar tracking

I Multimedia – multimedia center, videoconferencing

I ...

5

(Non-)Real-time (non-)embedded systems

There are real time systems that are not embedded:
I trading systems
I ticket reservation
I multimedia (on PC)
I ...

There are embedded systems that are (possibly) not real-time

e.g. a weather station sends data once a day without any deadline –
not really real-time system

Caveat: Aren’t all systems real-time in a sense?

6

(Non-)Real-time (non-)embedded systems

There are real time systems that are not embedded:
I trading systems
I ticket reservation
I multimedia (on PC)
I ...

There are embedded systems that are (possibly) not real-time

e.g. a weather station sends data once a day without any deadline –
not really real-time system

Caveat: Aren’t all systems real-time in a sense?

6

Characteristics of Real-Time Embedded Systems

Real-time systems often are

I safety critical
I Serious consequences may result if services are not

delivered on timely basis
I Bugs in embedded real-time systems are often difficult to fix

... need to validate their correctness

I concurrent
I Real-world devices operate in parallel – better to model this

parallelism by concurrent tasks in the program

... validation may be difficult, formal methods often needed

I reactive
I Interact continuously with their environment (as opposed to

information processing systems)

... “traditional” validation methods do not apply

7

Characteristics of Real-Time Embedded Systems

Real-time systems often are

I safety critical
I Serious consequences may result if services are not

delivered on timely basis
I Bugs in embedded real-time systems are often difficult to fix

... need to validate their correctness

I concurrent
I Real-world devices operate in parallel – better to model this

parallelism by concurrent tasks in the program

... validation may be difficult, formal methods often needed

I reactive
I Interact continuously with their environment (as opposed to

information processing systems)

... “traditional” validation methods do not apply

7

Characteristics of Real-Time Embedded Systems

Real-time systems often are

I safety critical
I Serious consequences may result if services are not

delivered on timely basis
I Bugs in embedded real-time systems are often difficult to fix

... need to validate their correctness

I concurrent
I Real-world devices operate in parallel – better to model this

parallelism by concurrent tasks in the program

... validation may be difficult, formal methods often needed

I reactive
I Interact continuously with their environment (as opposed to

information processing systems)

... “traditional” validation methods do not apply
7

Validating Time Requirements and Predictability

I Given real-time requirements and an implementation on
HW and SW, how to show that the requirements are met?

... testing might not suffice:
Maiden flight of space shuttle, 12 April 1981: 1/67 probability that a
transient overload occurs during initialization; and it actually did!

I We need a formal model and validation ...

I ... we need predictable behavior!
It is difficult to obtain
I caches, DMA, unmaskable interrupts
I memory management
I scheduling anomalies
I difficult to compute worst-case execution time
I ...

8

Validating Time Requirements and Predictability

I Given real-time requirements and an implementation on
HW and SW, how to show that the requirements are met?

... testing might not suffice:
Maiden flight of space shuttle, 12 April 1981: 1/67 probability that a
transient overload occurs during initialization; and it actually did!

I We need a formal model and validation ...

I ... we need predictable behavior!
It is difficult to obtain
I caches, DMA, unmaskable interrupts
I memory management
I scheduling anomalies
I difficult to compute worst-case execution time
I ...

8

Validating Time Requirements and Predictability

I Given real-time requirements and an implementation on
HW and SW, how to show that the requirements are met?

... testing might not suffice:
Maiden flight of space shuttle, 12 April 1981: 1/67 probability that a
transient overload occurs during initialization; and it actually did!

I We need a formal model and validation ...

I ... we need predictable behavior!
It is difficult to obtain
I caches, DMA, unmaskable interrupts
I memory management
I scheduling anomalies
I difficult to compute worst-case execution time
I ...

8

Validating Time Requirements and Predictability

I Given real-time requirements and an implementation on
HW and SW, how to show that the requirements are met?

... testing might not suffice:
Maiden flight of space shuttle, 12 April 1981: 1/67 probability that a
transient overload occurs during initialization; and it actually did!

I We need a formal model and validation ...

I ... we need predictable behavior!
It is difficult to obtain
I caches, DMA, unmaskable interrupts
I memory management
I scheduling anomalies
I difficult to compute worst-case execution time
I ...

8

Types of Timing Requirements

Time sharing systems: minimize average response time
The goal of scheduling in standard op. systems such as Linux and Windows

Often it is not enough to minimize average response time!
(A man drowned crossing a stream with an average depth of 15cm.)

“hard” real-time tasks must be always finished before their deadline!
e.g. airbag in a car: whenever a collision is detected, the airbag must be
deployed within 10ms

Not all tasks in a real-time system are critical, only the quality of
service is affected by missing a deadline

Most “soft” real-time tasks should finish before their deadlines.
e.g. frame rate in a videoconf. should be kept above 15fps most of the time

Many real-time systems combine “hard” and “soft” real-time tasks.

i.e. we optimize performance w.r.t. “soft” real-time tasks under the constraint
that “hard” real-time tasks are finished before their deadlines

9

Types of Timing Requirements

Time sharing systems: minimize average response time
The goal of scheduling in standard op. systems such as Linux and Windows

Often it is not enough to minimize average response time!
(A man drowned crossing a stream with an average depth of 15cm.)

“hard” real-time tasks must be always finished before their deadline!
e.g. airbag in a car: whenever a collision is detected, the airbag must be
deployed within 10ms

Not all tasks in a real-time system are critical, only the quality of
service is affected by missing a deadline

Most “soft” real-time tasks should finish before their deadlines.
e.g. frame rate in a videoconf. should be kept above 15fps most of the time

Many real-time systems combine “hard” and “soft” real-time tasks.

i.e. we optimize performance w.r.t. “soft” real-time tasks under the constraint
that “hard” real-time tasks are finished before their deadlines

9

Types of Timing Requirements

Time sharing systems: minimize average response time
The goal of scheduling in standard op. systems such as Linux and Windows

Often it is not enough to minimize average response time!
(A man drowned crossing a stream with an average depth of 15cm.)

“hard” real-time tasks must be always finished before their deadline!
e.g. airbag in a car: whenever a collision is detected, the airbag must be
deployed within 10ms

Not all tasks in a real-time system are critical, only the quality of
service is affected by missing a deadline

Most “soft” real-time tasks should finish before their deadlines.
e.g. frame rate in a videoconf. should be kept above 15fps most of the time

Many real-time systems combine “hard” and “soft” real-time tasks.

i.e. we optimize performance w.r.t. “soft” real-time tasks under the constraint
that “hard” real-time tasks are finished before their deadlines

9

Types of Timing Requirements

Time sharing systems: minimize average response time
The goal of scheduling in standard op. systems such as Linux and Windows

Often it is not enough to minimize average response time!
(A man drowned crossing a stream with an average depth of 15cm.)

“hard” real-time tasks must be always finished before their deadline!
e.g. airbag in a car: whenever a collision is detected, the airbag must be
deployed within 10ms

Not all tasks in a real-time system are critical, only the quality of
service is affected by missing a deadline

Most “soft” real-time tasks should finish before their deadlines.
e.g. frame rate in a videoconf. should be kept above 15fps most of the time

Many real-time systems combine “hard” and “soft” real-time tasks.

i.e. we optimize performance w.r.t. “soft” real-time tasks under the constraint
that “hard” real-time tasks are finished before their deadlines

9

Types of Timing Requirements

Time sharing systems: minimize average response time
The goal of scheduling in standard op. systems such as Linux and Windows

Often it is not enough to minimize average response time!
(A man drowned crossing a stream with an average depth of 15cm.)

“hard” real-time tasks must be always finished before their deadline!
e.g. airbag in a car: whenever a collision is detected, the airbag must be
deployed within 10ms

Not all tasks in a real-time system are critical, only the quality of
service is affected by missing a deadline

Most “soft” real-time tasks should finish before their deadlines.
e.g. frame rate in a videoconf. should be kept above 15fps most of the time

Many real-time systems combine “hard” and “soft” real-time tasks.

i.e. we optimize performance w.r.t. “soft” real-time tasks under the constraint
that “hard” real-time tasks are finished before their deadlines

9

Types of Timing Requirements

Time sharing systems: minimize average response time
The goal of scheduling in standard op. systems such as Linux and Windows

Often it is not enough to minimize average response time!
(A man drowned crossing a stream with an average depth of 15cm.)

“hard” real-time tasks must be always finished before their deadline!
e.g. airbag in a car: whenever a collision is detected, the airbag must be
deployed within 10ms

Not all tasks in a real-time system are critical, only the quality of
service is affected by missing a deadline

Most “soft” real-time tasks should finish before their deadlines.
e.g. frame rate in a videoconf. should be kept above 15fps most of the time

Many real-time systems combine “hard” and “soft” real-time tasks.

i.e. we optimize performance w.r.t. “soft” real-time tasks under the constraint
that “hard” real-time tasks are finished before their deadlines

9

Examples of Real-Time Systems

I Digital process control
I anti-lock braking system

I Higher-level command and control
I helicopter flight control

I Real-time databases
I Stock trading systems

10

Digital Process Control

Computer controls the flow in the pipe in real-time
11

Digital Process Control

The controller (computer) controls the plant using the actuator
(valve) based on sampled data from the sensor (flow meter)
I y(t) – the measured state of the plant
I r(t) – the desired state of the plant
I Calculate control output u(t) as a function of y(t), r(t)

e.g. uk = uk−2 + α(rk − yk) + β(rk−1 − yk−1) + γ(rk−2 − yk−2)
where α, β, γ are suitable constants

12

Digital Process Control

I Pseudo-code for the controller:

set timer to interrupt periodically with period T
foreach timer interrupt do
analogue-to-digital conversion of y(t) to get yk
compute control output uk based on rk and yk
digital-to-analogue conversion of uk to get u(t)

end

I Effective control of the plant depends on:
I The correct reference input and control law computation
I The accuracy of the sensor measurements

I Resolution of the sampled data (i.e. bits per sample)
I Frequency of interrupts (i.e. 1/T)

I T is the sampling period
I Small T better approximates the analogue behavior
I Large T means less processor-time demand

... but may result in unstable control

13

Digital Process Control

I Pseudo-code for the controller:

set timer to interrupt periodically with period T
foreach timer interrupt do
analogue-to-digital conversion of y(t) to get yk
compute control output uk based on rk and yk
digital-to-analogue conversion of uk to get u(t)

end

I Effective control of the plant depends on:
I The correct reference input and control law computation
I The accuracy of the sensor measurements

I Resolution of the sampled data (i.e. bits per sample)
I Frequency of interrupts (i.e. 1/T)

I T is the sampling period
I Small T better approximates the analogue behavior
I Large T means less processor-time demand

... but may result in unstable control

13

Digital Process Control

I Pseudo-code for the controller:

set timer to interrupt periodically with period T
foreach timer interrupt do
analogue-to-digital conversion of y(t) to get yk
compute control output uk based on rk and yk
digital-to-analogue conversion of uk to get u(t)

end

I Effective control of the plant depends on:
I The correct reference input and control law computation
I The accuracy of the sensor measurements

I Resolution of the sampled data (i.e. bits per sample)
I Frequency of interrupts (i.e. 1/T)

I T is the sampling period
I Small T better approximates the analogue behavior
I Large T means less processor-time demand

... but may result in unstable control
13

Example

r(t) = 1 for t ≥ 0
14

Example

r(t) = 1 for t ≥ 0
14

Example

r(t) = 1 for t ≥ 0
14

Anti-Lock Braking System

I The controller monitors the speed sensors in wheels
Right before a wheel locks up, it experiences a rapid deceleration

I If a rapid deceleration of a wheel is observed, the controller
alternately
I reduces pressure on the corresponding brake until

acceleration is observed
I then applies brake until deceleration is observed

15

Anti-Lock Braking System

I The controller monitors the speed sensors in wheels
Right before a wheel locks up, it experiences a rapid deceleration

I If a rapid deceleration of a wheel is observed, the controller
alternately
I reduces pressure on the corresponding brake until

acceleration is observed
I then applies brake until deceleration is observed

15

Multi-Rate DPC – Helicopter Flight Control

There are also three velocity components

Two control loops: pilot’s control (30Hz) and stabilization (90Hz)

16

Multi-Rate DPC – Helicopter Flight Control
Do the following in each 1/180-second cycle:
I Validate sensor data; in the presence of failures, reconfigure the system

I Do the following 30-Hz avionics tasks, each one every six cycles:
I keyboard input and mode selection
I data normalization and coordinate transformation
I tracking reference update

I Do the following 30-Hz avionics tasks, each one every six cycles:
I control laws of the outer pitch-control loop
I control laws of the outer roll-control loop
I control laws of the outer yaw- and collective-control loop

I Do each of the following 90-Hz computations once every two cycles,
using outputs produced by 30-Hz computations and avionics tasks:
I control laws of the inner pitch-control loop
I control laws of the inner roll- and collective-control loop

I Compute the control laws of the inner yaw-control loop, using outputs
produced by 90-Hz control-law computations as inputs

I Output commands
I Carry out built-in-test
I Wait until the beginning of the next cycle

17

Multi-Rate DPC – Helicopter Flight Control
Do the following in each 1/180-second cycle:
I Validate sensor data; in the presence of failures, reconfigure the system
I Do the following 30-Hz avionics tasks, each one every six cycles:

I keyboard input and mode selection
I data normalization and coordinate transformation
I tracking reference update

I Do the following 30-Hz avionics tasks, each one every six cycles:
I control laws of the outer pitch-control loop
I control laws of the outer roll-control loop
I control laws of the outer yaw- and collective-control loop

I Do each of the following 90-Hz computations once every two cycles,
using outputs produced by 30-Hz computations and avionics tasks:
I control laws of the inner pitch-control loop
I control laws of the inner roll- and collective-control loop

I Compute the control laws of the inner yaw-control loop, using outputs
produced by 90-Hz control-law computations as inputs

I Output commands
I Carry out built-in-test
I Wait until the beginning of the next cycle

17

Multi-Rate DPC – Helicopter Flight Control
Do the following in each 1/180-second cycle:
I Validate sensor data; in the presence of failures, reconfigure the system
I Do the following 30-Hz avionics tasks, each one every six cycles:

I keyboard input and mode selection
I data normalization and coordinate transformation
I tracking reference update

I Do the following 30-Hz avionics tasks, each one every six cycles:
I control laws of the outer pitch-control loop
I control laws of the outer roll-control loop
I control laws of the outer yaw- and collective-control loop

I Do each of the following 90-Hz computations once every two cycles,
using outputs produced by 30-Hz computations and avionics tasks:
I control laws of the inner pitch-control loop
I control laws of the inner roll- and collective-control loop

I Compute the control laws of the inner yaw-control loop, using outputs
produced by 90-Hz control-law computations as inputs

I Output commands
I Carry out built-in-test
I Wait until the beginning of the next cycle

17

Multi-Rate DPC – Helicopter Flight Control
Do the following in each 1/180-second cycle:
I Validate sensor data; in the presence of failures, reconfigure the system
I Do the following 30-Hz avionics tasks, each one every six cycles:

I keyboard input and mode selection
I data normalization and coordinate transformation
I tracking reference update

I Do the following 30-Hz avionics tasks, each one every six cycles:
I control laws of the outer pitch-control loop
I control laws of the outer roll-control loop
I control laws of the outer yaw- and collective-control loop

I Do each of the following 90-Hz computations once every two cycles,
using outputs produced by 30-Hz computations and avionics tasks:
I control laws of the inner pitch-control loop
I control laws of the inner roll- and collective-control loop

I Compute the control laws of the inner yaw-control loop, using outputs
produced by 90-Hz control-law computations as inputs

I Output commands
I Carry out built-in-test
I Wait until the beginning of the next cycle

17

Multi-Rate DPC – Helicopter Flight Control
Do the following in each 1/180-second cycle:
I Validate sensor data; in the presence of failures, reconfigure the system
I Do the following 30-Hz avionics tasks, each one every six cycles:

I keyboard input and mode selection
I data normalization and coordinate transformation
I tracking reference update

I Do the following 30-Hz avionics tasks, each one every six cycles:
I control laws of the outer pitch-control loop
I control laws of the outer roll-control loop
I control laws of the outer yaw- and collective-control loop

I Do each of the following 90-Hz computations once every two cycles,
using outputs produced by 30-Hz computations and avionics tasks:
I control laws of the inner pitch-control loop
I control laws of the inner roll- and collective-control loop

I Compute the control laws of the inner yaw-control loop, using outputs
produced by 90-Hz control-law computations as inputs

I Output commands
I Carry out built-in-test
I Wait until the beginning of the next cycle

17

Higher-Level Command and Control

Controllers organized into a hierarchy
I At the lowest level we place the digital control systems that

operate on the physical environment
I Higher level controllers monitor the behavior of lower levels
I Time-scale and complexity of decision making increases as one

goes up the hierarchy (from control to planning)
18

Real-Time Database System
I Databases that contain perishable data, i.e. relevance of

data deteriorates with time
Air traffic control, stock price quotation systems, tracking systems, etc.

I The temporal quality of data is quantified by age of an
image object, i.e. the length of time since last update

I temporal consistency
I absolute = max. age is bounded by a fixed threshold
I relative = max. difference in ages is bounded by a threshold

e.g. planning system correlating traffic density and flow of vehicles

I Users of database compete for access – various models
for trading consistency with time demands exist.

19

Real-Time Database System
I Databases that contain perishable data, i.e. relevance of

data deteriorates with time
Air traffic control, stock price quotation systems, tracking systems, etc.

I The temporal quality of data is quantified by age of an
image object, i.e. the length of time since last update

I temporal consistency
I absolute = max. age is bounded by a fixed threshold
I relative = max. difference in ages is bounded by a threshold

e.g. planning system correlating traffic density and flow of vehicles

I Users of database compete for access – various models
for trading consistency with time demands exist.

19

Real-Time Database System
I Databases that contain perishable data, i.e. relevance of

data deteriorates with time
Air traffic control, stock price quotation systems, tracking systems, etc.

I The temporal quality of data is quantified by age of an
image object, i.e. the length of time since last update

I temporal consistency
I absolute = max. age is bounded by a fixed threshold
I relative = max. difference in ages is bounded by a threshold

e.g. planning system correlating traffic density and flow of vehicles

I Users of database compete for access – various models
for trading consistency with time demands exist.

19

Stock-Trading System

I A system for selling/buying stock at public prices

I Prices are volatile in their movement
I Stop orders:

I set upper limit on prices for buying – buy for the best
available price once the limit is reached
e.g. stock currently trading at $30 should be bought when the
price rises above $35

I set lower limit on prices for selling – sell for the best
available price once the limit is reached
e.g. stock currently trading at $30 should be sold when the price
sinks below $25

I Depending on the delay, the available price may be
different from the limit
successful stop orders depend on the timely delivery of stock trade data
and the ability to trade on the changing prices in a timely manner

20

Stock-Trading System

I A system for selling/buying stock at public prices
I Prices are volatile in their movement

I Stop orders:
I set upper limit on prices for buying – buy for the best

available price once the limit is reached
e.g. stock currently trading at $30 should be bought when the
price rises above $35

I set lower limit on prices for selling – sell for the best
available price once the limit is reached
e.g. stock currently trading at $30 should be sold when the price
sinks below $25

I Depending on the delay, the available price may be
different from the limit
successful stop orders depend on the timely delivery of stock trade data
and the ability to trade on the changing prices in a timely manner

20

Stock-Trading System

I A system for selling/buying stock at public prices
I Prices are volatile in their movement
I Stop orders:

I set upper limit on prices for buying – buy for the best
available price once the limit is reached
e.g. stock currently trading at $30 should be bought when the
price rises above $35

I set lower limit on prices for selling – sell for the best
available price once the limit is reached
e.g. stock currently trading at $30 should be sold when the price
sinks below $25

I Depending on the delay, the available price may be
different from the limit
successful stop orders depend on the timely delivery of stock trade data
and the ability to trade on the changing prices in a timely manner

20

Stock-Trading System

I A system for selling/buying stock at public prices
I Prices are volatile in their movement
I Stop orders:

I set upper limit on prices for buying – buy for the best
available price once the limit is reached
e.g. stock currently trading at $30 should be bought when the
price rises above $35

I set lower limit on prices for selling – sell for the best
available price once the limit is reached
e.g. stock currently trading at $30 should be sold when the price
sinks below $25

I Depending on the delay, the available price may be
different from the limit
successful stop orders depend on the timely delivery of stock trade data
and the ability to trade on the changing prices in a timely manner

20

Stock-Trading System

I A system for selling/buying stock at public prices
I Prices are volatile in their movement
I Stop orders:

I set upper limit on prices for buying – buy for the best
available price once the limit is reached
e.g. stock currently trading at $30 should be bought when the
price rises above $35

I set lower limit on prices for selling – sell for the best
available price once the limit is reached
e.g. stock currently trading at $30 should be sold when the price
sinks below $25

I Depending on the delay, the available price may be
different from the limit
successful stop orders depend on the timely delivery of stock trade data
and the ability to trade on the changing prices in a timely manner

20

Structure of Real-Time (Embedded) Applications

21

Types of Real-Time Systems

I Purely cyclic

I every task executes periodically; I/O operations are polled;
demands in resources do not vary

e.g. digital controllers

I Mostly cyclic

I most tasks execute periodically; system also responds to
external events (fault recovery and external commands)
asynchronously

e.g. avionics

I Asynchronous and somewhat predictable

I durations between consecutive executions of a task as well
as demands in resources may vary considerably. These
variations have either bounded range, or known statistics.

e.g. radar signal processing, tracking

22

Types of Real-Time Systems

I Purely cyclic

I every task executes periodically; I/O operations are polled;
demands in resources do not vary

e.g. digital controllers

I Mostly cyclic

I most tasks execute periodically; system also responds to
external events (fault recovery and external commands)
asynchronously

e.g. avionics

I Asynchronous and somewhat predictable

I durations between consecutive executions of a task as well
as demands in resources may vary considerably. These
variations have either bounded range, or known statistics.

e.g. radar signal processing, tracking

22

Types of Real-Time Systems

I Purely cyclic

I every task executes periodically; I/O operations are polled;
demands in resources do not vary

e.g. digital controllers

I Mostly cyclic

I most tasks execute periodically; system also responds to
external events (fault recovery and external commands)
asynchronously

e.g. avionics

I Asynchronous and somewhat predictable

I durations between consecutive executions of a task as well
as demands in resources may vary considerably. These
variations have either bounded range, or known statistics.

e.g. radar signal processing, tracking

22

Types of Real-Time Systems

I The type of application affects how we schedule tasks and
prove correctness

I It is easier to reason about applications that are more
cyclic, synchronous and predictable
I Many real-time systems are designed in this manner
I Safe, conservative, design approach, if it works

23

Real-Time Systems Failures

I AT&T long distance calls

I Therac-25 medical accelerator disaster

I Patriot missile mistiming

24

AT&T Long Distance Calls

114 computer-operated electronic
switches scattered across USA
Handling up to 700,000 calls an hour

The problem:

I the switch in New York City neared its load limit
I entered a four-second maintenance reset
I sent “do not disturb” to neighbors
I after the reset, the switch began to distribute calls (quickly)

I then another switch received one of these calls from New York
I began to update its records that New York was back on line
I a second call from New York arrived less than 10 milliseconds after the

first, i.e. while the first hadn’t yet been handled;
this together with a SW bug caused maintenance reset

I the error was propagated further

The reason for failure: The system was unable to react to closely
timed messages

25

AT&T Long Distance Calls

114 computer-operated electronic
switches scattered across USA
Handling up to 700,000 calls an hour

The problem:

I the switch in New York City neared its load limit

I entered a four-second maintenance reset
I sent “do not disturb” to neighbors
I after the reset, the switch began to distribute calls (quickly)

I then another switch received one of these calls from New York
I began to update its records that New York was back on line
I a second call from New York arrived less than 10 milliseconds after the

first, i.e. while the first hadn’t yet been handled;
this together with a SW bug caused maintenance reset

I the error was propagated further

The reason for failure: The system was unable to react to closely
timed messages

25

AT&T Long Distance Calls

114 computer-operated electronic
switches scattered across USA
Handling up to 700,000 calls an hour

The problem:

I the switch in New York City neared its load limit
I entered a four-second maintenance reset

I sent “do not disturb” to neighbors
I after the reset, the switch began to distribute calls (quickly)

I then another switch received one of these calls from New York
I began to update its records that New York was back on line
I a second call from New York arrived less than 10 milliseconds after the

first, i.e. while the first hadn’t yet been handled;
this together with a SW bug caused maintenance reset

I the error was propagated further

The reason for failure: The system was unable to react to closely
timed messages

25

AT&T Long Distance Calls

114 computer-operated electronic
switches scattered across USA
Handling up to 700,000 calls an hour

The problem:

I the switch in New York City neared its load limit
I entered a four-second maintenance reset
I sent “do not disturb” to neighbors

I after the reset, the switch began to distribute calls (quickly)

I then another switch received one of these calls from New York
I began to update its records that New York was back on line
I a second call from New York arrived less than 10 milliseconds after the

first, i.e. while the first hadn’t yet been handled;
this together with a SW bug caused maintenance reset

I the error was propagated further

The reason for failure: The system was unable to react to closely
timed messages

25

AT&T Long Distance Calls

114 computer-operated electronic
switches scattered across USA
Handling up to 700,000 calls an hour

The problem:

I the switch in New York City neared its load limit
I entered a four-second maintenance reset
I sent “do not disturb” to neighbors
I after the reset, the switch began to distribute calls (quickly)

I then another switch received one of these calls from New York
I began to update its records that New York was back on line
I a second call from New York arrived less than 10 milliseconds after the

first, i.e. while the first hadn’t yet been handled;
this together with a SW bug caused maintenance reset

I the error was propagated further

The reason for failure: The system was unable to react to closely
timed messages

25

AT&T Long Distance Calls

114 computer-operated electronic
switches scattered across USA
Handling up to 700,000 calls an hour

The problem:

I the switch in New York City neared its load limit
I entered a four-second maintenance reset
I sent “do not disturb” to neighbors
I after the reset, the switch began to distribute calls (quickly)

I then another switch received one of these calls from New York

I began to update its records that New York was back on line
I a second call from New York arrived less than 10 milliseconds after the

first, i.e. while the first hadn’t yet been handled;
this together with a SW bug caused maintenance reset

I the error was propagated further

The reason for failure: The system was unable to react to closely
timed messages

25

AT&T Long Distance Calls

114 computer-operated electronic
switches scattered across USA
Handling up to 700,000 calls an hour

The problem:

I the switch in New York City neared its load limit
I entered a four-second maintenance reset
I sent “do not disturb” to neighbors
I after the reset, the switch began to distribute calls (quickly)

I then another switch received one of these calls from New York
I began to update its records that New York was back on line

I a second call from New York arrived less than 10 milliseconds after the
first, i.e. while the first hadn’t yet been handled;
this together with a SW bug caused maintenance reset

I the error was propagated further

The reason for failure: The system was unable to react to closely
timed messages

25

AT&T Long Distance Calls

114 computer-operated electronic
switches scattered across USA
Handling up to 700,000 calls an hour

The problem:

I the switch in New York City neared its load limit
I entered a four-second maintenance reset
I sent “do not disturb” to neighbors
I after the reset, the switch began to distribute calls (quickly)

I then another switch received one of these calls from New York
I began to update its records that New York was back on line
I a second call from New York arrived less than 10 milliseconds after the

first, i.e. while the first hadn’t yet been handled;
this together with a SW bug caused maintenance reset

I the error was propagated further

The reason for failure: The system was unable to react to closely
timed messages

25

AT&T Long Distance Calls

114 computer-operated electronic
switches scattered across USA
Handling up to 700,000 calls an hour

The problem:

I the switch in New York City neared its load limit
I entered a four-second maintenance reset
I sent “do not disturb” to neighbors
I after the reset, the switch began to distribute calls (quickly)

I then another switch received one of these calls from New York
I began to update its records that New York was back on line
I a second call from New York arrived less than 10 milliseconds after the

first, i.e. while the first hadn’t yet been handled;
this together with a SW bug caused maintenance reset

I the error was propagated further

The reason for failure: The system was unable to react to closely
timed messages

25

AT&T Long Distance Calls

114 computer-operated electronic
switches scattered across USA
Handling up to 700,000 calls an hour

The problem:

I the switch in New York City neared its load limit
I entered a four-second maintenance reset
I sent “do not disturb” to neighbors
I after the reset, the switch began to distribute calls (quickly)

I then another switch received one of these calls from New York
I began to update its records that New York was back on line
I a second call from New York arrived less than 10 milliseconds after the

first, i.e. while the first hadn’t yet been handled;
this together with a SW bug caused maintenance reset

I the error was propagated further

The reason for failure: The system was unable to react to closely
timed messages

25

Therac-25 medical accelerator disaster

Therac-25 = a machine for radiotheratpy
I between 1985 and 1987 (at least) six accidents involving

enormous radiation overdoses to patients
I Half of these patients died due to the overdoses

26

Therac-25 – the modes

1. electron mode
I electron beam (low current)
I various levels of energy (5 to 25-MeV)
I scanning magnets used to spread the beam to a safe

concentration

2. photon mode
I only one level of energy (25-MeV), much larger

electron-beam current
I electron beam strikes a metal foil to produce X-rays

(photons)
I the X-ray beam is "flattened" by a device below the foil

3. light mode – just light beam used to illuminate the field on
the surface of the patient’s body that will be treated

All devices placed on a turntable, supposed to be rotated to the
correct position before the beam is started up

27

Therac-25 – the modes

1. electron mode
I electron beam (low current)
I various levels of energy (5 to 25-MeV)
I scanning magnets used to spread the beam to a safe

concentration
2. photon mode

I only one level of energy (25-MeV), much larger
electron-beam current

I electron beam strikes a metal foil to produce X-rays
(photons)

I the X-ray beam is "flattened" by a device below the foil

3. light mode – just light beam used to illuminate the field on
the surface of the patient’s body that will be treated

All devices placed on a turntable, supposed to be rotated to the
correct position before the beam is started up

27

Therac-25 – the modes

1. electron mode
I electron beam (low current)
I various levels of energy (5 to 25-MeV)
I scanning magnets used to spread the beam to a safe

concentration
2. photon mode

I only one level of energy (25-MeV), much larger
electron-beam current

I electron beam strikes a metal foil to produce X-rays
(photons)

I the X-ray beam is "flattened" by a device below the foil

3. light mode – just light beam used to illuminate the field on
the surface of the patient’s body that will be treated

All devices placed on a turntable, supposed to be rotated to the
correct position before the beam is started up

27

Therac-25 – the modes

1. electron mode
I electron beam (low current)
I various levels of energy (5 to 25-MeV)
I scanning magnets used to spread the beam to a safe

concentration
2. photon mode

I only one level of energy (25-MeV), much larger
electron-beam current

I electron beam strikes a metal foil to produce X-rays
(photons)

I the X-ray beam is "flattened" by a device below the foil

3. light mode – just light beam used to illuminate the field on
the surface of the patient’s body that will be treated

All devices placed on a turntable, supposed to be rotated to the
correct position before the beam is started up

27

Therac-25 – turntable

28

The Software

The software responsible for
I Operator

I Monitoring input and editing changes from an operator
I Updating the screen to show current status of machine
I Printing in response to an operator commands

I Machine
I monitoring the machine status
I placement of turntable
I strength and shape of beam
I operation of bending and scanning magnets
I setting the machine up for the specified treatment
I turning the beam on
I turning the beam off (after treatment, on operator

command, or if a malfunction is detected)

Software running several safety critical tasks in parallel!
Insufficient hardware protection (as opposed to previous models)!!

29

The Software

The software responsible for
I Operator

I Monitoring input and editing changes from an operator
I Updating the screen to show current status of machine
I Printing in response to an operator commands

I Machine
I monitoring the machine status
I placement of turntable
I strength and shape of beam
I operation of bending and scanning magnets
I setting the machine up for the specified treatment
I turning the beam on
I turning the beam off (after treatment, on operator

command, or if a malfunction is detected)

Software running several safety critical tasks in parallel!
Insufficient hardware protection (as opposed to previous models)!!

29

The Software

The software responsible for
I Operator

I Monitoring input and editing changes from an operator
I Updating the screen to show current status of machine
I Printing in response to an operator commands

I Machine
I monitoring the machine status
I placement of turntable
I strength and shape of beam
I operation of bending and scanning magnets
I setting the machine up for the specified treatment
I turning the beam on
I turning the beam off (after treatment, on operator

command, or if a malfunction is detected)

Software running several safety critical tasks in parallel!
Insufficient hardware protection (as opposed to previous models)!!

29

Therac-25 – software

I The Therac-25 runs on a real-time operating system

I Four major components of software: stored data, a scheduler,
a set of tasks, and interrupt services (e.g. the computer clock
and handling of computer-hardware-generated errors)

I The software segregated the tasks above into

I critical tasks: e.g. setup and operation of the beam
I non-critical tasks: e.g. monitoring the keyboard

I The scheduler directs all non-interrupt events and orders
simultaneous events

I Every 0.1 seconds tasks are initiated and critical tasks are
executed first, with non-critical tasks taking up any remaining
time

Communication between tasks based on shared variables
(without proper atomic test-and-set instructions)

30

Therac-25 – software

I The Therac-25 runs on a real-time operating system

I Four major components of software: stored data, a scheduler,
a set of tasks, and interrupt services (e.g. the computer clock
and handling of computer-hardware-generated errors)

I The software segregated the tasks above into

I critical tasks: e.g. setup and operation of the beam
I non-critical tasks: e.g. monitoring the keyboard

I The scheduler directs all non-interrupt events and orders
simultaneous events

I Every 0.1 seconds tasks are initiated and critical tasks are
executed first, with non-critical tasks taking up any remaining
time

Communication between tasks based on shared variables
(without proper atomic test-and-set instructions)

30

Therac-25 – software

I The Therac-25 runs on a real-time operating system

I Four major components of software: stored data, a scheduler,
a set of tasks, and interrupt services (e.g. the computer clock
and handling of computer-hardware-generated errors)

I The software segregated the tasks above into

I critical tasks: e.g. setup and operation of the beam
I non-critical tasks: e.g. monitoring the keyboard

I The scheduler directs all non-interrupt events and orders
simultaneous events

I Every 0.1 seconds tasks are initiated and critical tasks are
executed first, with non-critical tasks taking up any remaining
time

Communication between tasks based on shared variables
(without proper atomic test-and-set instructions)

30

Therac-25 – software

I The Therac-25 runs on a real-time operating system

I Four major components of software: stored data, a scheduler,
a set of tasks, and interrupt services (e.g. the computer clock
and handling of computer-hardware-generated errors)

I The software segregated the tasks above into

I critical tasks: e.g. setup and operation of the beam
I non-critical tasks: e.g. monitoring the keyboard

I The scheduler directs all non-interrupt events and orders
simultaneous events

I Every 0.1 seconds tasks are initiated and critical tasks are
executed first, with non-critical tasks taking up any remaining
time

Communication between tasks based on shared variables
(without proper atomic test-and-set instructions)

30

Therac-25 – software

I The Therac-25 runs on a real-time operating system

I Four major components of software: stored data, a scheduler,
a set of tasks, and interrupt services (e.g. the computer clock
and handling of computer-hardware-generated errors)

I The software segregated the tasks above into

I critical tasks: e.g. setup and operation of the beam
I non-critical tasks: e.g. monitoring the keyboard

I The scheduler directs all non-interrupt events and orders
simultaneous events

I Every 0.1 seconds tasks are initiated and critical tasks are
executed first, with non-critical tasks taking up any remaining
time

Communication between tasks based on shared variables
(without proper atomic test-and-set instructions)

30

Therac-25 – software

I The Therac-25 runs on a real-time operating system

I Four major components of software: stored data, a scheduler,
a set of tasks, and interrupt services (e.g. the computer clock
and handling of computer-hardware-generated errors)

I The software segregated the tasks above into

I critical tasks: e.g. setup and operation of the beam
I non-critical tasks: e.g. monitoring the keyboard

I The scheduler directs all non-interrupt events and orders
simultaneous events

I Every 0.1 seconds tasks are initiated and critical tasks are
executed first, with non-critical tasks taking up any remaining
time

Communication between tasks based on shared variables
(without proper atomic test-and-set instructions)

30

What happened?

There were several accidents due to various bugs in software

One of them proceeded as follows (much simplified):
I the operator entered parameters for X-rays treatment

I the machine started to set up for the treatment

I the operator changed the mode from X-rays to electron (within
the interval from 1s to 8s from the end of the original editing)

I the patient received X-ray “treatment” with turntable in the
electron position (i.e. unshielded)

The cause:

I The turntable and treatment parameters were set by different
concurrent procedures Hand and Datent, respectively.

I If the change in parameters came in the “right” time, only Hand
reacted to the change.

31

What happened?

There were several accidents due to various bugs in software

One of them proceeded as follows (much simplified):
I the operator entered parameters for X-rays treatment

I the machine started to set up for the treatment

I the operator changed the mode from X-rays to electron (within
the interval from 1s to 8s from the end of the original editing)

I the patient received X-ray “treatment” with turntable in the
electron position (i.e. unshielded)

The cause:

I The turntable and treatment parameters were set by different
concurrent procedures Hand and Datent, respectively.

I If the change in parameters came in the “right” time, only Hand
reacted to the change.

31

What happened?

There were several accidents due to various bugs in software

One of them proceeded as follows (much simplified):
I the operator entered parameters for X-rays treatment

I the machine started to set up for the treatment

I the operator changed the mode from X-rays to electron (within
the interval from 1s to 8s from the end of the original editing)

I the patient received X-ray “treatment” with turntable in the
electron position (i.e. unshielded)

The cause:

I The turntable and treatment parameters were set by different
concurrent procedures Hand and Datent, respectively.

I If the change in parameters came in the “right” time, only Hand
reacted to the change.

31

What happened?

There were several accidents due to various bugs in software

One of them proceeded as follows (much simplified):
I the operator entered parameters for X-rays treatment

I the machine started to set up for the treatment

I the operator changed the mode from X-rays to electron (within
the interval from 1s to 8s from the end of the original editing)

I the patient received X-ray “treatment” with turntable in the
electron position (i.e. unshielded)

The cause:

I The turntable and treatment parameters were set by different
concurrent procedures Hand and Datent, respectively.

I If the change in parameters came in the “right” time, only Hand
reacted to the change.

31

What happened?

There were several accidents due to various bugs in software

One of them proceeded as follows (much simplified):
I the operator entered parameters for X-rays treatment

I the machine started to set up for the treatment

I the operator changed the mode from X-rays to electron (within
the interval from 1s to 8s from the end of the original editing)

I the patient received X-ray “treatment” with turntable in the
electron position (i.e. unshielded)

The cause:

I The turntable and treatment parameters were set by different
concurrent procedures Hand and Datent, respectively.

I If the change in parameters came in the “right” time, only Hand
reacted to the change.

31

What happened?

There were several accidents due to various bugs in software

One of them proceeded as follows (much simplified):
I the operator entered parameters for X-rays treatment

I the machine started to set up for the treatment

I the operator changed the mode from X-rays to electron (within
the interval from 1s to 8s from the end of the original editing)

I the patient received X-ray “treatment” with turntable in the
electron position (i.e. unshielded)

The cause:

I The turntable and treatment parameters were set by different
concurrent procedures Hand and Datent, respectively.

I If the change in parameters came in the “right” time, only Hand
reacted to the change.

31

What happened?

There were several accidents due to various bugs in software

One of them proceeded as follows (much simplified):
I the operator entered parameters for X-rays treatment

I the machine started to set up for the treatment

I the operator changed the mode from X-rays to electron (within
the interval from 1s to 8s from the end of the original editing)

I the patient received X-ray “treatment” with turntable in the
electron position (i.e. unshielded)

The cause:

I The turntable and treatment parameters were set by different
concurrent procedures Hand and Datent, respectively.

I If the change in parameters came in the “right” time, only Hand
reacted to the change.

31

Patriot missile mistiming

vs

32

Patriot missile mistiming

I Patriot – Air defense missile system

I Failed to intercept a scud missile on February 25, 1991 at
Dhahran, Saudi Arabia
(missile hit US army barracks, 28 persons killed)

I The problem was caused by incorrect measurement of time

Simplified principle of function:

I Patriot’s radar detects an airborne object

I the object is identified as a scud missile (according to speed,
size, etc.)

I the range gate computes an area in the air space where the
system should next look for it

I finding the object in the calculated area confirms that it is a scud

I then the scud is intercepted

33

Patriot missile mistiming

I Patriot – Air defense missile system

I Failed to intercept a scud missile on February 25, 1991 at
Dhahran, Saudi Arabia
(missile hit US army barracks, 28 persons killed)

I The problem was caused by incorrect measurement of time

Simplified principle of function:

I Patriot’s radar detects an airborne object

I the object is identified as a scud missile (according to speed,
size, etc.)

I the range gate computes an area in the air space where the
system should next look for it

I finding the object in the calculated area confirms that it is a scud

I then the scud is intercepted

33

Patriot missile mistiming

I Patriot – Air defense missile system

I Failed to intercept a scud missile on February 25, 1991 at
Dhahran, Saudi Arabia
(missile hit US army barracks, 28 persons killed)

I The problem was caused by incorrect measurement of time

Simplified principle of function:

I Patriot’s radar detects an airborne object

I the object is identified as a scud missile (according to speed,
size, etc.)

I the range gate computes an area in the air space where the
system should next look for it

I finding the object in the calculated area confirms that it is a scud

I then the scud is intercepted

33

Patriot missile mistiming

I Patriot – Air defense missile system

I Failed to intercept a scud missile on February 25, 1991 at
Dhahran, Saudi Arabia
(missile hit US army barracks, 28 persons killed)

I The problem was caused by incorrect measurement of time

Simplified principle of function:

I Patriot’s radar detects an airborne object

I the object is identified as a scud missile (according to speed,
size, etc.)

I the range gate computes an area in the air space where the
system should next look for it

I finding the object in the calculated area confirms that it is a scud

I then the scud is intercepted

33

Patriot missile mistiming

I Patriot – Air defense missile system

I Failed to intercept a scud missile on February 25, 1991 at
Dhahran, Saudi Arabia
(missile hit US army barracks, 28 persons killed)

I The problem was caused by incorrect measurement of time

Simplified principle of function:

I Patriot’s radar detects an airborne object

I the object is identified as a scud missile (according to speed,
size, etc.)

I the range gate computes an area in the air space where the
system should next look for it

I finding the object in the calculated area confirms that it is a scud

I then the scud is intercepted

33

Patriot missile mistiming

I Patriot – Air defense missile system

I Failed to intercept a scud missile on February 25, 1991 at
Dhahran, Saudi Arabia
(missile hit US army barracks, 28 persons killed)

I The problem was caused by incorrect measurement of time

Simplified principle of function:

I Patriot’s radar detects an airborne object

I the object is identified as a scud missile (according to speed,
size, etc.)

I the range gate computes an area in the air space where the
system should next look for it

I finding the object in the calculated area confirms that it is a scud

I then the scud is intercepted

33

Patriot missile mistiming

I Patriot – Air defense missile system

I Failed to intercept a scud missile on February 25, 1991 at
Dhahran, Saudi Arabia
(missile hit US army barracks, 28 persons killed)

I The problem was caused by incorrect measurement of time

Simplified principle of function:

I Patriot’s radar detects an airborne object

I the object is identified as a scud missile (according to speed,
size, etc.)

I the range gate computes an area in the air space where the
system should next look for it

I finding the object in the calculated area confirms that it is a scud

I then the scud is intercepted

33

Patriot missile mistiming

I Patriot – Air defense missile system

I Failed to intercept a scud missile on February 25, 1991 at
Dhahran, Saudi Arabia
(missile hit US army barracks, 28 persons killed)

I The problem was caused by incorrect measurement of time

Simplified principle of function:

I Patriot’s radar detects an airborne object

I the object is identified as a scud missile (according to speed,
size, etc.)

I the range gate computes an area in the air space where the
system should next look for it

I finding the object in the calculated area confirms that it is a scud

I then the scud is intercepted

33

Patriot missile mistiming

I Patriot – Air defense missile system

I Failed to intercept a scud missile on February 25, 1991 at
Dhahran, Saudi Arabia
(missile hit US army barracks, 28 persons killed)

I The problem was caused by incorrect measurement of time

Simplified principle of function:

I Patriot’s radar detects an airborne object

I the object is identified as a scud missile (according to speed,
size, etc.)

I the range gate computes an area in the air space where the
system should next look for it

I finding the object in the calculated area confirms that it is a scud

I then the scud is intercepted

33

Patriot Missile Mistiming

34

Patriot Missile Mistiming
Prediction of the new area:

I a function of velocity and time of the last radar detection
I velocity represented as a real number
I the current time kept by incrementing whole number

counter counting tenths of seconds
I computation in 24bit fixed floating point numbers

The time converted to 24bit real number and multiplied with 1/10
represented in 24bit (i.e. the real value of 1/10 was 0.099999905)
I the system was already running for 100 hours, i.e. the counter

value was 360000, i.e. 360000 · 0.099999905 = 35999.6568
I the error was 0.3432 seconds, which means 687 m off MACH 5

scud missile
I the problem was not only in wrong conversion but in the fact that

at some points correct conversion was used (after incomplete
bug fix), so the errors did not cancel out

As a result, the tracking gate looked into wrong area

35

Patriot Missile Mistiming
Prediction of the new area:
I a function of velocity and time of the last radar detection

I velocity represented as a real number
I the current time kept by incrementing whole number

counter counting tenths of seconds
I computation in 24bit fixed floating point numbers

The time converted to 24bit real number and multiplied with 1/10
represented in 24bit (i.e. the real value of 1/10 was 0.099999905)
I the system was already running for 100 hours, i.e. the counter

value was 360000, i.e. 360000 · 0.099999905 = 35999.6568
I the error was 0.3432 seconds, which means 687 m off MACH 5

scud missile
I the problem was not only in wrong conversion but in the fact that

at some points correct conversion was used (after incomplete
bug fix), so the errors did not cancel out

As a result, the tracking gate looked into wrong area

35

Patriot Missile Mistiming
Prediction of the new area:
I a function of velocity and time of the last radar detection
I velocity represented as a real number

I the current time kept by incrementing whole number
counter counting tenths of seconds

I computation in 24bit fixed floating point numbers

The time converted to 24bit real number and multiplied with 1/10
represented in 24bit (i.e. the real value of 1/10 was 0.099999905)
I the system was already running for 100 hours, i.e. the counter

value was 360000, i.e. 360000 · 0.099999905 = 35999.6568
I the error was 0.3432 seconds, which means 687 m off MACH 5

scud missile
I the problem was not only in wrong conversion but in the fact that

at some points correct conversion was used (after incomplete
bug fix), so the errors did not cancel out

As a result, the tracking gate looked into wrong area

35

Patriot Missile Mistiming
Prediction of the new area:
I a function of velocity and time of the last radar detection
I velocity represented as a real number
I the current time kept by incrementing whole number

counter counting tenths of seconds

I computation in 24bit fixed floating point numbers

The time converted to 24bit real number and multiplied with 1/10
represented in 24bit (i.e. the real value of 1/10 was 0.099999905)
I the system was already running for 100 hours, i.e. the counter

value was 360000, i.e. 360000 · 0.099999905 = 35999.6568
I the error was 0.3432 seconds, which means 687 m off MACH 5

scud missile
I the problem was not only in wrong conversion but in the fact that

at some points correct conversion was used (after incomplete
bug fix), so the errors did not cancel out

As a result, the tracking gate looked into wrong area

35

Patriot Missile Mistiming
Prediction of the new area:
I a function of velocity and time of the last radar detection
I velocity represented as a real number
I the current time kept by incrementing whole number

counter counting tenths of seconds
I computation in 24bit fixed floating point numbers

The time converted to 24bit real number and multiplied with 1/10
represented in 24bit (i.e. the real value of 1/10 was 0.099999905)
I the system was already running for 100 hours, i.e. the counter

value was 360000, i.e. 360000 · 0.099999905 = 35999.6568
I the error was 0.3432 seconds, which means 687 m off MACH 5

scud missile
I the problem was not only in wrong conversion but in the fact that

at some points correct conversion was used (after incomplete
bug fix), so the errors did not cancel out

As a result, the tracking gate looked into wrong area

35

Patriot Missile Mistiming
Prediction of the new area:
I a function of velocity and time of the last radar detection
I velocity represented as a real number
I the current time kept by incrementing whole number

counter counting tenths of seconds
I computation in 24bit fixed floating point numbers

The time converted to 24bit real number and multiplied with 1/10
represented in 24bit (i.e. the real value of 1/10 was 0.099999905)

I the system was already running for 100 hours, i.e. the counter
value was 360000, i.e. 360000 · 0.099999905 = 35999.6568

I the error was 0.3432 seconds, which means 687 m off MACH 5
scud missile

I the problem was not only in wrong conversion but in the fact that
at some points correct conversion was used (after incomplete
bug fix), so the errors did not cancel out

As a result, the tracking gate looked into wrong area

35

Patriot Missile Mistiming
Prediction of the new area:
I a function of velocity and time of the last radar detection
I velocity represented as a real number
I the current time kept by incrementing whole number

counter counting tenths of seconds
I computation in 24bit fixed floating point numbers

The time converted to 24bit real number and multiplied with 1/10
represented in 24bit (i.e. the real value of 1/10 was 0.099999905)
I the system was already running for 100 hours, i.e. the counter

value was 360000, i.e. 360000 · 0.099999905 = 35999.6568

I the error was 0.3432 seconds, which means 687 m off MACH 5
scud missile

I the problem was not only in wrong conversion but in the fact that
at some points correct conversion was used (after incomplete
bug fix), so the errors did not cancel out

As a result, the tracking gate looked into wrong area

35

Patriot Missile Mistiming
Prediction of the new area:
I a function of velocity and time of the last radar detection
I velocity represented as a real number
I the current time kept by incrementing whole number

counter counting tenths of seconds
I computation in 24bit fixed floating point numbers

The time converted to 24bit real number and multiplied with 1/10
represented in 24bit (i.e. the real value of 1/10 was 0.099999905)
I the system was already running for 100 hours, i.e. the counter

value was 360000, i.e. 360000 · 0.099999905 = 35999.6568
I the error was 0.3432 seconds, which means 687 m off MACH 5

scud missile

I the problem was not only in wrong conversion but in the fact that
at some points correct conversion was used (after incomplete
bug fix), so the errors did not cancel out

As a result, the tracking gate looked into wrong area

35

Patriot Missile Mistiming
Prediction of the new area:
I a function of velocity and time of the last radar detection
I velocity represented as a real number
I the current time kept by incrementing whole number

counter counting tenths of seconds
I computation in 24bit fixed floating point numbers

The time converted to 24bit real number and multiplied with 1/10
represented in 24bit (i.e. the real value of 1/10 was 0.099999905)
I the system was already running for 100 hours, i.e. the counter

value was 360000, i.e. 360000 · 0.099999905 = 35999.6568
I the error was 0.3432 seconds, which means 687 m off MACH 5

scud missile
I the problem was not only in wrong conversion but in the fact that

at some points correct conversion was used (after incomplete
bug fix), so the errors did not cancel out

As a result, the tracking gate looked into wrong area

35

Patriot Missile Mistiming
Prediction of the new area:
I a function of velocity and time of the last radar detection
I velocity represented as a real number
I the current time kept by incrementing whole number

counter counting tenths of seconds
I computation in 24bit fixed floating point numbers

The time converted to 24bit real number and multiplied with 1/10
represented in 24bit (i.e. the real value of 1/10 was 0.099999905)
I the system was already running for 100 hours, i.e. the counter

value was 360000, i.e. 360000 · 0.099999905 = 35999.6568
I the error was 0.3432 seconds, which means 687 m off MACH 5

scud missile
I the problem was not only in wrong conversion but in the fact that

at some points correct conversion was used (after incomplete
bug fix), so the errors did not cancel out

As a result, the tracking gate looked into wrong area
35

Patriot Missile Mistiming

36

Starliner

I Developed by Boeing & NASA
I Seven passengers, or a mix of

crew and cargo, for missions
to low-Earth orbit

I A timing issue occured on the last Orbital Flight Test on
December 20, 2019

I What is supposed to happen:
I Atlas V leaves Starliner on a suborbital trajectory.
I Starliner’s own propulsion system takes the spacecraft into

orbit and to ISS.
I What happened:

I Mission Elapsed Timer (MET), or clock, on Starliner was
set to the wrong time and did not trigger the engines to fire
correctly.

I Other onboard systems compensated and it reached orbit,
but had depleted so much fuel there was not enough to
continue the journey.

37

Starliner

I Developed by Boeing & NASA
I Seven passengers, or a mix of

crew and cargo, for missions
to low-Earth orbit

I A timing issue occured on the last Orbital Flight Test on
December 20, 2019

I What is supposed to happen:
I Atlas V leaves Starliner on a suborbital trajectory.
I Starliner’s own propulsion system takes the spacecraft into

orbit and to ISS.
I What happened:

I Mission Elapsed Timer (MET), or clock, on Starliner was
set to the wrong time and did not trigger the engines to fire
correctly.

I Other onboard systems compensated and it reached orbit,
but had depleted so much fuel there was not enough to
continue the journey.

37

Starliner

I Developed by Boeing & NASA
I Seven passengers, or a mix of

crew and cargo, for missions
to low-Earth orbit

I A timing issue occured on the last Orbital Flight Test on
December 20, 2019

I What is supposed to happen:
I Atlas V leaves Starliner on a suborbital trajectory.
I Starliner’s own propulsion system takes the spacecraft into

orbit and to ISS.

I What happened:
I Mission Elapsed Timer (MET), or clock, on Starliner was

set to the wrong time and did not trigger the engines to fire
correctly.

I Other onboard systems compensated and it reached orbit,
but had depleted so much fuel there was not enough to
continue the journey.

37

Starliner

I Developed by Boeing & NASA
I Seven passengers, or a mix of

crew and cargo, for missions
to low-Earth orbit

I A timing issue occured on the last Orbital Flight Test on
December 20, 2019

I What is supposed to happen:
I Atlas V leaves Starliner on a suborbital trajectory.
I Starliner’s own propulsion system takes the spacecraft into

orbit and to ISS.
I What happened:

I Mission Elapsed Timer (MET), or clock, on Starliner was
set to the wrong time and did not trigger the engines to fire
correctly.

I Other onboard systems compensated and it reached orbit,
but had depleted so much fuel there was not enough to
continue the journey.

37

(Rough) Course Outline

I Real-time scheduling
I Time and priority driven
I Resource control
I Multi-processor (a bit)

I A little bit on programming real-time systems
I Real-time operating systems

38

(Rough) Course Outline

I Real-time scheduling
I Time and priority driven
I Resource control
I Multi-processor (a bit)

I A little bit on programming real-time systems
I Real-time operating systems

38

Outline – Scheduling

The Scheduling problem:
Input:
I available processors, resources
I set of tasks/jobs

with their requirements, deadlines, etc.

Question: How to assign processors and resources to
tasks/jobs so that all requirements are met?

Example:
I 1 processor, one critical section shared by job 1 and job 3

I job 1: release time 1, computation time 4, deadline 8

I job 2: release time 1, computation time 2, deadline 5

I job 3: release time 0, computation time 3, deadline 4

I ...

39

Outline – Scheduling

The Scheduling problem:
Input:
I available processors, resources
I set of tasks/jobs

with their requirements, deadlines, etc.

Question: How to assign processors and resources to
tasks/jobs so that all requirements are met?

Example:
I 1 processor, one critical section shared by job 1 and job 3

I job 1: release time 1, computation time 4, deadline 8

I job 2: release time 1, computation time 2, deadline 5

I job 3: release time 0, computation time 3, deadline 4

I ...

39

Outline – Scheduling

The Scheduling problem:
Input:
I available processors, resources
I set of tasks/jobs

with their requirements, deadlines, etc.

Question: How to assign processors and resources to
tasks/jobs so that all requirements are met?

Example:
I 1 processor, one critical section shared by job 1 and job 3

I job 1: release time 1, computation time 4, deadline 8

I job 2: release time 1, computation time 2, deadline 5

I job 3: release time 0, computation time 3, deadline 4

I ...

39

Outline – Scheduling

I We consider a formal model of systems with parallel jobs
that possibly contend for shared resources
consider periodic as well as aperiodic jobs

I Consider various algorithms that schedule jobs to meet
their timing constraints
offline and online algorithms, RM, EDF, etc.

40

Outline – Programming

Basic information about RTOS and RT programming languages

I RTOS – overview

I real-time in non-real-time operating systems
I implementation of theoretical concepts in freeRTOS

I RT in programming languages – short overview

41

