
Real-Time Scheduling
Scheduling of Reactive Systems

[Some parts of this lecture are based on a real-time systems course
of Colin Perkins

http://csperkins.org/teaching/rtes/index.html]
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Reminder of Basic Notions

I Jobs are executed on processors and need resources

I Parameters of jobs
I temporal:

I release time – ri
I execution time – ei
I absolute deadline – di
I derived params: relative deadline (Di), completion time,

response time, ...
I functional:

I laxity type: hard vs soft
I preemptability

I interconnection
I precedence constraints (independence)

I resource
I what resources and when are used by the job

I Tasks = sets of jobs
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Scheduling Reactive Systems

We have considered scheduling of individual jobs
From this point on we concentrate on reactive systems
i.e. systems that run for unlimited amount of time

Recall that a task is a set of related jobs that jointly provide
some system function.

I We consider various types of tasks
I Periodic
I Aperiodic
I Sporadic

I Differ in execution time patterns for jobs in the tasks

I Must be modeled differently
I Differing scheduling algorithms
I Differing impact on system performance
I Differing constraints on scheduling

3



Scheduling Reactive Systems

We have considered scheduling of individual jobs
From this point on we concentrate on reactive systems
i.e. systems that run for unlimited amount of time

Recall that a task is a set of related jobs that jointly provide
some system function.

I We consider various types of tasks
I Periodic
I Aperiodic
I Sporadic

I Differ in execution time patterns for jobs in the tasks

I Must be modeled differently
I Differing scheduling algorithms
I Differing impact on system performance
I Differing constraints on scheduling

3



Scheduling Reactive Systems

We have considered scheduling of individual jobs
From this point on we concentrate on reactive systems
i.e. systems that run for unlimited amount of time

Recall that a task is a set of related jobs that jointly provide
some system function.

I We consider various types of tasks
I Periodic
I Aperiodic
I Sporadic

I Differ in execution time patterns for jobs in the tasks

I Must be modeled differently
I Differing scheduling algorithms
I Differing impact on system performance
I Differing constraints on scheduling

3



Scheduling Reactive Systems

We have considered scheduling of individual jobs
From this point on we concentrate on reactive systems
i.e. systems that run for unlimited amount of time

Recall that a task is a set of related jobs that jointly provide
some system function.

I We consider various types of tasks
I Periodic
I Aperiodic
I Sporadic

I Differ in execution time patterns for jobs in the tasks

I Must be modeled differently
I Differing scheduling algorithms
I Differing impact on system performance
I Differing constraints on scheduling

3



Periodic Tasks

A periodic task Ti is a sequence of jobs Ji,1, Ji,2, . . . Ji,n, . . . with
the constant differences between release times of consecutive
jobs, the constant execution times, and the constant relative
deadlines of all jobs.

Time
Ji,1

ri,1

Ji,2

ri,2

Ji,3

ri,3

Ji,4

ri,4

· · ·
ϕi

I The phase ϕi of a task Ti is the release time ri,1 of the first
job Ji,1 in the task Ti ;
tasks are in phase if their phases are equal

I The period pi of a task Ti is the length of the constant time
interval between release times of consecutive jobs in Ti

I The execution time ei of a task Ti is the constant execution
time of all jobs in Ti

I The relative deadline Di is the constant relative deadline of
all jobs in Ti
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Periodic Tasks – Notation

The 4-tuple Ti = (ϕi ,pi ,ei ,Di) refers to a periodic task Ti with phase
ϕi , period pi , execution time ei , and relative deadline Di

For example: jobs of T1 = (1,10,3,6) are
I released at times 1, 11, 21, . . .,
I execute for 3 time units,
I have to be finished in 6 time units (the first by 7, the second by 17, ...)

Default phase of Ti is ϕi = 0 and default relative deadline is di = pi

T2 = (10,3,6) satisfies ϕ = 0, pi = 10, ei = 3, Di = 6, i.e. jobs of T2 are
I released at times 0, 10, 20, . . .,
I execute for 3 time units,
I have to be finished in 6 time units (the first by 6, the second by 16, ...)

T3 = (10,3) satisfies ϕ = 0, pi = 10, ei = 3, Di = 10, i.e. jobs of T3 are
I released at times 0, 10, 20, . . .,
I execute for 3 time units,
I have to be finished in 10 time units (the first by 10, the second by 20, ...)
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Periodic Tasks – Hyperperiod

The hyper-period H of a set of periodic tasks is the least
common multiple of their periods
If tasks are in phase, then H is the time instant after which the pattern of job
release/execution times starts to repeat

0 5 10 15 20 25 30

H H
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Aperiodic and Sporadic Tasks

I Many real-time systems are required to respond to
external events

I The tasks resulting from such events are sporadic and
aperiodic tasks
I Sporadic tasks – hard deadlines of jobs

e.g. autopilot on/off in aircraft

The usual goal is to decide, whether a newly released job
can be feasibly scheduled with the remaining jobs in the
system

I Aperiodic tasks – soft deadlines of jobs
e.g. sensitivity adjustment of radar surveilance system

The usual goal is to minimize the average response time
For rigorous analysis we typically assume that the inter-arrival
times between aperiodic jobs are distributed according to a known
distribution.
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Scheduling – Classification of Algorithms

I Off-line vs Online
I Off-line – sched. algorithm is executed on the whole task

set before activation
I Online – schedule is updated at runtime every time a new

task enters the system

The main division is on
I Clock-Driven
I Priority-Driven
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Scheduling – Clock-Driven

I Decisions about what jobs execute when are made at specific
time instants

I these instants are chosen before the system begins
execution

I Usually regularly spaced, implemented using a periodic
timer interrupt

I Scheduler awakes after each interrupt, schedules jobs to
execute for the next period, then blocks itself until the next
interrupt
E.g. the helicopter example with the interrupt every 1/180 th of a
second

I Typically in clock-driven systems:

I All parameters of the real-time jobs are fixed and known
I A schedule of the jobs is computed off-line and is stored for

use at runtime; thus scheduling overhead at run-time can
be minimized

I Simple and straight-forward, not flexible
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Scheduling – Priority-Driven

I Assign priorities to jobs, based on some algorithm
I Make scheduling decisions based on the priorities, when events

such as releases and job completions occur
I Priority scheduling algorithms are event-driven
I Jobs are placed in one or more queues; at each event, the

ready job with the highest priority is executed
(The assignment of jobs to priority queues, along with rules such as
whether preemption is allowed, completely defines a priority-driven alg.)

I Priority-driven algs. make locally optimal scheduling decisions
I Locally optimal scheduling is often not globally optimal
I Priority-driven algorithms never intentionally leave idle

processors
I Typically in priority-driven systems:
I Some parameters do not have to be fixed or known
I A schedule is computed online; usually results in larger

scheduling overhead as opposed to clock-driven scheduling
I Flexible – easy to add/remove tasks or modify parameters
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Clock-Driven & Priority-Driven Example

T1 T2 T3
pi 3 5 10
ei 1 2 1

Clock-Driven:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

· · ·

· · ·

· · ·

Priority-driven: T1 � T2 � T3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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Real-Time Scheduling
Scheduling of Reactive Systems

Priority-Driven Scheduling
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Current Assumptions

I Single processor
I Fixed number, n, of independent periodic tasks

i.e. there is no dependency relation among jobs
I Jobs can be preempted at any time and never suspend

themselves
I No aperiodic and sporadic jobs
I No resource contentions

Moreover, unless otherwise stated, we assume that
I Scheduling decisions take place precisely at
I release of a job
I completion of a job

(and nowhere else)

I Context switch overhead is negligibly small
i.e. assumed to be zero

I There is an unlimited number of priority levels
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Fixed-Priority vs Dynamic-Priority Algorithms

A priority-driven scheduler is on-line
i.e. it does not precompute a schedule of the tasks

I It assigns priorities to jobs after they are released and places the
jobs in a ready job queue in the priority order
with the highest priority jobs at the head of the queue

I At each scheduling decision time, the scheduler updates the
ready job queue and then schedules and executes the job at the
head of the queue
i.e. one of the jobs with the highest priority

Fixed-priority = all jobs in a task are assigned the same priority

Dynamic-priority = jobs in a task may be assigned different priorities

Note: In our case, a priority assigned to a job does not change. There are
job-level dynamic priority algorithms that vary priorities of individual jobs – we
won’t consider such algorithms.
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Fixed-priority Algorithms – Rate Monotonic
Best known fixed-priority algorithm is rate monotonic (RM) scheduling
that assigns priorities to tasks based on their periods
I The shorter the period, the higher the priority
I The rate is the inverse of the period, so jobs with higher rate

have higher priority

RM is very widely studied and used

Example 1
T1 = (4,1), T2 = (5,2), T3 = (20,5)
with rates 1/4, 1/5, 1/20, respectively

The priorities: T1 � T2 � T3

0 4 8 12 16 20

T3

T2

T1

15



Fixed-priority Algorithms – Deadline Monotonic

The deadline monotonic (DM) algorithm assigns priorities to
tasks based on their relative deadlines
I the shorter the deadline, the higher the priority

Observation: When relative deadline of every task matches its
period, then RM and DM give the same results

Proposition 1
When the relative deadlines are arbitrary DM can sometimes
produce a feasible schedule in cases where RM cannot.

Proof.
Consider e.g. T1 = (3,1,1) and T2 = (2,1). �
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Dynamic-priority Algorithms – EDF

Earliest Deadline First (EDF) assigns priorities to jobs based on
their current absolute deadlines
I At the time of a scheduling decision, the job queue is

ordered by the earliest deadline
the earlier the deadline, the larger the priority

We focus on EDF in this course!
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EDF – Example

T1 = (2,1) and T2 = (5,2.5)

0 1 2 3 4 5 6 7 8 9 10

T2

T1

Note that the processor is 100% “utilized”, not surprising :-)
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Other Dynamic-priority Algorithms - LST

Least Slack Time (LST): The job queue is ordered by least
slack time.
The slack time of a job Ji at time t is equal to di − t − x where x is the
remaining computation time of Ji at time t

There is also a strict LST which reassigns priorities to jobs whenever
their slacks change relative to each other – difficult to implement
This algorithm does not satisfy our assumptions!
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Summary of Priority-Driven Algorithms
We consider:
Dynamic-priority:

I EDF = at the time of a scheduling decision, the job queue is
ordered by the earliest deadline

Fixed-priority:

I RM = assigns priorities to tasks based on their periods

I DM = assigns priorities to tasks based on their relative deadlines

(In all cases, ties are broken arbitrarily.)

We consider the following questions:

I Are the algorithms optimal?

I How to efficiently (or even online) test for schedulability?

To measure abilities of scheduling algorithms and to get fast online
tests of schedulability we use a notion of utilization
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Utilization
I Utilization ui of a periodic task Ti with period pi and

execution time ei is defined by ui := ei/pi
ui is the fraction of time a periodic task with period pi and execution time
ei keeps a processor busy

I Total utilization UT of a set of tasks T = {T1, . . . ,Tn} is
defined as the sum of utilizations of all tasks of T , i.e. by

UT :=

n∑
i=1

ui

I U is a schedulable utilization of an algorithm ALG if all sets
of tasks T satisfying UT ≤ U are schedulable by ALG.
Maximum schedulable utilization UALG of an algorithm ALG
is the supremum of schedulable utilizations of ALG.
I If UT < UALG , then T is schedulable by ALG.
I If U > UALG , then there is T with UT ≤ U that is not

schedulable by ALG.
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Utilization – Example

I T1 = (2,1) then u1 = 1
2

I T1 = (11,5,2,4) then u1 = 2
5

(i.e., the phase and deadline do not play any role)

I T = {T1,T2,T3} where T1 = (2,1),T2 = (6,1),T3 = (8,3)
then

UT =
1
2

+
1
6

+
3
8

=
25
24
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Real-Time Scheduling
Priority-Driven Scheduling

Dynamic-Priority
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Optimality of EDF

Theorem 2
Let T = {T1, . . . ,Tn} be a set of independent, preemptable
periodic tasks with Di ≥ pi for i = 1, . . . ,n. The following
statements are equivalent:

1. T can be feasibly scheduled on one processor
2. UT ≤ 1
3. T is schedulable using EDF

(i.e., in particular, UEDF = 1)

Proof.

1.⇒2. We prove that UT > 1 implies that T is not schedulable

2.⇒3. We prove that if EDF fails to feasibly schedule, then UT > 1

3.⇒1. Trivial

�
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Proof of 1.⇒2.
Assume that UT =

∑N
i=1

ei
pi
> 1.

Consider a time instant t > maxi ϕi
(i.e. a time when all tasks are already "running")

Observe that the number of jobs of Ti that are released in the time
interval [0, t ] is

⌈ t−ϕi

pi

⌉
. Thus a single processor needs

∑n
i=1

⌈ t−ϕi

pi

⌉
· ei

time units to finish all jobs released before or at t .

However, the the total time to finish all jobs released before or at t is
n∑

i=1

⌈
t − ϕi

pi

⌉
·ei ≥

n∑
i=1

(t−ϕi)·
ei

pi
=

n∑
i=1

tui−ϕiui =

n∑
i=1

tui−

n∑
i=1

ϕiui = t ·UT−
n∑

i=1

ϕiui

Here
∑n

i=1 ϕiui does not depend on t .

Note that limt→∞

(
t · UT −

∑n
i=1 ϕiui

)
− t = ∞. So there exists t such

that t · UT −
∑n

i=1 ϕiui > t + maxi Di .

So in order to complete all jobs released before or at t we need more
time than t + maxi Di . However, the latest deadline of a job released
before or at t is t + maxi Di . So at least one job misses its deadline.
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Proof of 2.⇒3. – Simplified
Let us start with a proof of a special case (see the assumptions A1 and A2
below). Then a complete proof will be presented.

We prove ¬3.⇒ ¬2. assuming that Di = pi for i = 1, . . . ,n.
(Note that the general case immediately follows.)

Assume that T is not schedulable according to EDF.
(Our goal is to show that UT > 1.)

This means that there must be at least one job that misses its
deadline when EDF is used.

Simplifying assumptions:

A1 Suppose that all tasks are in phase, i.e. the phase ϕ` = 0 for
every task T`.

A2 Suppose that the first job Ji,1 of a task Ti misses its deadline.

By A1, Ji,1 is released at 0 and misses its deadline at pi . Assume
w.l.o.g. that this is the first time when a job misses its deadline.
(To simplify even further, you may (privately) assume that no other job has its
deadline at pi .)
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Proof of 2.⇒3. – Simplified
Let G be the set of all jobs released in [0,pi ] with deadlines in [0,pi ].

Crucial observations:

I G contains Ji,1

I Only jobs of G can be executed in [0,pi ]

Jobs that do not belong to G cannot be executed in [0,pi ] as Ji,1 is not
completed in [0,pi ] and only jobs of G can preempt Ji,1.

I The processor is never idle in [0,pi ]

The processor is not idle because Ji,1 is ready for computation
throughout [0,pi ].

Denote by EG the total execution time of G, that is, the sum of
execution times of all jobs in G.

Corollary of the crucial observation: EG > pi because otherwise
Ji,1 (and all jobs that could possibly preempt it) would be completed
by pi .

Let us compute EG .
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Proof of 2.⇒3. – Simplified

Since we assume ϕ` = 0 for every T`, the first job of T` is released
at 0, and thus

⌊
pi
p`

⌋
jobs of T` belong to G.

E.g., if p` = 2 and pi = 5 then three jobs of T` are released in [0,5] (at times
0, 2, 4) but only 2 =

⌊
5
2

⌋
=

⌊
pi
p`

⌋
of them have their deadlines in [0,pi ].

Thus the total execution time EG of all jobs in G is

EG =

n∑
`=1

⌊
pi

p`

⌋
e`

But then

pi < EG =

n∑
`=1

⌊
pi

p`

⌋
e` ≤

n∑
`=1

pi

p`
e` ≤ pi

n∑
`=1

u` ≤ pi · UT

which implies that UT > 1.
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Proof of 2.⇒3. – Complete

Now let us drop the simplifying assumptions A1 and A2 !

We prove ¬3.⇒ ¬2. assuming that Di = pi for i = 1, . . . ,n
(note that the general case immediately follows)

Assume that T is not schedulable by EDF.
(We show that UT > 1)

Suppose that a job Ji,k of Ti misses its deadline at time t = ri,k + pi .
Assume that this is the earliest deadline miss.

Let t− be the end of the last interval before t in which either jobs with
deadlines after t are being executed, or the processor is idle.

Let G be the set of all jobs released in [t−, t ] with deadlines in [t−, t ].
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Proof of 2.⇒3. – Complete (cont.)

I G contains Ji,k

Note that t− ≤ ri,k because otherwise either Ji,k or another job
with a deadline at, or before t would be executed just before t−.

I Only jobs of G can be executed in [t−, t ]

Indeed, by definition of t−:
I All jobs (possibly) executed in [t−, t ] must have their

deadlines at, or before t by the definition of t−.
I If an idle interval precedes t−, then all jobs with deadlines

at, or before t must be released at, or after t− because
otherwise one of them would have been executed just
before t−.

I If a job with its deadline after t is executed just before t−,
then all jobs with deadlines at, or before t must be released
in [t−, t ] because otherwise one of them would have been
executed just before t−.

I The processor is never idle in [t−, t ] by definition of t−

Denote by EG the sum of all execution times of all jobs in G.
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Proof of 2.⇒3. – Complete (cont.)

Now EG > t − t− because otherwise Ji,k would complete in [t−, t ].

How to compute EG?

For a task T`, denote by R` the earliest release time of a job in T` in
the interval [t−, t ].

For every T`, exactly
⌊

t−R`
p`

⌋
jobs of T` belong to G.

Thus

EG =

n∑
`=1

⌊
t − R`

p`

⌋
e`

As argued above:

t−t− < EG =

n∑
`=1

⌊
t − R`

p`

⌋
e` ≤

n∑
`=1

t − t−
p`

e` ≤ (t−t−)

n∑
`=1

u` ≤ (t−t−)UT

which implies that UT > 1.
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the interval [t−, t ].

For every T`, exactly
⌊

t−R`
p`

⌋
jobs of T` belong to G.

Thus

EG =

n∑
`=1

⌊
t − R`

p`

⌋
e`

As argued above:

t−t− < EG =

n∑
`=1

⌊
t − R`

p`

⌋
e` ≤

n∑
`=1

t − t−
p`

e` ≤ (t−t−)

n∑
`=1

u` ≤ (t−t−)UT

which implies that UT > 1.
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Density and EDF

What about tasks with Di < pi ?

Density of a task Ti with period pi , execution time ei and relative
deadline Di is defined by

ei/min(Di ,pi)

Total density ∆T of a set of tasks T is the sum of densities of
tasks in T
Note that if Di < pi for some i, then ∆T > UT

Theorem 3
A set T of independent, preemptable, periodic tasks can be
feasibly scheduled on one processor if ∆T ≤ 1.
Note that this is NOT a necessary condition!
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Schedulability Test For EDF

The problem: Given a set of independent, preemptable, periodic
tasks T = {T1, . . . ,Tn} where each Ti has a period pi , execution time
ei , and relative deadline Di , decide whether T is schedulable by EDF.

Solution using utilization and density:

If pi ≤ Di for each i, then it suffices to decide whether UT ≤ 1.

Otherwise, decide whether ∆T ≤ 1:
I If yes, then T is schedulable with EDF
I If not, then T does not have to be schedulable

Note that
I Phases of tasks do not have to be specified
I Parameters may vary: increasing periods or deadlines, or

decreasing execution times does not prevent schedulability
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Schedulability Test for EDF – Example

Consider a digital robot controller
I A control-law computation
I takes no more than 8 ms
I the sampling rate: 100 Hz, i.e. computes every 10 ms

Feasible? Trivially yes ....
I Add Built-In Self-Test (BIST)
I maximum execution time 50 ms
I want a minimal period that is feasible (max one second)

With 250 ms still feasible ....
I Add a telemetry task
I maximum execution time 15 ms
I want to minimize the deadline on telemetry

period may be large

Reducing BIST to once a second, deadline on telemetry
may be set to 100 ms ....
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Real-Time Scheduling
Priority-Driven Scheduling

Fixed-Priority

35



Fixed-Priority Algorithms

Recall that we consider a set of n tasks T = {T1, . . . ,Tn}

Any fixed-priority algorithm schedules tasks of T according to fixed
(distinct) priorities assigned to tasks.
We write Ti A Tj whenever Ti has a higher priority than Tj .

To simplify our reasoning, assume that

all tasks are in phase, i.e. ϕk = 0 for all Tk .

We will remove this assumption at the end.
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Fixed-Priority Algorithms – Reminder
Recall that Fixed-Priority Algorithms do not have to be optimal.
Consider T = {T1,T2} where T1 = (2,1) and T2 = (5,2.5)

UT = 1 and thus T is schedulable by EDF

If T1 A T2, then J2,1 misses its deadline
If T2 A T1, then J1,1 misses its deadline

We consider the following algorithms:
I RM = assigns priorities to tasks based on their periods

the priority is inversely proportional to the period pi

I DM = assigns priorities to tasks based on their relative deadlines
the priority is inversely proportional to the relative deadline Di

(In all cases, ties are broken arbitrarily.)

We consider the following questions:
I Are the algorithms optimal?
I How to efficiently (or even online) test for schedulability?
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Maximum Response Time

Which job of a task Ti has the maximum response time?

As all tasks are in phase, the first job of Ti is released together with
(first) jobs of all tasks that have higher priority than Ti .

This means, that Ji,1 is the most preempted of jobs in Ti .

It follows, that Ji,1 has the maximum response time.
Note that this relies heavily on the assumption that tasks are in phase!

Thus in order to decide whether T is schedulable, it suffices to test
for schedulability of the first jobs of all tasks.
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Optimality of RM for Simply Periodic Tasks

Definition 4
A set {T1, . . . ,Tn} is simply periodic if for every pair Ti , T` satisfying
pi > p` we have that pi is an integer multiple of p`

Example 5
The helicopter control system from the first lecture.

Theorem 6
A set T of n simply periodic, independent, preemptable tasks with
Di = pi is schedulable on one processor according to RM iff UT ≤ 1.
i.e. on simply periodic tasks RM is as good as EDF
Note: Theorem 6 is true in general, no "in phase" assumption is needed.
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Proof of Theorem 6

By Theorem 2, every schedulable set T satisfies UT ≤ 1.

We prove that if T is not schedulable according to RM, then UT > 1.

Assume that a job Ji,1 of Ti misses its deadline at Di = pi . W.l.o.g., we
assume that T1 A · · · A Tn according to RM.

Let us compute the total execution time of Ji,1 and all jobs that
preempt it:

E = ei +

i−1∑
`=1

⌈
pi

p`

⌉
e` =

i∑
`=1

pi

p`
e` = pi

i∑
`=1

u` ≤ pi

n∑
`=1

u` = piUT

Now E > pi because otherwise Ji,1 meets its deadline. Thus

pi < E ≤ piUT

and we obtain UT > 1.
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Optimality of DM (RM) among Fixed-Priority Algs.

Theorem 7
A set of independent, preemptable periodic tasks with Di ≤ pi that are
in phase (i.e., ϕi = 0 for all i = 1, . . . ,n) can be feasibly scheduled on
one processor according to DM if it can be feasibly scheduled by
some fixed-priority algorithm.

Proof.
Assume a fixed-priority feasible schedule with T1 A · · · A Tn.

Consider the least i such that the relative deadline Di of Ti is larger
than the relative deadline Di+1 of Ti+1.

Swap the priorities of Ti and Ti+1.

The resulting schedule is still feasible.

DM is obtained by using finitely many swaps. �

Note: If the assumptions of the above theorem hold and all relative deadlines
are equal to periods, then RM is optimal among all fixed-priority algorithms.
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Fixed-Priority Algorithms: Schedulability

We consider two schedulability tests:
I Schedulable utilization URM of the RM algorithm.
I Time-demand analysis based on response times.

42



Schedulable Utilization for RM

Theorem 8
Let us fix n ∈N and consider only independent, preemptable
periodic tasks with Di = pi .

I If T is a set of n tasks satisfying UT ≤ n(21/n
− 1), then UT

is schedulable according to the RM algorithm.
I For every U > n(21/n

− 1) there is a set T of n tasks
satisfying UT ≤ U that is not schedulable by RM.

Note: Theorem 8 holds in general, no "in phase" assumption is needed.
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Schedulable Utilization for RM

It follows that the maximum schedulable utilization URM over
independent, preemptable periodic tasks satisfies

URM = inf
n

n(21/n
− 1) = lim

n→∞
n(21/n

− 1) = ln 2 ≈ 0.693

Note that UT ≤ n(21/n
− 1) is a sufficient but not necessary condition for

schedulability of T using the RM algorithm (an example will be given later)

We say that a set of tasks T is RM-schedulable if it is
schedulable according to RM.
We say that T is RM-infeasible if it is not RM-schedulable.
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Proof – Special Case
To simplify, we restrict to two tasks and always assume p2 ≤ 2p1.
(the latter condition is w.l.o.g., proof omitted)

Outline: Given p1,p2,e1, denote by max_e2 the maximum execution
time so that T = {(p1,e1), (p2,max_e2)} is RM-schedulable.
We define Up1,p2

e1
to be UT where T = {(p1,e1), (p2,max_e2)}.

We say that T fully utilizes the processor, any increase in an execution time
causes RM-infeasibility.

Now we find the (global) minimum minU of Up1,p2
e1

.
Note that this suffices to obtain the desired result:
I Given a set of tasks T = {(p1,e1), (p2,e2)} satisfying UT ≤ minU

we get UT ≤ minU ≤ Up1,p2
e1

, and thus the execution time e2
cannot be larger than max_e2. Thus, T is RM-schedulable.

I Given U > minU, there must be p1,p2,e1 satisfying
minU ≤ Up1,p2

e1
< U where Up1,p2

e1
= UT for a set of tasks

T = {(p1,e1), (p2,max_e2)}.
However, now increasing e1 by a sufficiently small ε > 0 makes
the set RM-infeasible without making utilization larger than U.
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e1

, and thus the execution time e2
cannot be larger than max_e2. Thus, T is RM-schedulable.

I Given U > minU, there must be p1,p2,e1 satisfying
minU ≤ Up1,p2

e1
< U where Up1,p2

e1
= UT for a set of tasks

T = {(p1,e1), (p2,max_e2)}.
However, now increasing e1 by a sufficiently small ε > 0 makes
the set RM-infeasible without making utilization larger than U.
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Proof – Special Case
To simplify, we restrict to two tasks and always assume p2 ≤ 2p1.
(the latter condition is w.l.o.g., proof omitted)

Outline: Given p1,p2,e1, denote by max_e2 the maximum execution
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Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.
Which gives the utilization

Up1,p2
e1

=
e1

p1
+

max_e2

p2
=

e1

p1
+

p2 − 2e1

p2
=

e1

p1
+

p2

p2
−

2e1

p2
= 1 +

e1

p2

(
p2

p1
− 2

)
As p2

p1
− 2 ≤ 0, the utilization Up1,p2

e1
is minimized by maximizing e1.

2. e1 ≥ p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p1 − e1. Which
gives the utilization

Up1,p2
e1

=
e1

p1
+

max_e2

p2
=

e1

p1
+

p1 − e1

p2
=

e1

p1
+

p1

p2
−

e1

p2
=

p1

p2
+

e1

p2

(
p2

p1
− 1

)
As p2

p1
− 1 ≥ 0, the utilization Up1,p2

e1
is minimized by minimizing e1.

The minimum of Up1,p2
e1

is attained at e1 = p2 − p1.
(Both expressions defining Up1 ,p2

e1
give the same value for e1 = p2 − p1.)
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Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :

Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.
Which gives the utilization
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As p2

p1
− 1 ≥ 0, the utilization Up1,p2

e1
is minimized by minimizing e1.

The minimum of Up1,p2
e1

is attained at e1 = p2 − p1.
(Both expressions defining Up1 ,p2

e1
give the same value for e1 = p2 − p1.)
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Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.

Which gives the utilization
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give the same value for e1 = p2 − p1.)
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Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.
Which gives the utilization
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is attained at e1 = p2 − p1.
(Both expressions defining Up1 ,p2

e1
give the same value for e1 = p2 − p1.)
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Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.
Which gives the utilization
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is attained at e1 = p2 − p1.
(Both expressions defining Up1 ,p2

e1
give the same value for e1 = p2 − p1.)
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Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.
Which gives the utilization
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give the same value for e1 = p2 − p1.)
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Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.
Which gives the utilization
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Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.
Which gives the utilization
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As p2
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is attained at e1 = p2 − p1.
(Both expressions defining Up1 ,p2

e1
give the same value for e1 = p2 − p1.)
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Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.
Which gives the utilization
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The minimum of Up1,p2
e1

is attained at e1 = p2 − p1.
(Both expressions defining Up1 ,p2

e1
give the same value for e1 = p2 − p1.)
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Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.
Which gives the utilization
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The minimum of Up1,p2
e1
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(Both expressions defining Up1 ,p2

e1
give the same value for e1 = p2 − p1.)
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Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.
Which gives the utilization
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is attained at e1 = p2 − p1.
(Both expressions defining Up1 ,p2

e1
give the same value for e1 = p2 − p1.)
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Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.
Which gives the utilization
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give the same value for e1 = p2 − p1.)
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Proof – Special Case (Cont.)
Consider two cases depending on e1:

1. e1 < p2 − p1 :
Maximum RM-feasible max_e2 (with p1,p2,e1 fixed) is p2 − 2e1.
Which gives the utilization
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Proof – Special Case (Cont.)
Substitute e1 = p2 − p1 into the expression for Up1,p2

e1
:

Up1,p2
p2−p1

=
p1

p2
+

p2 − p1

p2

(
p2

p1
− 1

)
=

p1

p2
+

(
1 −

p1

p2

) (
p2

p1
− 1

)
=

p1

p2
+

p1

p2

(
p2

p1
− 1

) (
p2

p1
− 1

)
=

p1

p2

1 +

(
p2

p1
− 1

)2
Denoting G =

p2
p1
− 1 we obtain

Up1,p2
p2−p1

=
p1

p2
(1 + G2) =

1 + G2

p2/p1
=

1 + G2

1 + G

Differentiating w.r.t. G we get

G2 + 2G − 1
(1 + G)2

which attains minimum at G = −1 ±
√

2. Here only G = −1 +
√

2 > 0
is acceptable since the other root is negative.
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Proof – Special Case (Cont.)
Thus the minimum value of Up1,p2

e1
is

1 + (
√

2 − 1)2

1 + (
√

2 − 1)
=

4 − 2
√

2
√

2
= 2(

√

2 − 1)

It is attained at periods satisfying

G =
p2

p1
− 1 =

√

2 − 1 i.e. satisfying p2 =
√

2p1.

The execution time e1 which at full utilization of the processor (due to
max_e2) gives the minimum utilization is

e1 = p2 − p1 = (
√

2 − 1)p1

and the corresponding max_e2 = p1 −e1 = p1 − (p2 −p1) = 2p1 − p2.

Scaling to p1 = 1, we obtain a completely determined example

p1 = 1 p2 =
√

2 ≈ 1.41 e1 =
√

2−1 ≈ 0.41 max_e2 = 2−
√

2 ≈ 0.59

that fully utilizes the processor (no execution time can be increased)
but has the minimum utilization 2(

√
2 − 1).
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Proof Idea of Theorem 8
Fix periods p1 < · · · < pn so that (w.l.o.g.) pn ≤ 2p1. Then the
following set of tasks has the smallest utilization among all task sets
that fully utilize the processor (i.e., any increase in any execution time
makes the set unschedulable).

0 p1 2p1

0 p2

0 p3

0 pn−1

0 pn

...

T3

T2

T1

Tn

Tn−1

ek = pk+1 − pk for k = 1, . . . ,n − 1

en = pn − 2
n−1∑
k=1

ek = 2p1 − pn
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Time-Demand Analysis

Consider a set of n tasks T = {T1, . . . ,Tn}.
Recall that we consider only independent, preemptable, in phase (i.e. ϕi = 0
for all i) tasks without resource contentions.

Assume that Di ≤ pi for every i, and consider an arbitrary
fixed-priority algorithm. W.l.o.g. assume T1 A · · · A Tn.

Idea: For every task Ti and every time instant t ≥ 0, compute the total
execution time wi(t) (the time demand) of the first job Ji,1 and of all
higher-priority jobs released up to time t .

If wi(t) ≤ t for some time t ≤ Di , then Ji,1 is schedulable, and hence all
jobs of Ti are schedulable.
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Time-Demand Analysis

I Consider one task Ti at a time, starting with highest priority and
working to lowest priority.

I Focus on the first job Ji,1 of Ti .
If Ji,1 makes it, all jobs of Ti will make it due to ϕi = 0.

I At time t for t ≥ 0, the processor time demand wi(t) for this job
and all higher-priority jobs released in [0, t ] is bounded by

wi(t) = ei +

i−1∑
`=1

⌈
t
p`

⌉
e` for 0 < t ≤ pi

(Note that the smallest t for which wi(t) ≤ t is the response time of Ji,1,
and hence the maximum response time of jobs in Ti).

I If wi(t) ≤ t for some t ≤ Di , the job Ji,1 meets its deadline Di .

I If wi(t) > t for all 0 < t ≤ Di , then the first job of the task cannot
complete by its deadline.
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Time-Demand Analysis – Example

Example: T1 = (3,1), T2 = (5,1.5), T3 = (7,1.25), T4 = (9,0.5)

This set of tasks is schedulable by RM even though
U{T1,...,T4} = 0.85 > 0.757 = URM(4) 52



Time-Demand Analysis

I The time-demand function wi(t) is a staircase function

I Steps in the time-demand for a task occur at multiples of
the period for higher-priority tasks

I The value of wi(t) − t linearly decreases from a step until
the next step

I If our interest is the schedulability of a task, it suffices to
check if wi(t) ≤ t at the time instants when a higher-priority
job is released and at Di

I Our schedulability test becomes:
I Compute wi(t)
I Check whether wi(t) ≤ t for some t equal either to Di , or to

j · pk where k = 1,2, . . . , i and j = 1,2, . . . , bDi/pk c
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Time-Demand Analysis – Comments

I Time-demand analysis schedulability test is more complex than
the schedulable utilization test but more general:

I Works for any fixed-priority scheduling algorithm, provided
the tasks have short response time (Di ≤ pi)
Can be extended to tasks with arbitrary deadlines

I Still more efficient than exhaustive simulation.

I Assuming that the tasks are in phase the time demand analysis
is complete.

We have considered the time demand analysis for tasks in phase. In
particular, we used the fact that the first job has the maximum
response time.

This is not true if the jobs are not in phase, we need to identify the so
called critical instant, the time instant in which the system is most
loaded, and has its worst response time.
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Critical Instant – Formally

Definition 9
A critical instant tcrit of a task Ti is a time instant in which a job Ji,k in
Ti is released so that Ji,k either does not meet its deadline, or has
the maximum response time of all jobs in Ti .

Theorem 10
In a fixed-priority system where every job completes before the next
job in the same task is released, a critical instant of a task Ti occurs
when one of its jobs Ji,k is released at the same time with a job from
every higher-priority task.

Note that the situation described in the theorem does not have to occur if
tasks are not in phase!
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Critical Instant and Schedulability Tests

We use critical instants to get upper bounds on schedulability as
follows:

I Set phases of all tasks to zero, which gives a new set of tasks
T
′ = {T ′1, . . . ,T

′
n}

By Theorem 10, the response time of the first job J′i,1 of T ′1 in T ′ is at
least as large as the response time of every job of Ti in T .

I Decide schedulability of T ′, e.g. using the timed-demand
analysis.

I If T ′ if schedulable, then also T is schedulable.
I If T ′ is not schedulable, then T does not have to be

schedulable.
But may be schedulable, which make the time-demand analysis
incomplete in general for tasks not in phase.
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Dynamic vs Fixed Priority

I EDF
I pros:

I optimal
I very simple and complete test for schedulability

I cons:
I difficult to predict which job misses its deadline
I strictly following EDF in case of overloads assigns higher

priority to jobs that missed their deadlines
I larger scheduling overhead

I DM (RM)
I pros:

I easier to predict which job misses its deadline (in particular,
tasks are not blocked by lower priority tasks)

I easy implementation with little scheduling overhead
I (optimal in some cases often occurring in practice)

I cons:
I not optimal
I incomplete and more involved tests for schedulability
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