
Real-Time Scheduling
Formal Model

[Some parts of this lecture are based on a real-time systems course
of Colin Perkins

http://csperkins.org/teaching/rtes/index.html]

1



Real-Time Scheduling – Formal Model

I Introduce an abstract model of real-time systems
I abstracts away unessential details
I sets up consistent terminology

I Three components of the model
I A workload model that describes applications supported by

the system
i.e. jobs, tasks, ...

I A resource model that describes the system resources
available to applications
i.e. processors, passive resources, ...

I Algorithms that define how the application uses the
resources at all times
i.e. scheduling and resource access protocols
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Basic Notions

I A job is a unit of work that is scheduled and executed by
a system
compute a control law, transform sensor data, etc.

I A task is a set of related jobs which jointly provide some
system function
check temperature periodically, keep a steady flow of water

I A job executes on a processor
CPU, transmission link in a network, database server, etc.

I A job may use some (shared) passive resources
file, database lock, shared variable etc.
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Life Cycle of a Job

READY RUN

WAITING

COMPL.

scheduling

preemption
wait for a busy
resource

signal free
resource

release

completed
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Jobs – Parameters

We consider finite, or countably infinte number of jobs J1, J2, . . .

Each job has several parameters.

There are four types of job parameters:
I temporal
I release time, execution time, deadlines

I functional
I Laxity type: hard and soft real-time
I preemptability, (criticality)

I interconnection
I precedence constraints

I resource
I usage of processors and passive resources
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Job Parameters – Execution Time

Execution time ei of a job Ji – the amount of time required to
complete the execution of Ji when it executes alone and has all
necessary resources

I Value of ei depends upon complexity of the job and speed of the
processor on which it executes; may change for various reasons:

I Conditional branches
I Caches, pipelines, etc.
I ...

I Execution times fall into an interval [e−i ,e
+
i ]; we assume that

we know this interval (WCET analysis) but not necessarily ei

We usually validate the system using only e+
i for each job

i.e. assume ei = e+
i
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Job Parameters – Release and Response Time

Release time ri – the instant in time when a job Ji becomes
available for execution
I Release time may jitter, only an interval [r−i , r

+
i ] is known

I A job can be executed at any time at, or after, its release time,
provided its processor and resource demands are met

Completion time Ci – the instant in time when a job completes
its execution

Response time – the difference Ci − ri between the completion
time and the release time

Time
Ji Ji

r−i r+i

Release time ri Completion time Ci

Response time
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Job Parameters – Deadlines

Absolute deadline di – the instant in time by which a job must
be completed

Relative deadline Di – the maximum allowable response time
i.e. Di = di − ri

Feasible interval is the interval (ri ,di]

Time
Ji Ji

r−i r+i

Release time ri

Completion time Ci

Response time

Absolute deadline di

Rel. deadline Di

A timing constraint of a job is specified using release time
together with relative and absolute deadlines.
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Laxity Type – Hard Real-Time

A hard real-time constraint specifies that a job should never
miss its deadline.

Examples: Flight control, railway signaling, anti-lock brakes, etc.

Several more precise definitions occur in literature:

I A timing constraint is hard if the failure to meet it is considered
a fatal error
e.g. a bomb is dropped too late and hits civilians

I A timing constraint is hard if the usefulness of the results falls off
abruptly (may even become negative) at the deadline
Here the nature of abruptness allows to soften the constraint

Definition 1
A timing constraint is hard if the user requires formal validation
that the job meets its timing constraint.
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Laxity Type – Soft Real-Time

A soft real-time constraint specifies that a job could
occasionally miss its deadline

Examples: stock trading, multimedia, etc.

Several more precise definitions occur in literature:
I A timing constraint is soft if the failure to meet it is undesirable

but acceptable if the probability is low

I A timing constraint is soft if the usefulness of the results
decreases at a slower rate with tardiness of the job
e.g. the probability that a response time exceeds 50 ms is less than 0.2

Definition 2
A timing constraint is soft if either validation is not required, or
only a demonstration that a statistical constraint is met suffices.

10



Laxity Type – Soft Real-Time

A soft real-time constraint specifies that a job could
occasionally miss its deadline

Examples: stock trading, multimedia, etc.

Several more precise definitions occur in literature:
I A timing constraint is soft if the failure to meet it is undesirable

but acceptable if the probability is low

I A timing constraint is soft if the usefulness of the results
decreases at a slower rate with tardiness of the job
e.g. the probability that a response time exceeds 50 ms is less than 0.2

Definition 2
A timing constraint is soft if either validation is not required, or
only a demonstration that a statistical constraint is met suffices.

10



Laxity Type – Soft Real-Time

A soft real-time constraint specifies that a job could
occasionally miss its deadline

Examples: stock trading, multimedia, etc.

Several more precise definitions occur in literature:
I A timing constraint is soft if the failure to meet it is undesirable

but acceptable if the probability is low

I A timing constraint is soft if the usefulness of the results
decreases at a slower rate with tardiness of the job
e.g. the probability that a response time exceeds 50 ms is less than 0.2

Definition 2
A timing constraint is soft if either validation is not required, or
only a demonstration that a statistical constraint is met suffices.

10



Laxity Type – Soft Real-Time

A soft real-time constraint specifies that a job could
occasionally miss its deadline

Examples: stock trading, multimedia, etc.

Several more precise definitions occur in literature:
I A timing constraint is soft if the failure to meet it is undesirable

but acceptable if the probability is low

I A timing constraint is soft if the usefulness of the results
decreases at a slower rate with tardiness of the job
e.g. the probability that a response time exceeds 50 ms is less than 0.2

Definition 2
A timing constraint is soft if either validation is not required, or
only a demonstration that a statistical constraint is met suffices.

10



Jobs – Preemptability

Jobs may be interrupted by higher priority jobs

I A job is preemptable if its execution can be interrupted
I A job is non-preemptable if it must run to completion once

started
(Some preemptable jobs have periods during which they cannot be
preempted)

I The context switch time is the time to switch between jobs
(Most of the time we assume that this time is negligible)

Reasons for preemptability:
I Jobs may have different levels of criticality

e.g. brakes vs radio tunning

I Priorities may make part of scheduling algorithm
e.g. resource access control algorithms
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Jobs – Precedence Constraints

Jobs may be constrained to execute in a particular order

I This is known as a precedence constraint
I A job Ji is a predecessor of another job Jk and Jk a

successor of Ji (denoted by Ji < Jk ) if Jk cannot begin
execution until the execution of Ji completes

I Ji is an immediate predecessor of Jk if Ji < Jk and there is
no other job Jj such that Ji < Jj < Jk

I Ji and Jk are independent when neither Ji < Jk nor Jk < Ji

A job with a precedence constraint becomes ready for
execution when its release time has passed and when all
predecessors have completed.

Example: authentication before retrieving an information, a signal
processing task in radar surveillance system precedes a tracker task
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Tasks – Modeling Reactive Systems

Reactive systems – run for unlimited amount of time

A system parameter: number of tasks
I may be known in advance (flight control)
I may change during computation (air traffic control)

We consider three types of tasks
I Periodic – jobs executed at regular intervals, hard deadlines

I Aperiodic – jobs executed in random intervals, soft deadlines

I Sporadic – jobs executed in random intervals, hard deadlines

... precise definitions later.
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Processors

A processor, P, is an active component on which jobs are scheduled

The general case considered in literature:

m processors P1, . . . ,Pm, each Pi has its type and speed.

We mostly concentrate on single processor scheduling

I Efficient scheduling algorithms

I In a sense subsumes multiprocessor scheduling where tasks are
assigned statically to individual processors
i.e. all jobs of every task are assigned to a single processor

Multi-processor scheduling is a rich area of current research, we
touch it only lightly (later).
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Resources
A resource, R, is a passive entity upon which jobs may depend

In general, we consider n resources R1, . . . ,Rn of distinct types

Each Ri is used in a mutually exclusive manner

I A job that acquires a free resource locks the resource

I Jobs that need a busy resource have to wait until the resource is
released

I Once released, the resource may be used by another job
(i.e. it is not consumed)

(More generally, each resource may be used by k jobs concurrently, i.e., there are k
units of the resource)

Resource requirements of a job specify

I which resources are used by the job

I the time interval(s) during which each resource is required
(precise definitions later)
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Scheduling

Schedule assigns, in every time instant, processors and
resources to jobs.

More formally, a schedule is a function

σ : {J1, . . .} ×R
+
0 → P({P1, . . . ,Pm,R1, . . . ,Rn})

so that for every t ∈ R+
0 there are rational 0 ≤ t1 ≤ t < t2 such

that σ(Ji , ·) is constant on [t1, t2).

(We also assume that there is the least time quantum in which scheduler
does not change its decisions, i.e. each of the intervals [t1, t2) is larger than a
fixed ε > 0.)
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Valid and Feasible Schedule

A schedule is valid if it satisfies the following conditions:
I Every processor is assigned to at most one job at any time

I Every job is assigned to at most one processor at any time

I No job is scheduled before its release time

I The total amount of processor time assigned to a given job is
equal to its actual execution time

I All the precedence and resource usage constraints are satisfied

A schedule is feasible if all jobs with hard real-time constraints
complete before their deadlines

A set of jobs is schedulable if there is a feasible schedule for
the set.
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Scheduling – Algorithms

Scheduling algorithm computes a schedule for a set of jobs
A set of jobs is schedulable according to a scheduling algorithm
if the algorithm produces a feasible schedule

Definition 3
A scheduling algorithm is optimal if it always produces
a feasible schedule whenever such a schedule exists.
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Real-Time Scheduling
Individual Jobs

19



Scheduling of Individual Jobs

We start with scheduling of finite sets of jobs {J1, . . . , Jm} for
execution on single processor systems.

Each Ji has a release time ri , an execution time ei and
a relative deadline Di .
We assume hard real-time constraints.

The question: Is there an optimal scheduling algorithm?

We proceed in the direction of growing generality:

1. No resources, independent, synchronized (i.e. ri = 0 for all i)

2. No resources, independent but not synchronized

3. No resources but possibly dependent

4. The general case
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No resources, Independent, Synchronized

J1 J2 J3 J4 J5
ei 1 1 1 3 2
di 3 10 7 8 5

Is there a feasible schedule?

Note: Preemption does not help in synchronized case.

Theorem 4
If there are no resource contentions, then executing
independent jobs in the order of non-decreasing deadline
(EDD) produces a feasible schedule (if it exists).
Proof.
Let σ be a schedule. Inversion is a pair (Ja , Jb) such that Ja
precedes Jb in σ but db < da .
Note that σ is EDD iff it does not contain any inversion.
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independent jobs in the order of non-decreasing deadline
(EDD) produces a feasible schedule (if it exists).
Proof.
Let σ be a schedule. Inversion is a pair (Ja , Jb) such that Ja
precedes Jb in σ but db < da .
Note that σ is EDD iff it does not contain any inversion.
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Proof cont.
Assume k > 0 inversions in σ.
Let (Ja , Jb) be an inversion such that Ja is scheduled right before Jb .
There is always at least one such inversion (homework).

Let ta < tb be the time instants when Ja , Jb start to be executed in σ.
Recall: Ca ,Cb are completion times of Ja , Jb , and ea ,eb are execution times.

Note that Ca ≤ da and that Cb ≤ db < da .

Define a new schedule σ′ in which:

I All jobs except Ja , Jb are scheduled as in σ,

I Jb starts at ta ,

I Ja starts at ta + eb .

Observe that σ′ is still feasible:

I Jb is completed at ta + eb < ta + eb + ea = tb + eb = Cb ≤ db

I Ja is completed at ta + eb + ea = Cb ≤ db < da

Note that σ′ has k − 1 inversions. By repeating the above procedure k
times, we obtain an EDD schedule. �
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No resources, Independent, Synchronized

Is there any simple schedulability test?

{J1, . . . , Jn} where d1 ≤ · · · ≤ dn is schedulable iff
∀i ∈ {1, . . . ,n} :

∑i
k=1 ek ≤ di
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No resources, Independent (No Synchro)

J1 J2 J3
ri 0 0 2
ei 1 2 2
di 2 5 4

I find a (feasible) schedule (with and without preemption)
I determine response time of each job in your schedule

Preemption makes a difference.
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No resources, Independent (No Synchro)

Earliest Deadline First (EDF) scheduling:
At any time instant, a job with the earliest absolute deadline is
executed

Here EDF works in the preemptive case but not in
the non-preemptive one.

J1 J2
ri 0 1
ei 4 2
di 7 5
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No Resources, Independent (No Synchro)

Theorem 5
If there are no resource contentions, jobs are independent and
preemption is allowed, the EDF algorithm finds a feasible
schedule (if it exists).
Proof.
We show that any feasible schedule σ can be transformed in finitely
many steps to EDF schedule which is feasible.

Let σ be a feasible schedule but not EDF. Assume, w.l.o.g., that for
every k ∈N at most one job is executed in the interval [k , k + 1) and
that all release times and deadlines are inN.
(Otherwise rescale by the least common multiple.)
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No Resources, Independent (No Synchro)
Proof cont.
We say that σ violates EDF at k if there are two jobs Ja and Jb that
satisfy:
I Ja and Jb are ready for execution at k
I Ja is executed in [k , k + 1)
I db < da

Let k ∈N be the least time instant such that σ violates EDF at k as
witnessed by jobs Ja and Jb .
Assume, w.l.o.g. that Jb has the minimum deadline among all jobs
ready for execution at k .

There is k < ` < db such that Jb is executed in [`, ` + 1).
Let us define a new schedule σ′ which is the same as σ except:
I executes Jb in [k , k + 1)
I executes Ja in [`, ` + 1)

Then σ′ is feasible and does not violate EDF at any k ′ ≤ k .

Finitely many steps transform any feasible schedule to EDF. �
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No resources, Independent (No Synchro)

The non-preemptive case is NP-hard.

Heuristics are needed, such as the Spring algorithm, that
usually work in much more general setting (with resources etc.)

Use the notion of partial schedule where only a subset of tasks
has been scheduled.

Exhaustive search through partial schedules
I start with an empty schedule
I in every step either
I add a job which maximizes a heuristic function H among

jobs that have not yet been tried in this partial schedule
I or backtrack if there is no such a job

I After failure, backtrack to previous partial schedule
Heuristic function identifies plausible jobs to be scheduled
(earliest release, earliest deadline, etc.)
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No Resources, Dependent (No Synchro)

Example:

J1 J2 J3 J4 J5 J6

ei 1 1 1 1 1 1
di 2 5 4 3 5 6

Dependencies:

J1

J2 J3

J4 J5 J6

Does EDF work?
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No resources, Dependent (No Synchro)

Theorem 6
Assume that there are no resource contentions and jobs are
preemptable. There is a polynomial time algorithm which decides
whether a feasible schedule exists and if yes, then computes one.

Idea: Reduce to independent jobs by changing release times
and deadlines. Then use EDF.

Observe that if Ji < Jk then replacing
I rk with max{rk , ri + ei}

(Jk cannot be scheduled for execution before ri + ei because Ji cannot
be finished before ri + ei)

I di with min{di ,dk − ek }

(Ji must be finished before dk − ek so that Jk can be finished before dk )

does not change feasibility.

Replace systematically according to the precedence relation.
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No Resources, Dependent (No Synchro)
Define r ∗k ,d

∗

k systematically as follows:
I Pick Jk whose all predecessors have been processed and

compute r ∗k := max{rk ,maxJi<Jk r ∗i + ei}. Repeat for all jobs.
I Pick Jk whose all successors have been processed and

compute d∗k := min{dk ,minJk<Ji d∗i − ei}. Repeat for all jobs.

Example:

J1 J2 J3 J4 J5 J6

ei 1 1 1 1 1 1
di 2 5 4 3 5 6

Dependencies:

J1

J2 J3

J4 J5 J6

Do you need the precedence constraints?
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No Resources, Dependent (No Synchro)

Define r ∗k ,d
∗

k systematically as follows:

I Pick Jk whose all predecessors have been processed and
compute r ∗k := max{rk ,maxJi<Jk r ∗i + ei}. Repeat for all jobs.

I Pick Jk whose all successors have been processed and
compute d∗k := min{dk ,minJk<Ji d∗i − ei}. Repeat for all jobs.

This gives a new set of jobs J∗1, . . . , J
∗
m where each J∗k has the

release time r ∗k and the absolute deadline d∗k .
We impose no precedence constraints on J∗1, . . . , J

∗
m.

Lemma 7
{J1, . . . , Jm} is feasible iff {J∗1, . . . , J

∗
m} is feasible. If EDF schedule

is feasible on {J∗1, . . . , J
∗
m}, then the same schedule is feasible

on {J1, . . . , Jm}.
The same schedule means that whenever J∗i is scheduled at time t, then Ji is
scheduled at time t.
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No Resources, Dependent (No Synchro)

Recall: r ∗k := max{rk ,maxJi<Jk r ∗i + ei} and
d∗k := min{dk ,minJk<Ji d∗i − ei}

Proof of Lemma ??.
⇒: It is easy to show that in no feasible schedule on {J1, . . . , Jm} any
job Jk can be executed before r ∗k and completed after d∗k (otherwise,
precedence constraints would be violated).

⇐: Assume that EDF σ is feasible on {J∗1, . . . , J
∗
m}. Let us use σ

on {J1, . . . , Jm}.
I.e. Ji is executed iff J∗i is executed.

Timing constraints of {J1, . . . , Jm} are satisfied since rk ≤ r ∗k and
dk ≥ d∗k for all k .
Precedence constraints: Assume that Js < Jt . Then J∗s
executes completely before J∗t since r ∗s < r ∗s + es ≤ r ∗t and
d∗s ≤ d∗t − et < d∗t and σ is EDF on {J∗1 . . . , J

∗
m}.
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Resources, Dependent, Not Synchronized

Even the preemptive case is NP-hard
I reduce the non-preemptive case without resources to the

preemptive with resources
I Use a common resource R.
I Whenever a job starts its execution it locks the resource R.
I Whenever a job finishes its execution it releases the

resourse R.

Could be solved using heuristics, e.g. the Spring algorithm.
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