Recurrent Neural Networks - LSTM

QUTPUT

INPUT

Activation function:

1 &=0
0(6)—{0 o

y 1 0
h (0,0) (1,1) (1,0)
X (0,0) (1,0)

AN TN
— O
—_
~— —

~ N

Activation function:

1 ezo0
G(‘S)_{o E<0

U T S
o=1(0,0) hy=(1,1) ho=(1,0) h3=(0,1)
X1 =(0,0) Xo=(1,0) Xz3=(1,1)

RNN - formally

> Minputs: X = (Xq,...,Xm)
> H hidden neurons: h = (hy,..., hy)
» N output neurons: y = (y1,..., yn)

> Weights:

> U from input xi to hidden hg
» Wi from hidden hy to hidden hy
> Vik from hidden hy. to output yx

» Input sequence: X = Xi,..., Xt

Xt = (Xt1, .-, Xtm)

RNN - formally
> Input sequence: X = Xy, ..., X1

)_()t:(xth---,XtM)

» Hidden sequence: h = Fro, FH,...,F)T
At = (he1, - ..,)

We have Eo =(0,...,0)and

M H

,
hx =0 Z Uk Xtk + Wik ht-1)k-
k=1 k=1

RNN - formally
> Input sequence: X = Xy, ..., X1

)?t:(xnl---,xtl\/l)

» Hidden sequence: h = Fro, FH,...,F)T
At = (he1, - ..,)
We have Eo =(0,...,0)and

M H
hyx =0 Z Uik Xtkr + Z Wi ht-1)k
k=1 k=1

» Output sequence: y = yi,..., J1
y)t = (Yt1/---IYtN)
_ H
Where }/tk = O(Zk’:1 ka/htk/)

> Input sequence: X = X,..., Xt

> Input sequence: X = X,..., Xt
. > o -
» Hidden sequence: h = hg, hy, ..., ht where

and

bt = o(USy + Why_y)

RNN — in matrix form

=2 =2
> Input sequence: X = X1,..., XT
. - o —>
» Hidden sequence: h = hg, hy, ..., ht where

and

At = o(Use + Why_q)

» Output sequence: y = yi, ..., Yt where

Y= G(Vht)

RNN - Comments

>

>

F)t is the memory of the network, captures what happened
in all previous steps (with decaying quality).

RNN shares weights U, V, W along the sequence.

Note the similarity to convolutional networks where the weights were
shared spatially over images, here they are shared temporally over
sequences.

RNN can deal with sequences of variable length.
Compare with MLP which accepts only fixed-dimension vectors on
input.

RNN - training

Training set

T — {(x1,d1),---, (Xprdp)}

here
> each X; = X1,..., X7, is an input sequence,
- - .
» each d, = dp,...,der, is an expected output sequence.

Here each X;t = (X¢t1,. .., Xetm) iS an input vector and each
3gt = (dgt1, - .., dein) is an expected output vector.

Error function

In what follows | will consider a training set with a single
element (x,d). l.e. drop the index ¢ and have

> X = Xq,..., X7 where X; = (X¢1,..., Xm)
- - -
» d=0,...,dr where d; = (di1, ..., di)

The squared error of (x,d) is defined by

.
ZZZ (Vi — du)?

t=1 k=1

—_

Recall that we have a sequence of network outputs
Y = V1,...,y7 and thus yy is the k-th component of y;

Gradient descent (single training example)

Consider a single training example (x, d).

The algorithm computes a sequence of weight matrices as
follows:

Gradient descent (single training example)

Consider a single training example (x, d).

The algorithm computes a sequence of weight matrices as
follows:

» Initialize all weights randomly close to 0.

Gradient descent (single training example)

Consider a single training example (x, d).
The algorithm computes a sequence of weight matrices as
follows:

» Initialize all weights randomly close to 0.

> Inthestepf{+ 1 (here { =0,1,2,...) compute "new"
weights U1, v W) from the "old" weights
U, v W as follows:

OE,
(+1) 40 (x.d)
Ukk' - Ukk/ —&(l) - 5Urr
OE,
(e+1) /() (x.d)
Vi~ = Vie —€(0)- Vi
0E(xq)

(e+1) /(0
Wy " =Wy = () - W

Gradient descent (single training example)

Consider a single training example (x, d).
The algorithm computes a sequence of weight matrices as
follows:

» Initialize all weights randomly close to 0.

> Inthestepf{+ 1 (here { =0,1,2,...) compute "new"
weights U1, v W) from the "old" weights
U, v W as follows:

OE,
(+1) 40 (x.d)
Ugo " = Ugo —€(0) - 5Urr
OE,
(t+1) _ (0 (xd)
Vi~ = Vie —€(0)- Vi
OE,
(e4+1) (0 (xd)
Wi " = W =) S

The above is THE learning algorithm that modifies weights!

Computes the derivatives of E, no weights are modified!

Backpropagation

Computes the derivatives of E, no weights are modified!

0Exd) v OExd)

= G o Xt kI:1,...,M
OUnk: ; Ohi t
= _ZT:(SE“.)) o y
Vi &= Oyw Y
OExd)

, kK"=1,...,H

Wi tz: 0"+ A1)k

Backpropagation

Computes the derivatives of E, no weights are modified!

t=1
OEa) ZT: L=
OVik = Oy
5E(X,d) i 5E(X,d)
(SWkk/ =1 (Shtk
Backpropagation:
5E(x d)
) _d
Ve Yik — Ok
0Ewa) v OE(xa) _
Ohy OYik’

K'=1

k'=1,....M
k"=1,...,H
k"=1,...,H

(assuming squared error)

Long-term dependencies

0Exd) n O0Exa) OExa)
<) _ e " W
Shy 4t 0" View + Z Shase KK

> Unless Y_, o’ - Wk ~ 1, the gradient either vanishes, or
explodes.

» For alarge T (long-term dependency), the gradient
"deeper" in the past tends to be too small (large).

» A solution: LSTM
LSTM is currently a bit obsolete. The main idea is to decompose W into
several matrices, each responsible for a different task. One is
concerned about memory, one is concerned about the output at each
step, etc.

https://arxiv.org/pdf/2205.13504.pdf

LSTM

Et = 5 o Gh(é[) OUtpUt

51:906t 1+1toCt memory

Ci = on(Wg-hiy + Ug- %) new memory contents
Ot = ag(W, - At + Us - Xt) output gate

? og(Ws - ht 1+ Us-xt) forget gate

=

og(W;- ht 1+ Ui xt) input gate

> o is the component-wise product of vectors

> . is the matrix-vector product

> op hyperbolic tangents (applied component-wise)
> ogq logistic sigmoid (aplied component-wise)

>

E:
)
ﬂ@'—ﬂ

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

- -
t = Gt oon(Ct)
-

h
a e - - > ~
to1 R ' = Ct = ft [e} Ct—1 —|— It [¢] Ct

X @ »

Ct = on(We - By + Ug - %)
6t = Ug(Wo : Ht—1 + U)?t)

fi = og(W; - it + Us - x)
it = og(Wi- h1 + U - X3)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

t=5t00h(5t)
?OCt 1 +ItOCt
g CtZGh(WC'ht—1 + Uc - Xt)
6t Ug(Wo : Ht—1 + U)?t)
= f= (Wf'F't—1 + Ur - ;)

>

it =og(W;- A1 + U;- Xt)

Ty

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

F’)t = 5t00h(5t)
ét:ﬁ‘oét—1 +7;°ét
= Ct = on(We - iy + Uc -)

6t = Ug(Wo : Ht—1 + U)?t)
fi = ag(W; - By + U - X0)

= it =ag(Wi- hi—1 + U; - Xp)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cy_y

he = 8¢ 0 on(Cy)

- -
< :>Ct—ftOCt1+ItOCt

—)

%’G)

= Cr=on(We - hi_1 + Ug - %)

61‘ — Og(Wo ht 1 + Uo Xt)
fi = og(W; - i1+ Us- X)

>

=
=i = g(V\/i'Et—1+Ui‘)a)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

. = hy = 60 on(Cy)
I E= oG +10 G
%’%) Ct = on(We - By + Ug - %)
hey he
z'[=>5t=0g(Wo'Ht—1+Uo'>?t)

fi = og(W; - it + Us - x)
it = og(Wi- h1 + U - X3)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM — summary

» LSTM (almost) solves the vanishing gradient problem w.r.t.
the "internal" state of the network.

> Learns to control its own memory (via forget gate).
» Revolution in machine translation and text processing.

... but the development goes on ...

RNN text generator
Generating texts letter by letter.

target chars: ‘e’ il -

1.0 0.5 0.1

2.2 0.3 0.5
output layer 5a 1.0 19

4.1 1.2 -1.1

0.3 1.0 0.1
hidden layer | 0.1 = 0.3 -0.5

0.9 0.1 -0.3

1 0 0 0
: 0] 1 0 0
input layer 0 0 1 1

0 0 0 0

]

input chars: “p”

Shakespeare

» Generating Shakespeare letter by letter.
» Trained on Shakespeare’s plays (4.4MB).

VIOLA: Why, Salisbury must find his flesh and thought That which |
am not aps, not a man and in fire, To show the reining of the raven
and the wars To grace my hand reproach within, and not a fair are
hand, That Caesar and my goodly father’'s world; When | was heaven
of presence and our fleets, We spare with hours, but cut thy council |
am great, Murdered and by thy master’s ready there My power to give
thee but so much as hell: Some service in the noble bondman here,
Would show him to her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods With his heads, and
my hands are wonder’d at the deeds, So drop upon your lordship’s
head, and your opinion Shall be against your honour.

Wikipedia
» Hutter Prize 100MB dataset from Wikipedia (96MB)

Naturalism and decision for the majority of Arab countries’ capitalide was
grounded by the Irish language by [[John Clair]], [[An Imperial Japanese
Revolt]], associated with Guangzham’s sovereignty. His generals were the
powerful ruler of the Portugal in the [[Protestant Immineners]], which could be
said to be directly in Cantonese Communication, which followed a ceremony
and set inspired prison, training. The emperor travelled back to [[Antioch,
Perth, October 25|21]] to note, the Kingdom of Costa Rica, unsuccessful
fashioned the [[Thrales]], [[Cynth’s Dajoard]], known in western [[Scotland]],
near ltaly to the conquest of India with the conflict. Copyright was the
succession of independence in the slop of Syrian influence that was a famous
German movement based on a more popular servicious, non-doctrinal and
sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]] (PJS)[http:
//www . humah.yahoo.com/guardian.cfm/7754800786d17551963s89.htm

Official economics Adjoint for the Nazism, Montgomery was swear to
advance to the recoiircee for thoce KRocialiem’e riile wae etartina to <ianina a 19

http://www.humah.yahoo.com/guardian. cfm/7754800786d17551963s89.htm
http://www.humah.yahoo.com/guardian. cfm/7754800786d17551963s89.htm

Xml halucination:

<page>
<title>Antichrist</title>
<id>865</id>
<revision>
<id>15900676</id>
<timestamp>2002-08-03T18:14:12Z</timestamp>
<contributor>
<username>Paris</username>
<id>23</id>
</contributor>
<minor />
<comment>Automated conversion</comment>
<text xml:space="preserve'">
#REDIRECT [[Christianity]]l</text>
</revision>
</page>

20

» Algebraic geometry textbook.
» LaTeX source (16MB).
» Almost compilable.

21

Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = 0x(L)

Proof. This is an algebraic space with the composition of sheaves F on Xz, we
have

Ox(F) = {morphs xoy (G, 7)}
where G defines an isomorphism F — F of O-modules. (]
Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma 77, O

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let Y C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complez.

The following to the construction of the lemmma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: XY a3Y Y 3 Y xxY o5 X,
be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.
(2) If X is an affine open covering,.

Coancider a coommaoan ctriictnnre on Y and Y the Binectnr M« (T which ic 1ncallyy nf

22

» Trained on all source files of Linux kernel concatenated
into a single file (474MB of C code).

23

static int indicate_policy(void)
{

int error;

if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock graph_and_set blocked();

else
ret = 1;
goto bail;
}

segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = 0; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;
if (fd) {
current = blocked;

}
rw->name = "Getjbbregs”;
bprm_self clearl(&iv->version);

regs->new = blocks[(BPF_STATS << info->historidac)]

return segtable;

| PFMR_CLOBATHINC SECONDS << 12;

24

Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.

This program is free software; you can redistribute it and/or modify it

under

the terms of the GNU General Public License version 2 as published by

the Free Software Foundation.

This program is distributed in the hope that it will be useful,

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

*
*
*
*
*
*
*
* but WITHOUT ANY WARRANTY; without even the implied warranty of
*
*
*
*
*
*
*

Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

#include <linux/kexec.h>

#include <linux/errno.h>

#include <linux/io.h>

#include <linux/platform_device.h>
#include <linux/multi.h>

#include <linux/ckevent.h>

#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system_info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>

25

Evolution of Shakespeare
100 iter.:

tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

300 iter.:

"Tmont thithey" fomesscerliund

Keushey. Thom here

sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

500 iter.:

we counter. He stutn co des. His stanted out one ofler that concossions and was
to gearang reay Jotrets and with fre colt otf paitt thin wall. Which das stimn

700 iter.:
Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter

1200 iter.:

"Kite vouch!" he repeated by her
door. "But I would be done and quarts, feeling, then, son is people...."

2000 iter.:

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

26

Attention

Consider the following task: Given a sequence of vectors

generate a new sequence
> -
Y=Vi,..., YT

of possibly different length (i.e., possibly T # T’).

E.g., a machine translation task, x is an embedding of an
English sentence, y is a sequence of probability distributions on
a German vocabulary.

27

Attention

Consider two recurrent networks:
> Enc the encoder

> Hidden state ﬁo initialized by standard methods for
recurrent networks
> Reads X, ..., Xr, does not output anything but produces

a sequence of hidden states 51, el HT

28

Attention

Consider two recurrent networks:
> Enc the encoder
> Hidden state ﬁo initialized by standard methods for

recurrent networks
> Reads X, ..., Xr, does not output anything but produces

a sequence of hidden states 51, el HT

> Dec the decoder
> The initial hidden state is Ar
> Does not read anything but outputs the sequence s, ..., yr
This is a simplification. Typically, Dec reads yo, V1, ..., yr—1 Where
Yo is a special vector embedding a separator.

28

Attention

Consider two recurrent networks:
> Enc the encoder

> Hidden state ﬁo initialized by standard methods for
recurrent networks
> Reads X, ..., Xr, does not output anything but produces

a sequence of hidden states Fn, el HT
> Dec the decoder
> The initial hidden state is hr
> Does not read anything but outputs the sequence s, ..., yr
This is a simplification. Typically, Dec reads yo, V1, ..., yr—1 Where
Yo is a special vector embedding a separator.
Trained on pairs of sentences, able to learn a fine translation between major
languages (if the recurrent networks are LSTM).

Is not perfect because all info about x = X;, ..., Xt is squeezed
. . =

into the single state vector hr.

In particular, the network tends to forget the context of each word.

28

Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

29

Attention in Recurrent Networks
What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encoder Enc producing the sequence of
hidden states: hy,..., hr

29

Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encoder Enc producing the sequence of
hidden states: hy,..., hr
The decoder Dec is still a recurrent network but

> the hidden state ﬁ(’) initialized by er and a sequence of

hidden states ﬁ(’), ey E’T, is computed,

29

Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encgder Enc producing the sequence of
hidden states: hy,..., hr
The decoder Dec is still a recurrent network but
> the hidden state Fw(’) initialized by ET and a sequence of
hidden states 176, ., h’T, is computed,
> reads a sequence of context vectors &, ..., G where

.
exp(eji

G = Z ajhj where Qj=—F———— (i)

j=1 Yox—1exp(€ik)

i-17 H)
> outputs the sequence ¥, ...,y

where ejj = MLP(h’_

29

» The attention mechanism extracts the information from
the sequence quite well.

30

Do We Still Need the Recurrence?

» The attention mechanism extracts the information from
the sequence quite well.

> |s there a reason for reading the input sequence
sequentially?

30

Do We Still Need the Recurrence?

» The attention mechanism extracts the information from
the sequence quite well.

> |s there a reason for reading the input sequence
sequentially?

» Could we remove the recurrent network itself and preserve
only the attention?

30

Self-Attention Layer (is all you need)

Fix an input sequence: Xy, ..., Xt

Consider three learnable matrices: Wy, Wy, W,

Generate sequences of queries, keys, and values:
> Gi,...,Gr where G = WoX forallk =1,..., T
> Ki,...,Kr where K, = WX forallk =1,..., T
> Vi,..., VT where v, = W X, forallk =1,..., T

31

Self-Attention Layer (is all you need)

Fix an input sequence: Xy, ..., Xt
Consider three learnable matrices: Wy, Wy, W,

Generate sequences of queries, keys, and values:
> Gi,...,Gr where Gk = Wy forallk =1,..., T
> ki,..., kr where K, = Wi % forallk =1,..., T
> Vi,..., VT where vV, = W X forallk =1,..., T

Define a vector score for all i,je {1,..., T} by
> -
ej=di-k
Intuitively, s; measures how much the input at the position i is related to the
input at the position j, in other words, how much the query fits the key.
Define
o eXP(eij / Vdatn)
- T
Yk—1exp(€ik / Vdatn)

l.e., we apply the good old softmax to (e, ..., i) / Vdatn

ajj datin is the dimension of V;

31

Self-Attention Layer (is all you need)

Define a vector score for all i,j e {1,..., T} by
&)= Gi-K
Intuitively, s; measures how much the input at the position i is related to the
input at the position j, in other words, how much the query fits the key.
Define
B exp(ejj / Vatn)
L1 exp(€ik / Vatn)

l.e., we apply the good old softmax to (e, ..., i)/ Vdatn

ajj datin is the dimension of V;

Define a sequence of outputs yj, ..., Y by
T

- -
Yi=) aij-Vj

=

31

Language Model

A sequence of tokens ay,...,ar e **
E.g. words from a vocabulary X.

The goal: Maximize

.
HP(ak|a1,...,ak_1;W) (=P(ay,...,ar; W))
k=1

where

» P is the conditional probability measure over ¥ modeled
using a neural network with weights W.

32

Language Model

A sequence of tokens ay,...,ar e **
E.g. words from a vocabulary X.

The goal: Maximize

T

HP(ak|a1,...,ak_1;W) (=P(ay,...,ar; W))
k=1

where

» P is the conditional probability measure over ¥ modeled
using a neural network with weights W.

Can be used to generate text:

Given ay, ..., ax, sample ax.¢ from P(ax.1 | a1,...,ak; W)

32

e
]

| Feed Forward |
3

ke

12x —

Text & Position Embed

33

e
]

| Feed Forward |
Y
12x —

==

Text & Position Embed

34

Masked Self-Attention Layer (is all you need)

Assume an attention mechanism which given an input
sequence Xy, ..., Xt generates yi, ..., jr.

The Problem: How to generate yx only based on X, ..., Xx_1 ?

35

Masked Self-Attention Layer (is all you need)

Assume an attention mechanism which given an input
sequence Xy, ..., Xt generates yi, ..., jr.

The Problem: How to generate yx only based on X, ..., Xx_1 ?
Define a vector score for all i,je {1,..., T} by
G-k ifj<i
€j = .
—00 otherwise.

This means that

exp(€ji / Vatn)
ajj = Yor_i exp(ei / Vatn)
0

ifj<i

otherwise.

35

Masked Self-Attention Layer (is all you need)

Assume an attention mechanism which given an input
sequence Xy, ..., Xt generates yi, ..., jr.

The Problem: How to generate yx only based on X;,..., Xk_1 ?
Define a vector score for all i,je {1,..., T} by
G-k ifj<i
€j = .
—00 otherwise.

This means that

exp(€ji / Vatn)
ajj = Yor_i exp(ei / Vatn)
0

if j<i
otherwise.

Define a sequence of outputs i, ..., Y by

35

Multi-head Self-Attention Layer (is all you need)

Assume the number of heads is H.

For h=1,...,Hthe h-th head is an attention mechanism which
given the input X;, ..., X7 produces

~h ~h

P
Note that the output may be different which means that, in particular, the
matrices W,, Wi, W, may be different for each head.

Assume that all vectors)7,’(7 are of the same dimension dp,jg and
consider a learnable matrix W, of dimensions dout X (H - dmiq)-

36

Multi-head Self-Attention Layer (is all you need)

Assume the number of heads is H.

For h=1,...,Hthe h-th head is an attention mechanism which
given the input X;, ..., X7 produces

~h —~h
Vi, Y71
Note that the output may be different which means that, in particular, the

matrices W,, Wi, W, may be different for each head.

Assume that all vectors)7,’(7 are of the same dimension dp,jg and
consider a learnable matrix W, of dimensions dout X (H - dmiq)-

The multi-head attention produces the following output:
.)71 JARNE yT

where
Y = Wou - (7} 0 72 0§

Here © is a concatenation of vectors.

36

Input: A sequence Xi,..., X1

Output: A sequence i, ..., T
l.e., a sequence of the same length. The dimensions of yx and X, do not have

to be equal.

37

Multi-head Self-Attention Summary

Input: A sequence Xi, ..., XT

Output: A sequence ¥, ..., yT

l.e., a sequence of the same length. The dimensions of y, and Xx do not have
to be equal.

Attention:

Learnable parameters: Matrices Wq, Wy, W,.

These matrices are used to compute queries, keys, and values from
Xi,...,%Xr. Output ys, ..., yr is computed using values "scaled" by
the query-key attention.

37

Multi-head Self-Attention Summary

Input: A sequence Xi, ..., XT

Output: A sequence ¥, ..., yT

l.e., a sequence of the same length. The dimensions of y, and Xx do not have
to be equal.

Attention:
Learnable parameters: Matrices Wq, Wy, W,.
These matrices are used to compute queries, keys, and values from
Xi,...,%Xr. Output ys, ..., yr is computed using values "scaled" by
the query-key attention.
Multi-head attention:
Learnable parameters:
» Matrices W[;, W,f, W/ where h=1,...,Hand His
the number of heads.
Each attention head operates independently on the input X;, ..., Xr.

> Matrix Woy;.
Linearly transforms the concatenated results of the attention heads.

37

e
]

| Feed Forward |
Y
12x —

1=

‘3 3

Text & Position Embed

38

The Goal: To encode a position (index) k € {1,..., T} into
a vector Py of real numbers.

39

Positional encoding
The Goal To encode a position (index) k € {1,..., T} into
a vector Py of real numbers.

Assume that f’k should have a dimension d.
Given a position k € {1,..., T} and i € {0,...,d/2} define

_ k
Pk,2i = SIin (W)

k
Pk, it1) = cos(nzl./d)
Here n = 10000.

A user defined constant, the original paper suggests n = 10000.

39

Positional encoding
The Goal To encode a position (index) k € {1,..., T} into
a vector Py of real numbers.

Assume that f’k should have a dimension d.
Given a position k € {1,..., T} and i € {0,...,d/2} define

_ k
Pk,2i = SIin (W)

k
Pk, it1) = cos(nzl./d)
Here n = 10000.

A user defined constant, the original paper suggests n = 10000.

Given an input sequence X, ..., X7 we add the position
embedding to each Xi obtaining a new input sequence
x1, x where

X;(= Xk + Pk

39

Positional Encoding

Index i .
Sequence of token, Matrix with d=4, n=100
¢ i=0 i=0 i=1 =1
Poo=sin(0) Po1=cos(0) Po2=sin(0) Pos=cos(0)
I — 0 = _9 =1 =0 =1
Pio=sin(1/1) = P11=cos(1/1) Pi2=sin(1/10) Pis=cos(1/10)
am | —| 1 =0.84 = 0.54 = 0.10 = 1.0
. P2o=sin(2/1) | Pa2i=cos(2/1) P22=sin(2/10) Pas=cos(2/10)
a 2 = 0.91 = -0.42 = 0.20 = 0.98
P30=sin(3/1) | Pai=cos(3/1) P32=sin(3/10) Pas=cos(3/10)
—_
Robot |—| 3 - 014 | =-009 =030 =096

40

Positional encoding/embedding

The positional encoding matrix for n=10,000, d=512, sequence length=100

» Vertically: Sinusoidal functions
» Horizontally: Decreasing frequency
For any offset 0 € {1, ..., T} there is a linear transformation M

such that for any k € {1,..., T — o} we have MPy = Py_,.
Intuitively, just rotate each component of the Py appropriately.

M

e
]

=

12x

Text & Position Embed

42

Layer normalization

Given a vector X € RY, the layer normalization computes:

Here
> u=1Y%, xando? = LT, (x - p)?
> y,B € R? are vectors of trainable parameters

43

Layer normalization

Given a vector X € RY, the layer normalization computes:

Here
> u=1Y%, xando? = LT, (x - p)?
> y,B € R? are vectors of trainable parameters

In Transformer:
The input to the layer normalization is a sequence of vectors:

X1,...,Xr. The layer normalization is applied to each X,
producing a sequence of "normalized" vectors.

43

GPT - learning

A sequence of tokens ay,...,ar € ¥ and their
one-hot encodings Uy, ..., Ut € {0, 1}/*

We assume that a; is a special token marking the start of
the sequence.

Embed to vectors and add the position
encoding (W, is an embedding matrix):

)_()k = Weﬂk + Py € Rsetd

44

GPT - learning

A sequence of tokens ay,...,ar € ¥ and their
one-hot encodings Uy, ..., Ut € {0, 1}/*

We assume that a; is a special token marking the start of
the sequence.

Embed to vectors and add the position
encoding (W, is an embedding matrix):

Xk = Weﬂk + Py € Rsetd

Apply the network (W|th the transformer block repeated 12x) to
X1, . XT and obtain)/1, . ,yT
(Here assume that each y € [0, 1]* is a probability distribution on ¥)

44

GPT - learning

A sequence of tokens ay,...,ar € ¥ and their
one-hot encodings Uy, ..., Ut € {0, 1}/*

We assume that a; is a special token marking the start of
the sequence.

Embed to vectors and add the position
encoding (W, is an embedding matrix):

Xk = Weﬂk + Py € Rsetd

Apply the network (W|th the transformer block repeated 12x) to
X1, . XT and obtain)/1, . ,yT
(Here assume that each y € [0, 1]* is a probability distribution on ¥)

Compute the error:

T-1
=Y log (Velar1])
=

Here y;[ak.1] is the probability of ax_ ¢ in the distribution . a

GPT - inference

Text Task
Prediction | Classifier

~ 7

12x —

Layer Norm

Feed Forward
Layer Norm
()
Ay
Masked Multi
Self Attention

Text & Position Embed

A sequence of tokens
ai,...,ap € ¥ and their one-hot
encodings U, ..., Ue € {0, 1)/

Embed to vectors and add
the position encoding:

)_()k = We-l_jk + Py € Rsetd

Apply the network to X1, ..., X, and
obtain y1, ce ,)_/)g

(Assume that each y € [0,1]% is

a probability distribution on ¥)

Sample the next token from
a1 ~ Yi

45

Feed-forward networks summary

Architectures:
» Multi-layer perceptron (MLP):
> dense connections between layers
» Convolutional networks (CNN):
> |ocal receptors, feature maps
> pooling
» Recurrent networks (RNN):
> self-loops but still feed-forward through time
> Transformer
> Attention, query-key-value
Training:
» gradient descent algorithm + heuristics

46

Autoencoders

An autoencoder consists of two parts:
> ¢ :R" — R" the encoder
> ¢ : R™ — RR" the decoder
The goal is to find ¢, ¢ so that ¢ o ¢ is (almost) identity.

The value h = ¢(X) is called the latent representation of X.

47

where X; e R" forall i {1,...,n).
Minimize the reconstruction error
P

E=) (Xi—¢(g(X)))?

i=1

Autoencoders — neural networks

Both ¢ and i can be represented using MLP M, and My,
respectively.

M, and My, can be connected into a single network.

49

Autoencoders — Usage

. =4
» Compression — from X to h.

» Dimensionality reduction — the latent representation h has
a smaller dimension.

» Pretraining (next slides)

» Generative versions — (roughly) generate h from a known
distribution, let M, generate realistic inputs X

50

Architecture: MLP 64 — 16 — 64

Activity: activation function: hyperbolic tangens with limits —1
and 1

51

Autoencoder — compression — historical
implementation

Architecture: MLP 64 — 16 — 64

Activity: activation function: hyperbolic tangens with limits —1
and 1
Data:

> Images 256 x 256, 8 bits per pixel.

> Samples: input and output is a frame 8 x 8, randomly
selected in the image.

> Inputs normalized to [-1, 1].

51

Autoencoder — compression — historical
implementation

Architecture: MLP 64 — 16 — 64

Activity: activation function: hyperbolic tangens with limits —1
and 1
Data:

> Images 256 x 256, 8 bits per pixel.

> Samples: input and output is a frame 8 x 8, randomly
selected in the image.

» Inputs normalized to [-1, 1].
The goal was to compress images to smaller data size.

51

Autoencoder — compression — historical
implementation

A frame 8 x 8 passes through the
image 256 x 256 (no overlap)

(A) original

(A)

(B) compression

(C) compression + rounding to 6
bits (1.5 bit per pixel)

(D) compression + rounding to 4
bits (1 bit per pixel)

(D)

52

Dimensionality reduction — compression

New image (trained on the previous
one):

(A) original

(A) (B) compression

(C) compression + rounding to 6
bits (1.5 bit per pixel)

(D) compression + rounding to 4
bits (1 bit per pixel)

(D)

53

Application — dimensionality reduction

» Dimensionality reduction: A mapping R from R"” to R™
where
> m<n,
» for every example X we have that X can be "reconstructed”
from R(X).

54

Application — dimensionality reduction

» Dimensionality reduction: A mapping R from R" to R™
where
> m<n,
> for every example X we have that X can be "reconstructed"
from R(X).
» Standard method: PCA (there are many linear as well as
non-linear variants)

e —
ok =l

54

Reconstruction — PCA

Original faces Recovered faces

1024 pixels compressed to 100 dimensions (i.e. 100 numbers).

55

PCA vs Autoencoders

Real data

30-d deep autoencoder
30-d logistic PCA

30-d PCA

56

Autoencoders — Pretraining

» An autoencoder is (pre)trained on input data X; without
desired outputs (unsupervised)
typically much larger datasets of unlabelled data

> the encoder M, computes a latent representation for
every input vector, it is supposed to extract important
features (controversial)

> A new part of the model Mj,p is added on top of M, (e.g.
a MLP taking the output of M as an input).

» Subsequently, labels are added and the whole model
(composed of My and Miqp) is trained on labelled data.

57

' é’ﬂqa Xy
Ky
=y
’,\L‘

UNSUPERVICED

58

Generative adversarial networks

Generative adversarial Nets, Goodfellow et al, NIPS 2014

An unsupervised generative model.

Two networks:

» Generator: A network computing a function G : R — R”
which takes a random input Z with a distribution p;
(e.g., multivariate normal distribution) and returns G(2)
which should follow the target probability distribution.
E.g., G(Z) could be realistically looking faces.

» Discriminator: A network computing a function
D : R" — [0, 1] that given X € IR" gives a probability D(x)
that X is not "generated" by G.
E.g., X can be an image, D(X) is a probability that it is a true face of an
existing person.

What error function will "motivate" G to generate realistically
and D to discriminate appropriately?

59

Generative adversarial networks — error function

Let 7 = {X1,..., Xp} be a training multiset (or a minibatch).

Intuition: G should produce outputs similar to elements of 7.
D should recognize that its input is not from 7.

60

Generative adversarial networks — error function

Let 7 = {X1,..., Xp} be a training multiset (or a minibatch).

Intuition: G should produce outputs similar to elements of 7.
D should recognize that its input is not from 7.

Generate a multiset of noise samples: F = {Z;, ..., Zp} from
the distribution p;.

P
Y (InD(%) + In(1 = D(G(Z)))

i=1

1
Er #(G,D) = ——

P
This is just the binary cross entropy error of D which classifies the input as
either real, or fake.

The problem can be seen as a game: The discriminator wants
to minimize E, the generator wants to maximize E!

60

The learning algorithm
Denote by Ws and Wy the weights of G and D, respectively.

In every iteration of the training, modify weights of the discriminator
and the generator as follows:

61

The learning algorithm
Denote by Ws and Wy the weights of G and D, respectively.

In every iteration of the training, modify weights of the discriminator
and the generator as follows:

For k steps (here k is a hyperparameter) update the discriminator as
follows:

» Sample a minibatch T = {X;, ..., Xn} from the training set 7.
» Sample a minibatch F = {Z,, ..., Z,} from the distribution p,.
» Update Wp using the gradient descentw.r.t. E:

WD = WD - Q- VWDET,F(G/ D)

61

The learning algorithm
Denote by Ws and Wy the weights of G and D, respectively.

In every iteration of the training, modify weights of the discriminator
and the generator as follows:

For k steps (here k is a hyperparameter) update the discriminator as
follows:

» Sample a minibatch T = {X;, ..., Xn} from the training set 7.
» Sample a minibatch F = {Z,, ..., Z,} from the distribution p,.
» Update Wp using the gradient descentw.r.t. E:
Wp := Wp — a - Vi, Er£(G, D)
Now update the generator:
» Sample a minibatch F = {Z,, ..., Z,} from the distribution p,.
» Update the generator by gradient ascent:

p
We = Wa —a- Vi, 15 ; In(1 = D(G(2)))

(The updates may also use momentum, adaptive learning rate etc.)

61

GAN MNIST

... from the original paper.

63

GAN refined

... after some refinements.

... none of these people ever lived.

64

