
Recurrent Neural Networks - LSTM

1

RNN

▶ Input:
x⃗ = (x1, . . . , xM)

▶ Hidden:
h⃗ = (h1, . . . , hH)

▶ Output:
y⃗ = (y1, . . . , yN)

2

RNN example

Activation function:

σ(ξ) =

1 ξ ≥ 0
0 ξ < 0

y 1 0 1
h (0,0) (1,1) (1,0) (0,1) · · ·
x (0,0) (1,0) (1,1)

3

RNN example

Activation function:

σ(ξ) =

1 ξ ≥ 0
0 ξ < 0

y y⃗1 = 1 y⃗2 = 0 y⃗3 = 1
h h⃗0 = (0,0) h⃗1 = (1,1) h⃗2 = (1,0) h⃗3 = (0,1) · · ·
x x⃗1 = (0,0) x⃗2 = (1,0) x⃗3 = (1,1)

3

RNN example

y y⃗1 = 1 y⃗2 = 0 y⃗3 = 1
h h⃗0 = (0,0) h⃗1 = (1,1) h⃗2 = (1,0) h⃗3 = (0,1) · · ·
x x⃗1 = (0,0) x⃗2 = (1,0) x⃗3 = (1,1)

3

RNN – formally

▶ M inputs: x⃗ = (x1, . . . , xM)

▶ H hidden neurons: h⃗ = (h1, . . . , hH)

▶ N output neurons: y⃗ = (y1, . . . , yN)

▶ Weights:
▶ Ukk ′ from input xk ′ to hidden hk
▶ Wkk ′ from hidden hk ′ to hidden hk
▶ Vkk ′ from hidden hk ′ to output yk

4

RNN – formally

▶ Input sequence: x = x⃗1, . . . , x⃗T

x⃗t = (xt1, . . . , xtM)

▶ Hidden sequence: h = h⃗0, h⃗1, . . . , h⃗T

h⃗t = (ht1, . . . , htH)

We have h⃗0 = (0, . . . , 0) and

h⃗tk = σ

 M∑
k ′=1

Ukk ′xtk ′ +

H∑
k ′=1

Wkk ′h(t−1)k ′

▶ Output sequence: y = y⃗1, . . . , y⃗T

y⃗t = (yt1, . . . , ytN)

where ytk = σ
(∑H

k ′=1 Vkk ′htk ′
)
.

5

RNN – formally

▶ Input sequence: x = x⃗1, . . . , x⃗T

x⃗t = (xt1, . . . , xtM)

▶ Hidden sequence: h = h⃗0, h⃗1, . . . , h⃗T

h⃗t = (ht1, . . . , htH)

We have h⃗0 = (0, . . . , 0) and

h⃗tk = σ

 M∑
k ′=1

Ukk ′xtk ′ +

H∑
k ′=1

Wkk ′h(t−1)k ′

▶ Output sequence: y = y⃗1, . . . , y⃗T

y⃗t = (yt1, . . . , ytN)

where ytk = σ
(∑H

k ′=1 Vkk ′htk ′
)
.

5

RNN – formally

▶ Input sequence: x = x⃗1, . . . , x⃗T

x⃗t = (xt1, . . . , xtM)

▶ Hidden sequence: h = h⃗0, h⃗1, . . . , h⃗T

h⃗t = (ht1, . . . , htH)

We have h⃗0 = (0, . . . , 0) and

h⃗tk = σ

 M∑
k ′=1

Ukk ′xtk ′ +

H∑
k ′=1

Wkk ′h(t−1)k ′

▶ Output sequence: y = y⃗1, . . . , y⃗T

y⃗t = (yt1, . . . , ytN)

where ytk = σ
(∑H

k ′=1 Vkk ′htk ′
)
.

5

RNN – in matrix form

▶ Input sequence: x = x⃗1, . . . , x⃗T

▶ Hidden sequence: h = h⃗0, h⃗1, . . . , h⃗T where

h⃗0 = (0, . . . , 0)

and

h⃗t = σ(Ux⃗t + Wh⃗t−1)

▶ Output sequence: y = y⃗1, . . . , y⃗T where

yt = σ(Vht)

6

RNN – in matrix form

▶ Input sequence: x = x⃗1, . . . , x⃗T

▶ Hidden sequence: h = h⃗0, h⃗1, . . . , h⃗T where

h⃗0 = (0, . . . , 0)

and

h⃗t = σ(Ux⃗t + Wh⃗t−1)

▶ Output sequence: y = y⃗1, . . . , y⃗T where

yt = σ(Vht)

6

RNN – in matrix form

▶ Input sequence: x = x⃗1, . . . , x⃗T

▶ Hidden sequence: h = h⃗0, h⃗1, . . . , h⃗T where

h⃗0 = (0, . . . , 0)

and

h⃗t = σ(Ux⃗t + Wh⃗t−1)

▶ Output sequence: y = y⃗1, . . . , y⃗T where

yt = σ(Vht)

6

RNN – Comments

▶ h⃗t is the memory of the network, captures what happened
in all previous steps (with decaying quality).

▶ RNN shares weights U,V ,W along the sequence.
Note the similarity to convolutional networks where the weights were
shared spatially over images, here they are shared temporally over
sequences.

▶ RNN can deal with sequences of variable length.
Compare with MLP which accepts only fixed-dimension vectors on
input.

7

RNN – training

Training set

T =
{
(x1,d1), . . . , (xp ,dp)

}
here
▶ each xℓ = x⃗ℓ1, . . . , x⃗ℓTℓ is an input sequence,

▶ each dℓ = d⃗ℓ1, . . . , d⃗ℓTℓ is an expected output sequence.
Here each x⃗ℓt = (xℓt1, . . . , xℓtM) is an input vector and each
d⃗ℓt = (dℓt1, . . . , dℓtN) is an expected output vector.

8

Error function

In what follows I will consider a training set with a single
element (x,d). I.e. drop the index ℓ and have
▶ x = x⃗1, . . . , x⃗T where x⃗t = (xt1, . . . , xtM)

▶ d = d⃗1, . . . , d⃗T where d⃗t = (dt1, . . . , dtN)

The squared error of (x,d) is defined by

E(x,d) =

T∑
t=1

N∑
k=1

1
2
(ytk − dtk)

2

Recall that we have a sequence of network outputs
y = y⃗1, . . . , y⃗T and thus ytk is the k-th component of y⃗t

9

Gradient descent (single training example)

Consider a single training example (x,d).

The algorithm computes a sequence of weight matrices as
follows:

▶ Initialize all weights randomly close to 0.
▶ In the step ℓ + 1 (here ℓ = 0,1,2, . . .) compute "new"

weights U(ℓ+1),V (ℓ+1),W (ℓ+1) from the "old" weights
U(ℓ),V (ℓ),W (ℓ) as follows:

U(ℓ+1)
kk ′ = U(ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δUkk ′

V (ℓ+1)
kk ′ = V (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δVkk ′

W (ℓ+1)
kk ′ = W (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δWkk ′

The above is THE learning algorithm that modifies weights!

10

Gradient descent (single training example)

Consider a single training example (x,d).

The algorithm computes a sequence of weight matrices as
follows:
▶ Initialize all weights randomly close to 0.

▶ In the step ℓ + 1 (here ℓ = 0,1,2, . . .) compute "new"
weights U(ℓ+1),V (ℓ+1),W (ℓ+1) from the "old" weights
U(ℓ),V (ℓ),W (ℓ) as follows:

U(ℓ+1)
kk ′ = U(ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δUkk ′

V (ℓ+1)
kk ′ = V (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δVkk ′

W (ℓ+1)
kk ′ = W (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δWkk ′

The above is THE learning algorithm that modifies weights!

10

Gradient descent (single training example)

Consider a single training example (x,d).

The algorithm computes a sequence of weight matrices as
follows:
▶ Initialize all weights randomly close to 0.
▶ In the step ℓ + 1 (here ℓ = 0,1,2, . . .) compute "new"

weights U(ℓ+1),V (ℓ+1),W (ℓ+1) from the "old" weights
U(ℓ),V (ℓ),W (ℓ) as follows:

U(ℓ+1)
kk ′ = U(ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δUkk ′

V (ℓ+1)
kk ′ = V (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δVkk ′

W (ℓ+1)
kk ′ = W (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δWkk ′

The above is THE learning algorithm that modifies weights!

10

Gradient descent (single training example)

Consider a single training example (x,d).

The algorithm computes a sequence of weight matrices as
follows:
▶ Initialize all weights randomly close to 0.
▶ In the step ℓ + 1 (here ℓ = 0,1,2, . . .) compute "new"

weights U(ℓ+1),V (ℓ+1),W (ℓ+1) from the "old" weights
U(ℓ),V (ℓ),W (ℓ) as follows:

U(ℓ+1)
kk ′ = U(ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δUkk ′

V (ℓ+1)
kk ′ = V (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δVkk ′

W (ℓ+1)
kk ′ = W (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δWkk ′

The above is THE learning algorithm that modifies weights!
10

Backpropagation

Computes the derivatives of E, no weights are modified!

δE(x,d)

δUkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · xtk ′ k ′ = 1, . . . ,M

δE(x,d)

δVkk ′
=

T∑
t=1

δE(x,d)

δytk
· σ′ · htk ′ k ′ = 1, . . . ,H

δE(x,d)

δWkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · h(t−1)k ′ k ′ = 1, . . . ,H

Backpropagation:
δE(x,d)

δytk
= ytk − dtk (assuming squared error)

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k

11

Backpropagation

Computes the derivatives of E, no weights are modified!

δE(x,d)

δUkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · xtk ′ k ′ = 1, . . . ,M

δE(x,d)

δVkk ′
=

T∑
t=1

δE(x,d)

δytk
· σ′ · htk ′ k ′ = 1, . . . ,H

δE(x,d)

δWkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · h(t−1)k ′ k ′ = 1, . . . ,H

Backpropagation:
δE(x,d)

δytk
= ytk − dtk (assuming squared error)

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k

11

Backpropagation

Computes the derivatives of E, no weights are modified!

δE(x,d)

δUkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · xtk ′ k ′ = 1, . . . ,M

δE(x,d)

δVkk ′
=

T∑
t=1

δE(x,d)

δytk
· σ′ · htk ′ k ′ = 1, . . . ,H

δE(x,d)

δWkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · h(t−1)k ′ k ′ = 1, . . . ,H

Backpropagation:
δE(x,d)

δytk
= ytk − dtk (assuming squared error)

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k

11

Long-term dependencies

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k

▶ Unless
∑H

k ′=1 σ
′ ·Wk ′k ≈ 1, the gradient either vanishes, or

explodes.
▶ For a large T (long-term dependency), the gradient

"deeper" in the past tends to be too small (large).
▶ A solution: LSTM

LSTM is currently a bit obsolete. The main idea is to decompose W into
several matrices, each responsible for a different task. One is
concerned about memory, one is concerned about the output at each
step, etc.

https://arxiv.org/pdf/2205.13504.pdf

12

LSTM

h⃗t = o⃗t ◦ σh(C⃗t) output

C⃗t = f⃗t ◦ C⃗t−1 + i⃗t ◦ C̃t memory

C̃t = σh(WC · h⃗t−1 + UC · x⃗t) new memory contents

o⃗t = σg(Wo · h⃗t−1 + Uo · x⃗t) output gate

f⃗t = σg(Wf · h⃗t−1 + Uf · x⃗t) forget gate

i⃗t = σg(Wi · h⃗t−1 + Ui · x⃗t) input gate

▶ ◦ is the component-wise product of vectors
▶ · is the matrix-vector product
▶ σh hyperbolic tangents (applied component-wise)
▶ σg logistic sigmoid (aplied component-wise)

13

RNN vs LSTM

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

14

LSTM

⇒ h⃗t = o⃗t ◦ σh(C⃗t)

⇒ C⃗t = f⃗t ◦ C⃗t−1 + i⃗t ◦ C̃t

⇒ C̃t = σh(WC · h⃗t−1 + UC · x⃗t)

⇒ o⃗t = σg(Wo · h⃗t−1 + Uo · x⃗t)

⇒ f⃗t = σg(Wf · h⃗t−1 + Uf · x⃗t)

⇒ i⃗t = σg(Wi · h⃗t−1 + Ui · x⃗t)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

15

LSTM

⇒ h⃗t = o⃗t ◦ σh(C⃗t)

⇒ C⃗t = f⃗t ◦ C⃗t−1 + i⃗t ◦ C̃t

⇒ C̃t = σh(WC · h⃗t−1 + UC · x⃗t)

⇒ o⃗t = σg(Wo · h⃗t−1 + Uo · x⃗t)

⇒ f⃗t = σg(Wf · h⃗t−1 + Uf · x⃗t)

⇒ i⃗t = σg(Wi · h⃗t−1 + Ui · x⃗t)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

15

LSTM

⇒ h⃗t = o⃗t ◦ σh(C⃗t)

⇒ C⃗t = f⃗t ◦ C⃗t−1 + i⃗t ◦ C̃t

⇒ C̃t = σh(WC · h⃗t−1 + UC · x⃗t)

⇒ o⃗t = σg(Wo · h⃗t−1 + Uo · x⃗t)

⇒ f⃗t = σg(Wf · h⃗t−1 + Uf · x⃗t)

⇒ i⃗t = σg(Wi · h⃗t−1 + Ui · x⃗t)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

15

LSTM

⇒ h⃗t = o⃗t ◦ σh(C⃗t)

⇒ C⃗t = f⃗t ◦ C⃗t−1 + i⃗t ◦ C̃t

⇒ C̃t = σh(WC · h⃗t−1 + UC · x⃗t)

⇒ o⃗t = σg(Wo · h⃗t−1 + Uo · x⃗t)

⇒ f⃗t = σg(Wf · h⃗t−1 + Uf · x⃗t)

⇒ i⃗t = σg(Wi · h⃗t−1 + Ui · x⃗t)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

15

LSTM

⇒ h⃗t = o⃗t ◦ σh(C⃗t)

⇒ C⃗t = f⃗t ◦ C⃗t−1 + i⃗t ◦ C̃t

⇒ C̃t = σh(WC · h⃗t−1 + UC · x⃗t)

⇒ o⃗t = σg(Wo · h⃗t−1 + Uo · x⃗t)

⇒ f⃗t = σg(Wf · h⃗t−1 + Uf · x⃗t)

⇒ i⃗t = σg(Wi · h⃗t−1 + Ui · x⃗t)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

15

LSTM – summary

▶ LSTM (almost) solves the vanishing gradient problem w.r.t.
the "internal" state of the network.

▶ Learns to control its own memory (via forget gate).
▶ Revolution in machine translation and text processing.

... but the development goes on ...

16

RNN text generator

Generating texts letter by letter.

17

Shakespeare

▶ Generating Shakespeare letter by letter.

▶ Trained on Shakespeare’s plays (4.4MB).

VIOLA: Why, Salisbury must find his flesh and thought That which I
am not aps, not a man and in fire, To show the reining of the raven
and the wars To grace my hand reproach within, and not a fair are
hand, That Caesar and my goodly father’s world; When I was heaven
of presence and our fleets, We spare with hours, but cut thy council I
am great, Murdered and by thy master’s ready there My power to give
thee but so much as hell: Some service in the noble bondman here,
Would show him to her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods With his heads, and
my hands are wonder’d at the deeds, So drop upon your lordship’s
head, and your opinion Shall be against your honour.

18

Wikipedia
▶ Hutter Prize 100MB dataset from Wikipedia (96MB)

Naturalism and decision for the majority of Arab countries’ capitalide was
grounded by the Irish language by [[John Clair]], [[An Imperial Japanese
Revolt]], associated with Guangzham’s sovereignty. His generals were the
powerful ruler of the Portugal in the [[Protestant Immineners]], which could be
said to be directly in Cantonese Communication, which followed a ceremony
and set inspired prison, training. The emperor travelled back to [[Antioch,
Perth, October 25|21]] to note, the Kingdom of Costa Rica, unsuccessful
fashioned the [[Thrales]], [[Cynth’s Dajoard]], known in western [[Scotland]],
near Italy to the conquest of India with the conflict. Copyright was the
succession of independence in the slop of Syrian influence that was a famous
German movement based on a more popular servicious, non-doctrinal and
sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]] (PJS)[http:
//www.humah.yahoo.com/guardian.cfm/7754800786d17551963s89.htm

Official economics Adjoint for the Nazism, Montgomery was swear to
advance to the resources for those Socialism’s rule, was starting to signing a
major tripad of aid exile.]]

19

http://www.humah.yahoo.com/guardian. cfm/7754800786d17551963s89.htm
http://www.humah.yahoo.com/guardian. cfm/7754800786d17551963s89.htm

Xml halucination:

<page>
<title>Antichrist</title>
<id>865</id>
<revision>
<id>15900676</id>
<timestamp>2002-08-03T18:14:12Z</timestamp>
<contributor>
<username>Paris</username>
<id>23</id>

</contributor>
<minor />
<comment>Automated conversion</comment>
<text xml:space="preserve">
#REDIRECT [[Christianity]]</text>

</revision>
</page>

20

LaTeX

▶ Algebraic geometry textbook.
▶ LaTeX source (16MB).
▶ Almost compilable.

21

22

Linux source code

▶ Trained on all source files of Linux kernel concatenated
into a single file (474MB of C code).

23

24

25

Evolution of Shakespeare

100 iter.:

300 iter.:

500 iter.:

700 iter.:

1200 iter.:

2000 iter.:

26

Attention

Consider the following task: Given a sequence of vectors

x = x⃗1, . . . , x⃗T

generate a new sequence

y = y⃗1, . . . , y⃗T ′

of possibly different length (i.e., possibly T , T ′).

E.g., a machine translation task, x is an embedding of an
English sentence, y is a sequence of probability distributions on
a German vocabulary.

27

Attention

Consider two recurrent networks:
▶ Enc the encoder

▶ Hidden state h⃗0 initialized by standard methods for
recurrent networks

▶ Reads x⃗1, . . . , x⃗T , does not output anything but produces
a sequence of hidden states h⃗1, . . . , h⃗T

▶ Dec the decoder
▶ The initial hidden state is h⃗T
▶ Does not read anything but outputs the sequence y⃗1, . . . , y⃗T ′

This is a simplification. Typically, Dec reads y⃗0, y⃗1, . . . , y⃗T ′−1 where
y⃗0 is a special vector embedding a separator.

Trained on pairs of sentences, able to learn a fine translation between major
languages (if the recurrent networks are LSTM).

Is not perfect because all info about x = x⃗1, . . . , x⃗T is squeezed
into the single state vector h⃗T .
In particular, the network tends to forget the context of each word.

28

Attention

Consider two recurrent networks:
▶ Enc the encoder

▶ Hidden state h⃗0 initialized by standard methods for
recurrent networks

▶ Reads x⃗1, . . . , x⃗T , does not output anything but produces
a sequence of hidden states h⃗1, . . . , h⃗T

▶ Dec the decoder
▶ The initial hidden state is h⃗T
▶ Does not read anything but outputs the sequence y⃗1, . . . , y⃗T ′

This is a simplification. Typically, Dec reads y⃗0, y⃗1, . . . , y⃗T ′−1 where
y⃗0 is a special vector embedding a separator.

Trained on pairs of sentences, able to learn a fine translation between major
languages (if the recurrent networks are LSTM).

Is not perfect because all info about x = x⃗1, . . . , x⃗T is squeezed
into the single state vector h⃗T .
In particular, the network tends to forget the context of each word.

28

Attention

Consider two recurrent networks:
▶ Enc the encoder

▶ Hidden state h⃗0 initialized by standard methods for
recurrent networks

▶ Reads x⃗1, . . . , x⃗T , does not output anything but produces
a sequence of hidden states h⃗1, . . . , h⃗T

▶ Dec the decoder
▶ The initial hidden state is h⃗T
▶ Does not read anything but outputs the sequence y⃗1, . . . , y⃗T ′

This is a simplification. Typically, Dec reads y⃗0, y⃗1, . . . , y⃗T ′−1 where
y⃗0 is a special vector embedding a separator.

Trained on pairs of sentences, able to learn a fine translation between major
languages (if the recurrent networks are LSTM).

Is not perfect because all info about x = x⃗1, . . . , x⃗T is squeezed
into the single state vector h⃗T .
In particular, the network tends to forget the context of each word.

28

Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encoder Enc producing the sequence of
hidden states: h⃗1, . . . , h⃗T

The decoder Dec is still a recurrent network but
▶ the hidden state h⃗′0 initialized by h⃗T and a sequence of

hidden states h⃗′0, . . . , h⃗
′
T ′ is computed,

▶ reads a sequence of context vectors c⃗1, . . . , c⃗T ′ where

c⃗i =

T∑
j=1

αij h⃗j where αij =
exp(eij)∑T

k=1 exp(eik)

where eij = MLP(h⃗′i−1, h⃗j)

▶ outputs the sequence y⃗1, . . . , y⃗T ′

29

Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encoder Enc producing the sequence of
hidden states: h⃗1, . . . , h⃗T

The decoder Dec is still a recurrent network but
▶ the hidden state h⃗′0 initialized by h⃗T and a sequence of

hidden states h⃗′0, . . . , h⃗
′
T ′ is computed,

▶ reads a sequence of context vectors c⃗1, . . . , c⃗T ′ where

c⃗i =

T∑
j=1

αij h⃗j where αij =
exp(eij)∑T

k=1 exp(eik)

where eij = MLP(h⃗′i−1, h⃗j)

▶ outputs the sequence y⃗1, . . . , y⃗T ′

29

Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encoder Enc producing the sequence of
hidden states: h⃗1, . . . , h⃗T

The decoder Dec is still a recurrent network but
▶ the hidden state h⃗′0 initialized by h⃗T and a sequence of

hidden states h⃗′0, . . . , h⃗
′
T ′ is computed,

▶ reads a sequence of context vectors c⃗1, . . . , c⃗T ′ where

c⃗i =

T∑
j=1

αij h⃗j where αij =
exp(eij)∑T

k=1 exp(eik)

where eij = MLP(h⃗′i−1, h⃗j)

▶ outputs the sequence y⃗1, . . . , y⃗T ′

29

Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encoder Enc producing the sequence of
hidden states: h⃗1, . . . , h⃗T

The decoder Dec is still a recurrent network but
▶ the hidden state h⃗′0 initialized by h⃗T and a sequence of

hidden states h⃗′0, . . . , h⃗
′
T ′ is computed,

▶ reads a sequence of context vectors c⃗1, . . . , c⃗T ′ where

c⃗i =

T∑
j=1

αij h⃗j where αij =
exp(eij)∑T

k=1 exp(eik)

where eij = MLP(h⃗′i−1, h⃗j)

▶ outputs the sequence y⃗1, . . . , y⃗T ′

29

Do We Still Need the Recurrence?

▶ The attention mechanism extracts the information from
the sequence quite well.

▶ Is there a reason for reading the input sequence
sequentially?

▶ Could we remove the recurrent network itself and preserve
only the attention?

30

Do We Still Need the Recurrence?

▶ The attention mechanism extracts the information from
the sequence quite well.

▶ Is there a reason for reading the input sequence
sequentially?

▶ Could we remove the recurrent network itself and preserve
only the attention?

30

Do We Still Need the Recurrence?

▶ The attention mechanism extracts the information from
the sequence quite well.

▶ Is there a reason for reading the input sequence
sequentially?

▶ Could we remove the recurrent network itself and preserve
only the attention?

30

Self-Attention Layer (is all you need)

Fix an input sequence: x⃗1, . . . , x⃗T

Consider three learnable matrices: Wq,Wk ,Wv

Generate sequences of queries, keys, and values:
▶ q⃗1, . . . , q⃗T where q⃗k = Wqx⃗k for all k = 1, . . . ,T

▶ k⃗1, . . . , k⃗T where k⃗k = Wk x⃗k for all k = 1, . . . ,T
▶ v⃗1, . . . , v⃗T where v⃗k = Wv x⃗k for all k = 1, . . . ,T

31

Self-Attention Layer (is all you need)

Fix an input sequence: x⃗1, . . . , x⃗T

Consider three learnable matrices: Wq,Wk ,Wv

Generate sequences of queries, keys, and values:
▶ q⃗1, . . . , q⃗T where q⃗k = Wqx⃗k for all k = 1, . . . ,T
▶ k⃗1, . . . , k⃗T where k⃗k = Wk x⃗k for all k = 1, . . . ,T
▶ v⃗1, . . . , v⃗T where v⃗k = Wv x⃗k for all k = 1, . . . ,T

Define a vector score for all i, j ∈ {1, . . . ,T } by

eij = q⃗i · k⃗j

Intuitively, sij measures how much the input at the position i is related to the
input at the position j, in other words, how much the query fits the key.

Define

αij =
exp(eij /

√
dattn)∑T

k=1 exp(eik /
√

dattn)
dattn is the dimension of v⃗i

I.e., we apply the good old softmax to (ei1, . . . , eiT) /
√

dattn 31

Self-Attention Layer (is all you need)

Define a vector score for all i, j ∈ {1, . . . ,T } by

eij = q⃗i · k⃗j

Intuitively, sij measures how much the input at the position i is related to the
input at the position j, in other words, how much the query fits the key.

Define

αij =
exp(eij /

√
dattn)∑T

k=1 exp(eik /
√

dattn)
dattn is the dimension of v⃗i

I.e., we apply the good old softmax to (ei1, . . . , eiT) /
√

dattn

Define a sequence of outputs y⃗1, . . . , y⃗T by

y⃗i =

T∑
j=1

αij · v⃗j

31

Language Model

A sequence of tokens a1, . . . , aT ∈ Σ∗
E.g. words from a vocabulary Σ.

The goal: Maximize

T∏
k=1

P(ak | a1, . . . , ak−1;W) (= P(a1, . . . , aT ;W))

where
▶ P is the conditional probability measure over Σ modeled

using a neural network with weights W.

Can be used to generate text:

Given a1, . . . , ak , sample ak+1 from P(ak+1 | a1, . . . , ak ;W)

32

Language Model

A sequence of tokens a1, . . . , aT ∈ Σ∗
E.g. words from a vocabulary Σ.

The goal: Maximize

T∏
k=1

P(ak | a1, . . . , ak−1;W) (= P(a1, . . . , aT ;W))

where
▶ P is the conditional probability measure over Σ modeled

using a neural network with weights W.

Can be used to generate text:

Given a1, . . . , ak , sample ak+1 from P(ak+1 | a1, . . . , ak ;W)

32

GPT

33

GPT

34

Masked Self-Attention Layer (is all you need)

Assume an attention mechanism which given an input
sequence x⃗1, . . . , x⃗T generates y⃗1, . . . , y⃗T .

The Problem: How to generate y⃗k only based on x⃗1, . . . , x⃗k−1 ?

Define a vector score for all i, j ∈ {1, . . . ,T } by

eij =

q⃗i · k⃗j if j < i
−∞ otherwise.

This means that

αij =

exp(eij /

√
dattn)∑T

k=1 exp(eik /
√

dattn)
if j < i

0 otherwise.

Define a sequence of outputs y⃗1, . . . , y⃗T by

y⃗i =

T∑
j=1

αij · v⃗j

35

Masked Self-Attention Layer (is all you need)

Assume an attention mechanism which given an input
sequence x⃗1, . . . , x⃗T generates y⃗1, . . . , y⃗T .

The Problem: How to generate y⃗k only based on x⃗1, . . . , x⃗k−1 ?

Define a vector score for all i, j ∈ {1, . . . ,T } by

eij =

q⃗i · k⃗j if j < i
−∞ otherwise.

This means that

αij =

exp(eij /

√
dattn)∑T

k=1 exp(eik /
√

dattn)
if j < i

0 otherwise.

Define a sequence of outputs y⃗1, . . . , y⃗T by

y⃗i =

T∑
j=1

αij · v⃗j

35

Masked Self-Attention Layer (is all you need)

Assume an attention mechanism which given an input
sequence x⃗1, . . . , x⃗T generates y⃗1, . . . , y⃗T .

The Problem: How to generate y⃗k only based on x⃗1, . . . , x⃗k−1 ?

Define a vector score for all i, j ∈ {1, . . . ,T } by

eij =

q⃗i · k⃗j if j < i
−∞ otherwise.

This means that

αij =

exp(eij /

√
dattn)∑T

k=1 exp(eik /
√

dattn)
if j < i

0 otherwise.

Define a sequence of outputs y⃗1, . . . , y⃗T by

y⃗i =

T∑
j=1

αij · v⃗j

35

Multi-head Self-Attention Layer (is all you need)

Assume the number of heads is H.

For h = 1, . . . ,H the h-th head is an attention mechanism which
given the input x⃗1, . . . , x⃗T produces

y⃗h
1 , . . . , y⃗

h
T

Note that the output may be different which means that, in particular, the
matrices Wq,Wk ,Wv may be different for each head.

Assume that all vectors y⃗h
k are of the same dimension dmid and

consider a learnable matrix Wout of dimensions dout × (H · dmid).

The multi-head attention produces the following output:

y⃗1, . . . , y⃗T

where

y⃗k = Wout ·
(
y⃗1

k ⊙ y⃗2
k ⊙ · · · y⃗H

k

)
Here ⊙ is a concatenation of vectors.

36

Multi-head Self-Attention Layer (is all you need)

Assume the number of heads is H.

For h = 1, . . . ,H the h-th head is an attention mechanism which
given the input x⃗1, . . . , x⃗T produces

y⃗h
1 , . . . , y⃗

h
T

Note that the output may be different which means that, in particular, the
matrices Wq,Wk ,Wv may be different for each head.

Assume that all vectors y⃗h
k are of the same dimension dmid and

consider a learnable matrix Wout of dimensions dout × (H · dmid).

The multi-head attention produces the following output:

y⃗1, . . . , y⃗T

where

y⃗k = Wout ·
(
y⃗1

k ⊙ y⃗2
k ⊙ · · · y⃗H

k

)
Here ⊙ is a concatenation of vectors.

36

Multi-head Self-Attention Summary

Input: A sequence x⃗1, . . . , x⃗T
Output: A sequence y⃗1, . . . , y⃗T
I.e., a sequence of the same length. The dimensions of y⃗k and x⃗k do not have
to be equal.

Attention:
Learnable parameters: Matrices Wq,Wk ,Wv .
These matrices are used to compute queries, keys, and values from
x⃗1, . . . , x⃗T . Output y⃗1, . . . , y⃗T is computed using values "scaled" by
the query-key attention.
Multi-head attention:
Learnable parameters:
▶ Matrices Wh

q ,W
h
k ,W

h
v where h = 1, . . . ,H and H is

the number of heads.
Each attention head operates independently on the input x⃗1, . . . , x⃗T .

▶ Matrix Wout .
Linearly transforms the concatenated results of the attention heads.

37

Multi-head Self-Attention Summary

Input: A sequence x⃗1, . . . , x⃗T
Output: A sequence y⃗1, . . . , y⃗T
I.e., a sequence of the same length. The dimensions of y⃗k and x⃗k do not have
to be equal.

Attention:
Learnable parameters: Matrices Wq,Wk ,Wv .
These matrices are used to compute queries, keys, and values from
x⃗1, . . . , x⃗T . Output y⃗1, . . . , y⃗T is computed using values "scaled" by
the query-key attention.

Multi-head attention:
Learnable parameters:
▶ Matrices Wh

q ,W
h
k ,W

h
v where h = 1, . . . ,H and H is

the number of heads.
Each attention head operates independently on the input x⃗1, . . . , x⃗T .

▶ Matrix Wout .
Linearly transforms the concatenated results of the attention heads.

37

Multi-head Self-Attention Summary

Input: A sequence x⃗1, . . . , x⃗T
Output: A sequence y⃗1, . . . , y⃗T
I.e., a sequence of the same length. The dimensions of y⃗k and x⃗k do not have
to be equal.

Attention:
Learnable parameters: Matrices Wq,Wk ,Wv .
These matrices are used to compute queries, keys, and values from
x⃗1, . . . , x⃗T . Output y⃗1, . . . , y⃗T is computed using values "scaled" by
the query-key attention.
Multi-head attention:
Learnable parameters:
▶ Matrices Wh

q ,W
h
k ,W

h
v where h = 1, . . . ,H and H is

the number of heads.
Each attention head operates independently on the input x⃗1, . . . , x⃗T .

▶ Matrix Wout .
Linearly transforms the concatenated results of the attention heads.

37

GPT - transformer

38

Positional encoding

The Goal: To encode a position (index) k ∈ {1, . . . ,T } into
a vector P⃗k of real numbers.

Assume that P⃗k should have a dimension d.
Given a position k ∈ {1, . . . ,T } and i ∈ {0, . . . , d/2} define

Pk ,2i = sin
(k
n2i/d

)
Pk ,(2i+1) = cos

(k
n2i/d

)
Here n = 10000.
A user defined constant, the original paper suggests n = 10000.

Given an input sequence x⃗1, . . . , x⃗T we add the position
embedding to each x⃗k obtaining a new input sequence
x⃗′1, . . . , x⃗

′
T where

x⃗′k = x⃗k + P⃗k

39

Positional encoding

The Goal: To encode a position (index) k ∈ {1, . . . ,T } into
a vector P⃗k of real numbers.

Assume that P⃗k should have a dimension d.
Given a position k ∈ {1, . . . ,T } and i ∈ {0, . . . , d/2} define

Pk ,2i = sin
(k
n2i/d

)
Pk ,(2i+1) = cos

(k
n2i/d

)
Here n = 10000.
A user defined constant, the original paper suggests n = 10000.

Given an input sequence x⃗1, . . . , x⃗T we add the position
embedding to each x⃗k obtaining a new input sequence
x⃗′1, . . . , x⃗

′
T where

x⃗′k = x⃗k + P⃗k

39

Positional encoding

The Goal: To encode a position (index) k ∈ {1, . . . ,T } into
a vector P⃗k of real numbers.

Assume that P⃗k should have a dimension d.
Given a position k ∈ {1, . . . ,T } and i ∈ {0, . . . , d/2} define

Pk ,2i = sin
(k
n2i/d

)
Pk ,(2i+1) = cos

(k
n2i/d

)
Here n = 10000.
A user defined constant, the original paper suggests n = 10000.

Given an input sequence x⃗1, . . . , x⃗T we add the position
embedding to each x⃗k obtaining a new input sequence
x⃗′1, . . . , x⃗

′
T where

x⃗′k = x⃗k + P⃗k

39

Positional encoding/embedding

40

Positional encoding/embedding

▶ Vertically: Sinusoidal functions
▶ Horizontally: Decreasing frequency

For any offset o ∈ {1, . . . ,T } there is a linear transformation M
such that for any k ∈ {1, . . . ,T − o} we have MP⃗k = P⃗k+o .
Intuitively, just rotate each component of the P⃗k appropriately.

41

GPT-2 - transformer

42

Layer normalization

Given a vector x⃗ ∈ Rd , the layer normalization computes:

x⃗′ = γ ·
(x⃗ − µ)
σ

+ β

Here
▶ µ = 1

d
∑d

i=1 xi and σ2 = 1
d
∑d

i=1(xi − µ)2

▶ γ, β ∈ Rd are vectors of trainable parameters

In Transformer:
The input to the layer normalization is a sequence of vectors:
x⃗1, . . . , x⃗T . The layer normalization is applied to each x⃗k ,
producing a sequence of "normalized" vectors.

43

Layer normalization

Given a vector x⃗ ∈ Rd , the layer normalization computes:

x⃗′ = γ ·
(x⃗ − µ)
σ

+ β

Here
▶ µ = 1

d
∑d

i=1 xi and σ2 = 1
d
∑d

i=1(xi − µ)2

▶ γ, β ∈ Rd are vectors of trainable parameters

In Transformer:
The input to the layer normalization is a sequence of vectors:
x⃗1, . . . , x⃗T . The layer normalization is applied to each x⃗k ,
producing a sequence of "normalized" vectors.

43

GPT - learning

A sequence of tokens a1, . . . , aT ∈ Σ and their
one-hot encodings u⃗1, . . . , u⃗T ∈ {0,1}|Σ|
We assume that a1 is a special token marking the start of
the sequence.

Embed to vectors and add the position
encoding (We is an embedding matrix):

x⃗k = We · u⃗k + Pk ∈ Rsetd

Apply the network (with the transformer block repeated 12x) to
x⃗1, . . . , x⃗T and obtain y⃗1, . . . , y⃗T
(Here assume that each y⃗k ∈ [0,1]Σ is a probability distribution on Σ)

Compute the error:

−
T−1∑
ℓ=1

log
(
y⃗ℓ[aℓ+1]

)
Here y⃗ℓ[ak+1] is the probability of ak+1 in the distribution y⃗k .

44

GPT - learning

A sequence of tokens a1, . . . , aT ∈ Σ and their
one-hot encodings u⃗1, . . . , u⃗T ∈ {0,1}|Σ|
We assume that a1 is a special token marking the start of
the sequence.

Embed to vectors and add the position
encoding (We is an embedding matrix):

x⃗k = We · u⃗k + Pk ∈ Rsetd

Apply the network (with the transformer block repeated 12x) to
x⃗1, . . . , x⃗T and obtain y⃗1, . . . , y⃗T
(Here assume that each y⃗k ∈ [0,1]Σ is a probability distribution on Σ)

Compute the error:

−
T−1∑
ℓ=1

log
(
y⃗ℓ[aℓ+1]

)
Here y⃗ℓ[ak+1] is the probability of ak+1 in the distribution y⃗k .

44

GPT - learning

A sequence of tokens a1, . . . , aT ∈ Σ and their
one-hot encodings u⃗1, . . . , u⃗T ∈ {0,1}|Σ|
We assume that a1 is a special token marking the start of
the sequence.

Embed to vectors and add the position
encoding (We is an embedding matrix):

x⃗k = We · u⃗k + Pk ∈ Rsetd

Apply the network (with the transformer block repeated 12x) to
x⃗1, . . . , x⃗T and obtain y⃗1, . . . , y⃗T
(Here assume that each y⃗k ∈ [0,1]Σ is a probability distribution on Σ)

Compute the error:

−
T−1∑
ℓ=1

log
(
y⃗ℓ[aℓ+1]

)
Here y⃗ℓ[ak+1] is the probability of ak+1 in the distribution y⃗k . 44

GPT - inference

A sequence of tokens
a1, . . . , aℓ ∈ Σ and their one-hot
encodings u⃗1, . . . , u⃗ℓ ∈ {0,1}|Σ|

Embed to vectors and add
the position encoding:

x⃗k = We · u⃗k + Pk ∈ Rsetd

Apply the network to x⃗1, . . . , x⃗ℓ and
obtain y⃗1, . . . , y⃗ℓ
(Assume that each y⃗k ∈ [0,1]Σ is
a probability distribution on Σ)

Sample the next token from

aℓ+1 ∼ y⃗ℓ

45

Feed-forward networks summary

Architectures:
▶ Multi-layer perceptron (MLP):

▶ dense connections between layers
▶ Convolutional networks (CNN):

▶ local receptors, feature maps
▶ pooling

▶ Recurrent networks (RNN):
▶ self-loops but still feed-forward through time

▶ Transformer
▶ Attention, query-key-value

Training:
▶ gradient descent algorithm + heuristics

46

Autoencoders

An autoencoder consists of two parts:
▶ ϕ : Rn → Rm the encoder
▶ ψ : Rm → Rn the decoder

The goal is to find ϕ, ψ so that ψ ◦ ϕ is (almost) identity.

The value h⃗ = ϕ(x⃗) is called the latent representation of x⃗.

47

Autoencoders – training

Assume

T = {x⃗1, . . . , x⃗p}

where x⃗i ∈ Rn for all i ∈ {1, . . . , n}.
Minimize the reconstruction error

E =

p∑
i=1

(x⃗i − ψ(ϕ(x⃗i)))
2

48

Autoencoders – neural networks

Both ϕ and ψ can be represented using MLPMϕ andMψ,
respectively.

Mϕ andMψ can be connected into a single network.

49

Autoencoders – Usage

▶ Compression – from x⃗ to h⃗.
▶ Dimensionality reduction – the latent representation h⃗ has

a smaller dimension.
▶ Pretraining (next slides)
▶ Generative versions – (roughly) generate h⃗ from a known

distribution, letMψ generate realistic inputs x⃗

50

Autoencoder – compression – historical
implementation

Architecture: MLP 64 − 16 − 64

Activity: activation function: hyperbolic tangens with limits −1
and 1

Data:
▶ Images 256 × 256, 8 bits per pixel.
▶ Samples: input and output is a frame 8 × 8, randomly

selected in the image.
▶ Inputs normalized to [−1,1].

The goal was to compress images to smaller data size.

51

Autoencoder – compression – historical
implementation

Architecture: MLP 64 − 16 − 64

Activity: activation function: hyperbolic tangens with limits −1
and 1

Data:
▶ Images 256 × 256, 8 bits per pixel.
▶ Samples: input and output is a frame 8 × 8, randomly

selected in the image.
▶ Inputs normalized to [−1,1].

The goal was to compress images to smaller data size.

51

Autoencoder – compression – historical
implementation

Architecture: MLP 64 − 16 − 64

Activity: activation function: hyperbolic tangens with limits −1
and 1

Data:
▶ Images 256 × 256, 8 bits per pixel.
▶ Samples: input and output is a frame 8 × 8, randomly

selected in the image.
▶ Inputs normalized to [−1,1].

The goal was to compress images to smaller data size.

51

Autoencoder – compression – historical
implementation

A frame 8 × 8 passes through the
image 256 × 256 (no overlap)

(A) original

(B) compression

(C) compression + rounding to 6
bits (1.5 bit per pixel)

(D) compression + rounding to 4
bits (1 bit per pixel)

52

Dimensionality reduction – compression

New image (trained on the previous
one):

(A) original

(B) compression

(C) compression + rounding to 6
bits (1.5 bit per pixel)

(D) compression + rounding to 4
bits (1 bit per pixel)

53

Application – dimensionality reduction

▶ Dimensionality reduction: A mapping R from Rn to Rm

where
▶ m < n,
▶ for every example x⃗ we have that x⃗ can be "reconstructed"

from R(x⃗).

▶ Standard method: PCA (there are many linear as well as
non-linear variants)

54

Application – dimensionality reduction

▶ Dimensionality reduction: A mapping R from Rn to Rm

where
▶ m < n,
▶ for every example x⃗ we have that x⃗ can be "reconstructed"

from R(x⃗).
▶ Standard method: PCA (there are many linear as well as

non-linear variants)

54

Reconstruction – PCA

1024 pixels compressed to 100 dimensions (i.e. 100 numbers).

55

PCA vs Autoencoders

56

Autoencoders – Pretraining

▶ An autoencoder is (pre)trained on input data x⃗i without
desired outputs (unsupervised)
typically much larger datasets of unlabelled data

▶ the encoderMϕ computes a latent representation for
every input vector, it is supposed to extract important
features (controversial)

▶ A new part of the modelMtop is added on top ofMϕ (e.g.
a MLP taking the output ofMϕ as an input).

▶ Subsequently, labels are added and the whole model
(composed ofMϕ andMtop) is trained on labelled data.

57

Autoencoders – Pretraining

58

Generative adversarial networks

Generative adversarial Nets, Goodfellow et al, NIPS 2014

An unsupervised generative model.

Two networks:
▶ Generator: A network computing a function G : Rk → Rn

which takes a random input z⃗ with a distribution pz⃗
(e.g., multivariate normal distribution) and returns G(z⃗)
which should follow the target probability distribution.
E.g., G(z⃗) could be realistically looking faces.

▶ Discriminator: A network computing a function
D : Rn → [0,1] that given x⃗ ∈ Rn gives a probability D(x)
that x⃗ is not "generated" by G.
E.g., x⃗ can be an image, D(x⃗) is a probability that it is a true face of an
existing person.

What error function will "motivate" G to generate realistically
and D to discriminate appropriately?

59

Generative adversarial networks – error function

Let T = {x⃗1, . . . , x⃗p} be a training multiset (or a minibatch).

Intuition: G should produce outputs similar to elements of T .
D should recognize that its input is not from T .

Generate a multiset of noise samples: F = {z⃗1, . . . , z⃗p} from
the distribution pz⃗ .

ET ,F (G,D) = −1
p

p∑
i=1

(
lnD(x⃗i) + ln(1 − D(G(z⃗i)))

)
This is just the binary cross entropy error of D which classifies the input as
either real, or fake.

The problem can be seen as a game: The discriminator wants
to minimize E, the generator wants to maximize E!

60

Generative adversarial networks – error function

Let T = {x⃗1, . . . , x⃗p} be a training multiset (or a minibatch).

Intuition: G should produce outputs similar to elements of T .
D should recognize that its input is not from T .

Generate a multiset of noise samples: F = {z⃗1, . . . , z⃗p} from
the distribution pz⃗ .

ET ,F (G,D) = −1
p

p∑
i=1

(
lnD(x⃗i) + ln(1 − D(G(z⃗i)))

)
This is just the binary cross entropy error of D which classifies the input as
either real, or fake.

The problem can be seen as a game: The discriminator wants
to minimize E, the generator wants to maximize E!

60

The learning algorithm
Denote by WG and WD the weights of G and D, respectively.

In every iteration of the training, modify weights of the discriminator
and the generator as follows:

For k steps (here k is a hyperparameter) update the discriminator as
follows:
▶ Sample a minibatch T = {x⃗1, . . . , x⃗m} from the training set T .
▶ Sample a minibatch F = {z⃗1, . . . , z⃗m} from the distribution pz .
▶ Update WD using the gradient descent w.r.t. E:

WD := WD − α · ∇WD ET ,F(G,D)

Now update the generator:
▶ Sample a minibatch F = {z⃗1, . . . , z⃗m} from the distribution pz .
▶ Update the generator by gradient ascent:

WG := WG − α · ∇WG

1p
p∑

i=1

ln(1 − D(G(z⃗i)))

(The updates may also use momentum, adaptive learning rate etc.)

61

The learning algorithm
Denote by WG and WD the weights of G and D, respectively.

In every iteration of the training, modify weights of the discriminator
and the generator as follows:

For k steps (here k is a hyperparameter) update the discriminator as
follows:
▶ Sample a minibatch T = {x⃗1, . . . , x⃗m} from the training set T .
▶ Sample a minibatch F = {z⃗1, . . . , z⃗m} from the distribution pz .
▶ Update WD using the gradient descent w.r.t. E:

WD := WD − α · ∇WD ET ,F(G,D)

Now update the generator:
▶ Sample a minibatch F = {z⃗1, . . . , z⃗m} from the distribution pz .
▶ Update the generator by gradient ascent:

WG := WG − α · ∇WG

1p
p∑

i=1

ln(1 − D(G(z⃗i)))

(The updates may also use momentum, adaptive learning rate etc.)

61

The learning algorithm
Denote by WG and WD the weights of G and D, respectively.

In every iteration of the training, modify weights of the discriminator
and the generator as follows:

For k steps (here k is a hyperparameter) update the discriminator as
follows:
▶ Sample a minibatch T = {x⃗1, . . . , x⃗m} from the training set T .
▶ Sample a minibatch F = {z⃗1, . . . , z⃗m} from the distribution pz .
▶ Update WD using the gradient descent w.r.t. E:

WD := WD − α · ∇WD ET ,F(G,D)

Now update the generator:
▶ Sample a minibatch F = {z⃗1, . . . , z⃗m} from the distribution pz .
▶ Update the generator by gradient ascent:

WG := WG − α · ∇WG

1p
p∑

i=1

ln(1 − D(G(z⃗i)))

(The updates may also use momentum, adaptive learning rate etc.) 61

GAN MNIST

62

GAN faces

... from the original paper.

63

GAN refined

... after some refinements.

... none of these people ever lived.

64

