
Convolutional networks – theory
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Convolutional network
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Convolutional layers

Every neuron is connected with a (typically small) receptive
field of neurons in the lower layer.

Neuron is "standard": Computes a weighted sum of its inputs,
applies an activation function.
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Convolutional layers

Neurons grouped into
feature maps sharing
weights.
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Convolutional layers

Each feature map represents a property of the input that is
supposed to be spatially invariant.

Typically, we consider several feature maps in a single layer.
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Pooling layers

Neurons in the pooling layer compute simple functions of their
receptive fields (the fields are typically disjoint):
I Max-pooling : maximum of inputs
I L2-pooling : square root of the sum of squres
I Average-pooling : mean
I · · ·
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Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
I input layer L0

I dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

I convolutional layer Lm: Neurons organized into disjoint
feature maps, all neurons of a given feature map share
weights (but have different inputs)

I pooling layer: "Neurons" organized into pooling maps, all
neurons
I compute a simple aggregate function (such as max),
I have disjoint inputs.

Pooling after convolution is applied to each feature map separately.
I.e. a single pooling map after each feature map.
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Convolutional networks – architecture
I Denote

I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

I [ji] is a set of all connections (i.e. pairs of neurons) sharing
the weight wji . 8



Convolutional networks – activity
I neurons of dense and convolutional layers:

I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable):

yj = σj(ξj)

I Neurons of pooling layers: Apply the "pooling" function:
I max-pooling:

yj = max
i∈j←

yi

I avg-pooling:

yj =

∑
i∈j← yi

|j←|
A convolutional network is evaluated layer-wise (as MLP), for each j ∈ Y we
have that yj(~w, ~x) is the value of the output neuron j after evaluating the
network with weights ~w and input ~x.
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Convolutional networks – learning

Learning:
I Given a training set T of the form{ (

~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}

Here, every ~xk ∈ R
|X | is an input vector end every ~dk ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input ~xk (the vector ~dk can be written as

(
dkj

)
j∈Y

).

I Error function – mean squared error (for example):

E(~w) =
1
p

p∑
k=1

Ek (~w)

where

Ek (~w) =
1
2

∑
j∈Y

(
yj(~w, ~xk ) − dkj

)2
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Convolutional networks – SGD

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2), . . ..
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:
I Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
I Compute

~w(t+1) = ~w(t) + ∆~w(t)

where

∆~w(t) = −ε(t) ·
1
|T |

∑
k∈T

∇Ek (~w(t))

Here T is a minibatch (of a fixed size),
I 0 < ε(t) ≤ 1 is a learning rate in step t + 1
I ∇Ek (~w(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented
by randomly shuffling all data and then choosing minibatches
sequentially. Epoch consists of one round through all data. 11



Backprop

Recall that ∇Ek (~w(t)) is a vector of all partial derivatives of
the form ∂Ek

∂wji
.

How to compute ∂Ek
∂wji

?

First, switch from derivatives w.r.t. wji to derivatives w.r.t. yj :
I Recall that for every wji where j is in a dense layer, i.e.

does not share weights:

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

I Now for every wji where j is in a convolutional layer:

∂Ek

∂wji
=

∑
r`∈[ji]

∂Ek

∂yr
· σ′r (ξr ) · y`

I Neurons of pooling layers do not have weights.
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Backprop
Now compute derivatives w.r.t. yj :
I for every j ∈ Y :

∂Ek

∂yj
= yj − dkj

This holds for the squared error, for other error functions the derivative
w.r.t. outputs will be different.

I for every j ∈ Z r Y such that j→ is either a dense layer, or a
convolutional layer:

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr ) · wrj

I for every j ∈ Z r Y such that j→ is max-pooling: Then j→ = {i} for
a single "max" neuron and we have

∂Ek

∂yj
=

 ∂Ek
∂yi

if j = arg max r∈i←yr

0 otherwise

I.e. gradient can be propagated from the output layer downwards as in MLP.
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Convolutional networks – summary

I Conv. nets. are nowadays the most used networks in
image processing (and also in other areas where input has
some local, "spatially" invariant properties)

I Typically trained using backpropagation.
I Due to the weight sharing allow (very) deep architectures.
I Typically extended with more adjustments and tricks in

their topologies.
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The problem of cancer detection in WSI

The problem: Detect cancer in this image. 15



The problem of cancer detection in WSI

I WSI annotated by pathologists, not pixel level precise! 16



Input data

WSI too large, 105,185 px x 221,772 px

Cut into patches of size 512 px x 512 px

Patch positive iff the inner square intersects the annotation
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Training on WSI

Our dataset from Masaryk Memorial Cancer Insitute:
I 785 WSI from 166 patients

(698 WSI for training, 87 WSI for testing)
I Cut into 7,878,675 patches for training, 193,235 patches

for testing.

Dataset augmentation:

I random vertical and horizontal flips
I random color perturbations

I Training data three step sampling:
1. randomly select a label
2. randomly select a slide containing at least a single patch

with the label
3. randomly select a patch with the label from the slide

18



Training on WSI

Our dataset from Masaryk Memorial Cancer Insitute:
I 785 WSI from 166 patients

(698 WSI for training, 87 WSI for testing)
I Cut into 7,878,675 patches for training, 193,235 patches

for testing.

Dataset augmentation:

I random vertical and horizontal flips
I random color perturbations

I Training data three step sampling:
1. randomly select a label
2. randomly select a slide containing at least a single patch

with the label
3. randomly select a patch with the label from the slide

18



Training on WSI

Our dataset from Masaryk Memorial Cancer Insitute:
I 785 WSI from 166 patients

(698 WSI for training, 87 WSI for testing)
I Cut into 7,878,675 patches for training, 193,235 patches

for testing.

Dataset augmentation:

I random vertical and horizontal flips
I random color perturbations

I Training data three step sampling:
1. randomly select a label
2. randomly select a slide containing at least a single patch

with the label
3. randomly select a patch with the label from the slide

18



VGG16

3 × 3 convolutions, stride 1, padding 1. Max pooling 2 × 2,
stride 2.
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Training VGG16 on WSI

I VGG16 pretrained on the ImageNet (of-the-shelf solution).
Top fully connected parts removed, substituted with global
max-pooling and a single dense layer.

I The network has single logistic output - the probability of
cancer in the patch

I The error E = cross-entropy
I Training:

I RMSprop optimizer
I The "forgetting" hyperparameter: ρ = 0.9
I The initial learning rate 5 × 10−5

I If no improvement in E on validation data for 3 consecutive
epochs⇒ half the learning rate

I If no improvement in ROCAUC on validation data for 5
consecutive epochs⇒ terminate

I Momentum with the weight α = 0.9
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Prediction

21



Model evaluation - attempt 1

Can we detect cancer somewhere in WSI?

Denote by F the function
computed by our model. I.e.,
given a patch I, F(I) is the
output value of the single
output neuron with logistic
activation function.

Interpret the F(I) as the probability of cancer in the patch.

Predict WSI positive iff at least one patch I satisfies F(I) ≥ t for
a fixed threshold t ∈ [0,1].

Choosing t close to 1, we have achieved 100% accuracy, i.e.,
slide positive iff predicted positive. Problem solved ... No?
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Model evaluation - attempt 2

Can we detect cancer in patches?

Predict I positive iff F(I) ≥ 0.75

Ok, does it detect cancer?
23



Model evaluation – attempt 3 – FROC

Detect particular tumors ?

How to evaluate the quality of tumor detection?
24



Model evaluation – attempt 3 – FROC

sensitivity ≈ the proportion of tumors containing at least one
patch I with F(I) ≥ t w.r.t. all tumors in all slides

AvgFP ≈ average number of patches I with F(I) ≥ t in each
non-cancerous slide
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Explainable methods (XAI)

26



XAI methods

The goal is to understand how and why the network does what
it does.

We will consider classification models only.

Methods based on various principles:

I Visualize weights and feature maps
I Visualize most important inputs for a given class
I Visualize the effect of input perturbations on the output
I Construct an intepretable surrogate model

27



XAI methods

The goal is to understand how and why the network does what
it does.

We will consider classification models only.

Methods based on various principles:

I Visualize weights and feature maps
I Visualize most important inputs for a given class
I Visualize the effect of input perturbations on the output
I Construct an intepretable surrogate model

27



Alex-net - filters of the first convolutional layer

I 64 filters of depth 3 (RGB)
I Combined each filter RGB channels into one RGB image

of size 11x11x3.
28



CNN - feature maps

29



CNN - feature maps - radar target classification

Synthetic-aperture radar (SAR) – used to create two-dimensional images or
three-dimensional reconstructions of objects, such as landscapes.
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Maximizing input

Now what if we try to find the most "representative" input vector
for a given class?

Assume a trained model giving a score for each class given
an input vector.

I Denote by yi(~x) the value of the output neuron i ∈ Y on
an input vector ~x.

I Maximize

yi(~x) − λ
∣∣∣∣∣∣~x ∣∣∣∣∣∣2

2

over all input vectors ~x.
I A maximizing input vector computed using the gradient

descent.
I Gives the most "representative" input vector of the class

represented by the neuron i.
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Maximizing input - example
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Input specific saliency maps

The goal: Label features in a given input that are "most
important" for the output of the network.

Various approaches:
I gradient based

I Gradient saliency maps
I GradCAM
I · · ·

I occlusion based
I Simple occlusion maps
I LIME
I · · ·

33



Input specific saliency maps

The goal: Label features in a given input that are "most
important" for the output of the network.

Various approaches:
I gradient based

I Gradient saliency maps
I GradCAM
I · · ·

I occlusion based
I Simple occlusion maps
I LIME
I · · ·

33



Gradient based saliency

I Let us fix an output neuron i and an input vector ~x.

I Idea: Rank every input neuron k ∈ X based on its
influence on the value yi(~x).
Note that the vector of input values is fixed.
For every input neuron k ∈ X we consider∣∣∣∣∣ ∂yi

∂yk
(~x)

∣∣∣∣∣
to measure the importance of the input yk for the output yi
with respect to the particular input vector ~x.

I Note that saliency comes from a surrogate local linear
model given by the first-order Taylor approximation:

yi(~x′) ≈ yi(~x) +

(
∂yi

∂X
(~x)

)
(~x′ − ~x)

Here ∂yi
∂X is the vector of all partial derivatives ∂yi

∂yk
where

k ∈ X .
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with respect to the particular input vector ~x.

I Note that saliency comes from a surrogate local linear
model given by the first-order Taylor approximation:

yi(~x′) ≈ yi(~x) +

(
∂yi

∂X
(~x)

)
(~x′ − ~x)

Here ∂yi
∂X is the vector of all partial derivatives ∂yi

∂yk
where

k ∈ X .
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Saliency maps - example
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Saliency maps - example

Quite noisy, the signal is spread and does not say much about
the perception of the owl.
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Saliency maps - example

SmoothGrad:
I Do the following several times:

I Add noise to the input image
I Compute a saliency map

I Average the resulting saliency maps.
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GradCAM

I Consider a convolutional network and fix an input image I
of the network.
ALL values of all neurons yj are computed on the input I.

I Fix a convolutional layer L consisting of convolutional
feature maps F1, . . . ,Fk .
Each F ` is a set of neurons that belong to the feature map F `.
Slightly abusing notation, we write F`(I) to denote
the tensor of all values of all neurons in F`(I).

I Fix an output neuron i ∈ Y with the value yi .
I Compute the average importance of F`(I) for the output yi :

α`i =
1
|F`|

∑
j∈F`

∂yi

∂yj
(I)

and the final gradCAM heat map for L is obtained using

ML
i = ReLU

 k∑
`=1

α`i F
`(I)
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GradCAM on VGG16
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GradCAM on VGG16

Consider the last convolutional layer of the VGG16 (Block5,
Conv3)
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GradCAM on VGG16

From left to right:
I An image of a cat (has to be resized to 224 × 224 to fit

VGG16)
I The gradCAM heat map for the last convolutional layer and

the class "cat"
I Rescaled and smoothed gradCAM heat map.
I The gradCAM overlay.
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Occlusion

I Systematically cover parts of the input image.
I Observe the effect on the output value.
I Find regions with the largest effect.
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Occlusion - example
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Occlusion - example
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LIME - for images

Let us fix an image I to be explained.

Outline:
I Consider superpixels of I as interpretable components.
I Construct a linear model approximating the network aroung

the image I with weights corresponding to the superpixels.
I Select the superpixels with weights of large magnitude as

the important ones.
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Superpixels as interpretable components

Denote by P1, . . . ,P` all superpixels of I.

Consider binary vectors ~x = (x1, . . . , x`) ∈ {0,1}`.

Each such vector ~x determines a "subimage" I[~x] of
I obtained by removing all Pk with xk = 0.
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LIME

I Let us fix an output neuron i, we dnote by yi(J) the value of
the output neuron i for the input image J.

I Given the image I to be interpreted, consider the following
training set:

T =
{
(~x1, yi(I[~x1])), . . . , (~xp , yi(I[~xp])

}
Here ~xh = (xh1, . . . , xh`) are (some) binary vectors of {0,1}.
E.g., randomly selected.

I Train a linear model (ADALINE) with weights w0,w1, . . . ,w`

on T minimizing the mean-squared error
(+ a regularization term making the number of non-zero
weights as small as possible).
Intuitively, the linear model approximates the networks on "subimages"
of I obtained by removing "unimportant" superpixels.

I Inspect the weights (magnitude and sign).
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LIME - example
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