
PV021: Neural networks

Tomáš Brázdil

1

Course organization
Course materials:
▶ Main: The lecture
▶ Neural Networks and Deep Learning by Michael Nielsen
http://neuralnetworksanddeeplearning.com/

(Extremely well written online textbook (a little outdated))

▶ Deep learning by Ian Goodfellow, Yoshua Bengio and Aaron
Courville
http://www.deeplearningbook.org/

("Classical" overview of the theory of neural networks (a little outdated))

▶ Probabilistic Machine Learning: An Introduction by Kevin Murphy
https://probml.github.io/pml-book/book1.html
(Great advanced ML textbook with (almost) up-to-date basic neural
networks.)

▶ Inifinitely many online tutorials on everything (to build intuition)

Suggested: deeplearning.ai courses by Andrew Ng
2

http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/

Course organization

Evaluation:

▶ Project (Dr. Tomáš Foltýnek)

▶ implementation of a selected model + analysis of given data
▶ implementation C/C++/Java/Rust without use of any

specialized libraries for data analysis and machine
learning

▶ need to get over a given accuracy threshold (a gentle one,
just to eliminate non-functional implementations)

▶ Oral exam

▶ I may ask about anything from the lecture! You will get
a detailed manual specifying the mandatory knowledge.

3

Course organization

Evaluation:

▶ Project (Dr. Tomáš Foltýnek)

▶ implementation of a selected model + analysis of given data
▶ implementation C/C++/Java/Rust without use of any

specialized libraries for data analysis and machine
learning

▶ need to get over a given accuracy threshold (a gentle one,
just to eliminate non-functional implementations)

▶ Oral exam

▶ I may ask about anything from the lecture! You will get
a detailed manual specifying the mandatory knowledge.

3

FAQ

Q: Why we cannot use specialized libraries in projects?

A: In order to "touch" the low level implementation details of the
algorithms. You should not even use libraries for linear algebra
and numerical methods, so that you will be confronted with
rounding errors and numerical instabilities.

Q: Why should you attend this course when there are infinitely
many great reasources elsewhere?

A: There are at least two reasons:

▶ You may discuss issues with me, my colleagues and other
students.

▶ I will make you truly learn fundamentals by heart.

4

FAQ

Q: Why we cannot use specialized libraries in projects?

A: In order to "touch" the low level implementation details of the
algorithms. You should not even use libraries for linear algebra
and numerical methods, so that you will be confronted with
rounding errors and numerical instabilities.

Q: Why should you attend this course when there are infinitely
many great reasources elsewhere?

A: There are at least two reasons:

▶ You may discuss issues with me, my colleagues and other
students.

▶ I will make you truly learn fundamentals by heart.

4

FAQ

Q: Why we cannot use specialized libraries in projects?

A: In order to "touch" the low level implementation details of the
algorithms. You should not even use libraries for linear algebra
and numerical methods, so that you will be confronted with
rounding errors and numerical instabilities.

Q: Why should you attend this course when there are infinitely
many great reasources elsewhere?

A: There are at least two reasons:

▶ You may discuss issues with me, my colleagues and other
students.

▶ I will make you truly learn fundamentals by heart.

4

Notable features of the course

▶ Use of mathematical notation and reasoning (mandatory for
the exam)

▶ Sometimes goes deeper into statistical underpinnings of neural
networks learning

▶ The project demands a complete working solution which must
satisfy a prescribed performance specification

An unusual exam system! You can repeat the oral exam as many
times as needed (only the best grade goes into IS).

An example of an instruction email (from another course with the
same system):

It is typically not sufficient to devote a single
afternoon to the preparation for the exam.
You have to know _everything_ (which means every
single thing) starting with the slide 42
and ending with the slide 245 with notable exceptions
of slides: 121 - 123, 137 - 140, 165, 167.
Proofs presented on the whiteboard are also mandatory.

5

Notable features of the course

▶ Use of mathematical notation and reasoning (mandatory for
the exam)

▶ Sometimes goes deeper into statistical underpinnings of neural
networks learning

▶ The project demands a complete working solution which must
satisfy a prescribed performance specification

An unusual exam system! You can repeat the oral exam as many
times as needed (only the best grade goes into IS).

An example of an instruction email (from another course with the
same system):

It is typically not sufficient to devote a single
afternoon to the preparation for the exam.
You have to know _everything_ (which means every
single thing) starting with the slide 42
and ending with the slide 245 with notable exceptions
of slides: 121 - 123, 137 - 140, 165, 167.
Proofs presented on the whiteboard are also mandatory.

5

Notable features of the course

▶ Use of mathematical notation and reasoning (mandatory for
the exam)

▶ Sometimes goes deeper into statistical underpinnings of neural
networks learning

▶ The project demands a complete working solution which must
satisfy a prescribed performance specification

An unusual exam system! You can repeat the oral exam as many
times as needed (only the best grade goes into IS).

An example of an instruction email (from another course with the
same system):

It is typically not sufficient to devote a single
afternoon to the preparation for the exam.
You have to know _everything_ (which means every
single thing) starting with the slide 42
and ending with the slide 245 with notable exceptions
of slides: 121 - 123, 137 - 140, 165, 167.
Proofs presented on the whiteboard are also mandatory.

5

Machine learning in general
▶ Machine learning = construction of systems that learn their

functionality from data
(... and thus do not need to be programmed.)

▶ spam filter
▶ learns to recognize spam from a database of "labelled"

emails
▶ consequently is able to distinguish spam from ham

▶ handwritten text reader
▶ learns from a database of handwritten

letters (or text) labelled by their correct
meaning

▶ consequently is able to recognize text
▶ · · ·
▶ and lots of much much more sophisticated applications ...

▶ Basic attributes of learning algorithms:
▶ representation: ability to capture the inner structure of

training data
▶ generalization: ability to work properly on new data

6

Machine learning in general
▶ Machine learning = construction of systems that learn their

functionality from data
(... and thus do not need to be programmed.)
▶ spam filter

▶ learns to recognize spam from a database of "labelled"
emails

▶ consequently is able to distinguish spam from ham

▶ handwritten text reader
▶ learns from a database of handwritten

letters (or text) labelled by their correct
meaning

▶ consequently is able to recognize text
▶ · · ·
▶ and lots of much much more sophisticated applications ...

▶ Basic attributes of learning algorithms:
▶ representation: ability to capture the inner structure of

training data
▶ generalization: ability to work properly on new data

6

Machine learning in general
▶ Machine learning = construction of systems that learn their

functionality from data
(... and thus do not need to be programmed.)
▶ spam filter

▶ learns to recognize spam from a database of "labelled"
emails

▶ consequently is able to distinguish spam from ham
▶ handwritten text reader

▶ learns from a database of handwritten
letters (or text) labelled by their correct
meaning

▶ consequently is able to recognize text

▶ · · ·
▶ and lots of much much more sophisticated applications ...

▶ Basic attributes of learning algorithms:
▶ representation: ability to capture the inner structure of

training data
▶ generalization: ability to work properly on new data

6

Machine learning in general
▶ Machine learning = construction of systems that learn their

functionality from data
(... and thus do not need to be programmed.)
▶ spam filter

▶ learns to recognize spam from a database of "labelled"
emails

▶ consequently is able to distinguish spam from ham
▶ handwritten text reader

▶ learns from a database of handwritten
letters (or text) labelled by their correct
meaning

▶ consequently is able to recognize text
▶ · · ·
▶ and lots of much much more sophisticated applications ...

▶ Basic attributes of learning algorithms:
▶ representation: ability to capture the inner structure of

training data
▶ generalization: ability to work properly on new data

6

Machine learning in general
▶ Machine learning = construction of systems that learn their

functionality from data
(... and thus do not need to be programmed.)
▶ spam filter

▶ learns to recognize spam from a database of "labelled"
emails

▶ consequently is able to distinguish spam from ham
▶ handwritten text reader

▶ learns from a database of handwritten
letters (or text) labelled by their correct
meaning

▶ consequently is able to recognize text
▶ · · ·
▶ and lots of much much more sophisticated applications ...

▶ Basic attributes of learning algorithms:
▶ representation: ability to capture the inner structure of

training data
▶ generalization: ability to work properly on new data

6

Machine learning in general

Machine learning algorithms typically construct mathematical
models of given data. The models may be subsequently
applied to fresh data.

There are many types of models:
▶ decision trees
▶ support vector machines
▶ hidden Markov models
▶ Bayes networks and other graphical models
▶ neural networks
▶ · · ·

Neural networks, based on models of a (human) brain, form
a natural basis for learning algorithms!

7

Machine learning in general

Machine learning algorithms typically construct mathematical
models of given data. The models may be subsequently
applied to fresh data.

There are many types of models:
▶ decision trees
▶ support vector machines
▶ hidden Markov models
▶ Bayes networks and other graphical models
▶ neural networks
▶ · · ·

Neural networks, based on models of a (human) brain, form
a natural basis for learning algorithms!

7

Artificial neural networks
▶ Artificial neuron is a rough mathematical approximation

of a biological neuron.
▶ (Aritificial) neural network (NN) consists of a number of

interconnected artificial neurons. "Behavior" of the network
is encoded in connections between neurons.

σ
ξ

x1 x2 xn

y

Zdroj obrázku: http://tulane.edu/sse/cmb/people/schrader/
8

http://tulane.edu/sse/cmb/people/schrader/

Why artificial neural networks?

Modelling of biological neural networks (computational
neuroscience).
▶ simplified mathematical models help to identify important

mechanisms
▶ How the brain receives information?
▶ How the information is stored?
▶ How the brain develops?
▶ · · ·

▶ neuroscience is strongly multidisciplinary; precise
mathematical descriptions help in communication among
experts and in design of new experiments.

I will not spend much time on this area!

9

Why artificial neural networks?

Modelling of biological neural networks (computational
neuroscience).
▶ simplified mathematical models help to identify important

mechanisms
▶ How the brain receives information?
▶ How the information is stored?
▶ How the brain develops?
▶ · · ·

▶ neuroscience is strongly multidisciplinary; precise
mathematical descriptions help in communication among
experts and in design of new experiments.

I will not spend much time on this area!

9

Why artificial neural networks?

Neural networks in machine learning.
▶ Typically primitive models, far from their biological

counterparts (but often inspired by biology).

▶ Strongly oriented towards concrete application domains:
▶ decision making and control - autonomous vehicles,

manufacturing processes, control of natural resources
▶ games - backgammon, poker, GO, Starcraft, ...
▶ finance - stock prices, risk analysis
▶ medicine - diagnosis, signal processing (EKG, EEG, ...), image

processing (MRI, CT, WSI ...)
▶ text and speech processing - machine translation, text

generation, speech recognition
▶ other signal processing - filtering, radar tracking, noise

reduction
▶ art - music and painting generation, deepfakes
▶ · · ·

I will concentrate on this area!

10

Why artificial neural networks?

Neural networks in machine learning.
▶ Typically primitive models, far from their biological

counterparts (but often inspired by biology).
▶ Strongly oriented towards concrete application domains:

▶ decision making and control - autonomous vehicles,
manufacturing processes, control of natural resources

▶ games - backgammon, poker, GO, Starcraft, ...
▶ finance - stock prices, risk analysis
▶ medicine - diagnosis, signal processing (EKG, EEG, ...), image

processing (MRI, CT, WSI ...)
▶ text and speech processing - machine translation, text

generation, speech recognition
▶ other signal processing - filtering, radar tracking, noise

reduction
▶ art - music and painting generation, deepfakes
▶ · · ·

I will concentrate on this area!
10

Important features of neural networks

▶ Massive parallelism
▶ many slow (and "dumb") computational elements work in

parallel on several levels of abstraction

▶ Learning
▶ a kid learns to recognize a rabbit after seeing several

rabbits
▶ Generalization

▶ a kid is able to recognize a new rabbit after seeing several
(old) rabbits

▶ Robustness
▶ a blurred photo of a rabbit may still be classified as an

image of a rabbit
▶ Graceful degradation

▶ Experiments have shown that damaged neural network is
still able to work quite well

▶ Damaged network may re-adapt, remaining neurons may
take on functionality of the damaged ones

11

Important features of neural networks

▶ Massive parallelism
▶ many slow (and "dumb") computational elements work in

parallel on several levels of abstraction
▶ Learning

▶ a kid learns to recognize a rabbit after seeing several
rabbits

▶ Generalization
▶ a kid is able to recognize a new rabbit after seeing several

(old) rabbits
▶ Robustness

▶ a blurred photo of a rabbit may still be classified as an
image of a rabbit

▶ Graceful degradation
▶ Experiments have shown that damaged neural network is

still able to work quite well
▶ Damaged network may re-adapt, remaining neurons may

take on functionality of the damaged ones

11

Important features of neural networks

▶ Massive parallelism
▶ many slow (and "dumb") computational elements work in

parallel on several levels of abstraction
▶ Learning

▶ a kid learns to recognize a rabbit after seeing several
rabbits

▶ Generalization
▶ a kid is able to recognize a new rabbit after seeing several

(old) rabbits

▶ Robustness
▶ a blurred photo of a rabbit may still be classified as an

image of a rabbit
▶ Graceful degradation

▶ Experiments have shown that damaged neural network is
still able to work quite well

▶ Damaged network may re-adapt, remaining neurons may
take on functionality of the damaged ones

11

Important features of neural networks

▶ Massive parallelism
▶ many slow (and "dumb") computational elements work in

parallel on several levels of abstraction
▶ Learning

▶ a kid learns to recognize a rabbit after seeing several
rabbits

▶ Generalization
▶ a kid is able to recognize a new rabbit after seeing several

(old) rabbits
▶ Robustness

▶ a blurred photo of a rabbit may still be classified as an
image of a rabbit

▶ Graceful degradation
▶ Experiments have shown that damaged neural network is

still able to work quite well
▶ Damaged network may re-adapt, remaining neurons may

take on functionality of the damaged ones

11

Important features of neural networks

▶ Massive parallelism
▶ many slow (and "dumb") computational elements work in

parallel on several levels of abstraction
▶ Learning

▶ a kid learns to recognize a rabbit after seeing several
rabbits

▶ Generalization
▶ a kid is able to recognize a new rabbit after seeing several

(old) rabbits
▶ Robustness

▶ a blurred photo of a rabbit may still be classified as an
image of a rabbit

▶ Graceful degradation
▶ Experiments have shown that damaged neural network is

still able to work quite well
▶ Damaged network may re-adapt, remaining neurons may

take on functionality of the damaged ones
11

The aim of the course

▶ We will concentrate on
▶ basic techniques and principles of neural networks,
▶ fundamental models of neural networks and their

applications.
▶ You should learn

▶ basic models
(multilayer perceptron, convolutional networks, recurrent networks,
transformers, autoencoders and generative adversarial networks)

▶ Simple applications of these models
(image processing, a little bit of text processing)

▶ Basic learning algorithms
(gradient descent with backpropagation)

▶ Basic practical training techniques
(data preparation, setting various hyper-parameters, control of
learning, improving generalization)

▶ Basic information about current implementations
(TensorFlow-Keras, Pytorch)

12

The aim of the course

▶ We will concentrate on
▶ basic techniques and principles of neural networks,
▶ fundamental models of neural networks and their

applications.
▶ You should learn

▶ basic models
(multilayer perceptron, convolutional networks, recurrent networks,
transformers, autoencoders and generative adversarial networks)

▶ Simple applications of these models
(image processing, a little bit of text processing)

▶ Basic learning algorithms
(gradient descent with backpropagation)

▶ Basic practical training techniques
(data preparation, setting various hyper-parameters, control of
learning, improving generalization)

▶ Basic information about current implementations
(TensorFlow-Keras, Pytorch)

12

The aim of the course

▶ We will concentrate on
▶ basic techniques and principles of neural networks,
▶ fundamental models of neural networks and their

applications.
▶ You should learn

▶ basic models
(multilayer perceptron, convolutional networks, recurrent networks,
transformers, autoencoders and generative adversarial networks)

▶ Simple applications of these models
(image processing, a little bit of text processing)

▶ Basic learning algorithms
(gradient descent with backpropagation)

▶ Basic practical training techniques
(data preparation, setting various hyper-parameters, control of
learning, improving generalization)

▶ Basic information about current implementations
(TensorFlow-Keras, Pytorch)

12

The aim of the course

▶ We will concentrate on
▶ basic techniques and principles of neural networks,
▶ fundamental models of neural networks and their

applications.
▶ You should learn

▶ basic models
(multilayer perceptron, convolutional networks, recurrent networks,
transformers, autoencoders and generative adversarial networks)

▶ Simple applications of these models
(image processing, a little bit of text processing)

▶ Basic learning algorithms
(gradient descent with backpropagation)

▶ Basic practical training techniques
(data preparation, setting various hyper-parameters, control of
learning, improving generalization)

▶ Basic information about current implementations
(TensorFlow-Keras, Pytorch)

12

The aim of the course

▶ We will concentrate on
▶ basic techniques and principles of neural networks,
▶ fundamental models of neural networks and their

applications.
▶ You should learn

▶ basic models
(multilayer perceptron, convolutional networks, recurrent networks,
transformers, autoencoders and generative adversarial networks)

▶ Simple applications of these models
(image processing, a little bit of text processing)

▶ Basic learning algorithms
(gradient descent with backpropagation)

▶ Basic practical training techniques
(data preparation, setting various hyper-parameters, control of
learning, improving generalization)

▶ Basic information about current implementations
(TensorFlow-Keras, Pytorch)

12

Biological neural network

▶ Human neural network consists of approximately 1011 (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

▶ Each neuron is connected with approx. 104 neurons.
▶ Neurons themselves are very complex systems.

Rough description of nervous system:
▶ External stimulus is received by sensory receptors (e.g.

eye cells).
▶ Information is futher transfered via peripheral nervous

system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqently, an output
signal is produced.

▶ Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).

13

Biological neural network

▶ Human neural network consists of approximately 1011 (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

▶ Each neuron is connected with approx. 104 neurons.
▶ Neurons themselves are very complex systems.

Rough description of nervous system:
▶ External stimulus is received by sensory receptors (e.g.

eye cells).

▶ Information is futher transfered via peripheral nervous
system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqently, an output
signal is produced.

▶ Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).

13

Biological neural network

▶ Human neural network consists of approximately 1011 (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

▶ Each neuron is connected with approx. 104 neurons.
▶ Neurons themselves are very complex systems.

Rough description of nervous system:
▶ External stimulus is received by sensory receptors (e.g.

eye cells).
▶ Information is futher transfered via peripheral nervous

system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqently, an output
signal is produced.

▶ Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).

13

Biological neural network

▶ Human neural network consists of approximately 1011 (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

▶ Each neuron is connected with approx. 104 neurons.
▶ Neurons themselves are very complex systems.

Rough description of nervous system:
▶ External stimulus is received by sensory receptors (e.g.

eye cells).
▶ Information is futher transfered via peripheral nervous

system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqently, an output
signal is produced.

▶ Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).

13

Biological neural network

Zdroj: N. Campbell and J. Reece; Biology, 7th Edition; ISBN: 080537146X
14

Summation

15

Biological and Mathematical neurons

16

Formal neuron (without bias)

σ
ξ

x1 x2 xn

y

w1 w2

· · ·

wn

▶ x1, . . . , xn ∈ R are inputs

▶ w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ =
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ h ;

0 ξ < h.

where h ∈ R is a threshold.

17

Formal neuron (without bias)

σ
ξ

x1 x2 xn

y

w1 w2

· · ·

wn

▶ x1, . . . , xn ∈ R are inputs
▶ w1, . . . ,wn ∈ R are weights

▶ ξ is an inner potential;
almost always ξ =

∑n
i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ h ;

0 ξ < h.

where h ∈ R is a threshold.

17

Formal neuron (without bias)

σ
ξ

x1 x2 xn

y

w1 w2

· · ·

wn

▶ x1, . . . , xn ∈ R are inputs
▶ w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ =
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ h ;

0 ξ < h.

where h ∈ R is a threshold.

17

Formal neuron (without bias)

σ
ξ

x1 x2 xn

y

w1 w2

· · ·

wn

▶ x1, . . . , xn ∈ R are inputs
▶ w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ =
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ h ;

0 ξ < h.

where h ∈ R is a threshold.

17

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

▶ x0 = 1, x1, . . . , xn ∈ R are inputs

▶ w0,w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

(The threshold h has been substituted
with the new input x0 = 1 and the weight
w0 = −h.)

18

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

▶ x0 = 1, x1, . . . , xn ∈ R are inputs
▶ w0,w1, . . . ,wn ∈ R are weights

▶ ξ is an inner potential;
almost always ξ = w0 +

∑n
i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

(The threshold h has been substituted
with the new input x0 = 1 and the weight
w0 = −h.)

18

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

▶ x0 = 1, x1, . . . , xn ∈ R are inputs
▶ w0,w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

(The threshold h has been substituted
with the new input x0 = 1 and the weight
w0 = −h.)

18

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

▶ x0 = 1, x1, . . . , xn ∈ R are inputs
▶ w0,w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

(The threshold h has been substituted
with the new input x0 = 1 and the weight
w0 = −h.)

18

Neuron and linear separation

ξ = 0

ξ > 0

ξ > 0

ξ < 0

ξ < 0

▶ inner potential

ξ = w0 +

n∑
i=1

wixi

determines a separation
hyperplane in
the n-dimensional input space
▶ in 2d line
▶ in 3d plane
▶ · · ·

19

Neuron geometry

20

Neuron and linear separation

σ σ(
∑

wixi)

x1 xn

· · ·

1/0 by A/B

w1 wn

n = 8 · 8, i.e. the number of pixels in the images. Inputs are
binary vectors of dimension n (black pixel ≈ 1, white pixel ≈ 0).

21

Neuron and linear separation

σ

x1 xn

· · ·

x0 = 1

1/0 pro A/B

w1 wn

w0

n = 8 · 8, i.e. the number of pixels in the images. Inputs are
binary vectors of dimension n (black pixel ≈ 1, white pixel ≈ 0).

22

Neuron and linear separation

w̄0 +
∑n

i=1 w̄ixi = 0
w0 +

∑n
i=1 wixi = 0

A

A

A A

B

B

B

▶ Red line classifies incorrectly
▶ Green line classifies correctly

(may be a result of
a correction by a learning
algorithm)

23

Neuron and linear separation (XOR)

0
(0,0)

1

(0,1)

1
(0,1)

0

(1,1)

x1

x2

▶ No line separates ones from
zeros.

24

Neural networks

Neural network consists of formal neurons interconnected in
such a way that the output of one neuron is an input of several
other neurons.

In order to describe a particular type of neural networks we
need to specify:
▶ Architecture

How the neurons are connected.

▶ Activity
How the network transforms inputs to outputs.

▶ Learning
How the weights are changed during training.

25

Architecture

Network architecture is given as a digraph whose nodes are
neurons and edges are connections.

We distinguish several categories of
neurons:
▶ Output neurons
▶ Hidden neurons
▶ Input neurons

(In general, a neuron may be both input and
output; a neuron is hidden if it is neither input,
nor output.)

26

Architecture – Cycles

▶ A network is cyclic (recurrent) if its architecture contains a
directed cycle.

▶ Otherwise it is acyclic (feed-forward)

27

Architecture – Cycles

▶ A network is cyclic (recurrent) if its architecture contains a
directed cycle.

▶ Otherwise it is acyclic (feed-forward)

27

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
▶ Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

▶ layers numbered from 0; the
input layer has number 0
▶ E.g. three-layer network has

two hidden layers and one
output layer

▶ Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

▶ Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

28

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
▶ Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

▶ layers numbered from 0; the
input layer has number 0
▶ E.g. three-layer network has

two hidden layers and one
output layer

▶ Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

▶ Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

28

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
▶ Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

▶ layers numbered from 0; the
input layer has number 0
▶ E.g. three-layer network has

two hidden layers and one
output layer

▶ Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

▶ Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

28

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
▶ Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

▶ layers numbered from 0; the
input layer has number 0
▶ E.g. three-layer network has

two hidden layers and one
output layer

▶ Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

▶ Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

28

Activity

Consider a network with n neurons, k input and ℓ output.

▶ State of a network is a vector of output values of all
neurons.
(States of a network with n neurons are vectors of Rn)

▶ State-space of a network is a set of all states.

▶ Network input is a vector of k real numbers, i.e.
an element of Rk .

▶ Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of Rk)

▶ Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.

29

Activity

Consider a network with n neurons, k input and ℓ output.
▶ State of a network is a vector of output values of all

neurons.
(States of a network with n neurons are vectors of Rn)

▶ State-space of a network is a set of all states.

▶ Network input is a vector of k real numbers, i.e.
an element of Rk .

▶ Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of Rk)

▶ Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.

29

Activity

Consider a network with n neurons, k input and ℓ output.
▶ State of a network is a vector of output values of all

neurons.
(States of a network with n neurons are vectors of Rn)

▶ State-space of a network is a set of all states.

▶ Network input is a vector of k real numbers, i.e.
an element of Rk .

▶ Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of Rk)

▶ Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.

29

Activity

Consider a network with n neurons, k input and ℓ output.
▶ State of a network is a vector of output values of all

neurons.
(States of a network with n neurons are vectors of Rn)

▶ State-space of a network is a set of all states.

▶ Network input is a vector of k real numbers, i.e.
an element of Rk .

▶ Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of Rk)

▶ Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.
29

Activity – computation of a network
▶ Computation (typically) proceeds in discrete steps.

In every step the following happens:
1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input x⃗ if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on x⃗.

▶ Network output is a vector of values of all output neurons
in the network (i.e., an element of Rℓ).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

30

Activity – computation of a network
▶ Computation (typically) proceeds in discrete steps.

In every step the following happens:

1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input x⃗ if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on x⃗.

▶ Network output is a vector of values of all output neurons
in the network (i.e., an element of Rℓ).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

30

Activity – computation of a network
▶ Computation (typically) proceeds in discrete steps.

In every step the following happens:
1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input x⃗ if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on x⃗.

▶ Network output is a vector of values of all output neurons
in the network (i.e., an element of Rℓ).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

30

Activity – computation of a network
▶ Computation (typically) proceeds in discrete steps.

In every step the following happens:
1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input x⃗ if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on x⃗.

▶ Network output is a vector of values of all output neurons
in the network (i.e., an element of Rℓ).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

30

Activity – computation of a network
▶ Computation (typically) proceeds in discrete steps.

In every step the following happens:
1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input x⃗ if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on x⃗.

▶ Network output is a vector of values of all output neurons
in the network (i.e., an element of Rℓ).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

30

Activity – computation of a network
▶ Computation (typically) proceeds in discrete steps.

In every step the following happens:
1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input x⃗ if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on x⃗.

▶ Network output is a vector of values of all output neurons
in the network (i.e., an element of Rℓ).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.
30

Activity – semantics of a network

Definition
Consider a network with n neurons, k input, ℓ output.
Let A ⊆ Rk and B ⊆ Rℓ. Suppose that the network stops on
every input of A.
Then we say that the network computes a function F : A → B if
for every network input x⃗ the vector F(x⃗) ∈ B is the output of
the network after the computation on x⃗ stops.

Example 1

This network computes a function
from R2 to R.

31

Activity – semantics of a network

Definition
Consider a network with n neurons, k input, ℓ output.
Let A ⊆ Rk and B ⊆ Rℓ. Suppose that the network stops on
every input of A.
Then we say that the network computes a function F : A → B if
for every network input x⃗ the vector F(x⃗) ∈ B is the output of
the network after the computation on x⃗ stops.

Example 1

This network computes a function
from R2 to R.

31

Activity – semantics of a network

Definition
Consider a network with n neurons, k input, ℓ output.
Let A ⊆ Rk and B ⊆ Rℓ. Suppose that the network stops on
every input of A.
Then we say that the network computes a function F : A → B if
for every network input x⃗ the vector F(x⃗) ∈ B is the output of
the network after the computation on x⃗ stops.

Example 1

This network computes a function
from R2 to R.

31

Activity – inner potential and activation functions

In order to specify activity of the network, we need to specify
how the inner potentials ξ are computed and what are
the activation functions σ.

We assume (unless otherwise specified) that

ξ = w0 +

n∑
i=1

wi · xi

here x⃗ = (x1, . . . , xn) are inputs of the neuron and
w⃗ = (w1, . . . ,wn) are weights.

There are special types of neural networks where the inner
potential is computed differently, e.g., as a "distance" of
an input from the weight vector:

ξ =
∣∣∣∣∣∣x⃗ − w⃗

∣∣∣∣∣∣
here ||·|| is a vector norm, typically Euclidean.

32

Activity – inner potential and activation functions

In order to specify activity of the network, we need to specify
how the inner potentials ξ are computed and what are
the activation functions σ.

We assume (unless otherwise specified) that

ξ = w0 +

n∑
i=1

wi · xi

here x⃗ = (x1, . . . , xn) are inputs of the neuron and
w⃗ = (w1, . . . ,wn) are weights.

There are special types of neural networks where the inner
potential is computed differently, e.g., as a "distance" of
an input from the weight vector:

ξ =
∣∣∣∣∣∣x⃗ − w⃗

∣∣∣∣∣∣
here ||·|| is a vector norm, typically Euclidean.

32

Activity – inner potential and activation functions

In order to specify activity of the network, we need to specify
how the inner potentials ξ are computed and what are
the activation functions σ.

We assume (unless otherwise specified) that

ξ = w0 +

n∑
i=1

wi · xi

here x⃗ = (x1, . . . , xn) are inputs of the neuron and
w⃗ = (w1, . . . ,wn) are weights.

There are special types of neural networks where the inner
potential is computed differently, e.g., as a "distance" of
an input from the weight vector:

ξ =
∣∣∣∣∣∣x⃗ − w⃗

∣∣∣∣∣∣
here ||·|| is a vector norm, typically Euclidean.

32

Activity – inner potential and activation functions

There are many activation functions, typical examples:
▶ Unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ (Logistic) sigmoid

σ(ξ) =
1

1 + e−λ·ξ
here λ ∈ R is a steepness parameter.

▶ Hyperbolic tangens

σ(ξ) =
1 − e−ξ

1 + e−ξ

▶ ReLU

σ(ξ) = max(ξ,0)

33

Activity – inner potential and activation functions

There are many activation functions, typical examples:
▶ Unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ (Logistic) sigmoid

σ(ξ) =
1

1 + e−λ·ξ
here λ ∈ R is a steepness parameter.

▶ Hyperbolic tangens

σ(ξ) =
1 − e−ξ

1 + e−ξ

▶ ReLU

σ(ξ) = max(ξ,0)

33

Activity – XOR

1 1

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

1 1

σ 11 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

0 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

0 0

σ 01 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

1 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

1 0

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

1 0

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

0 1

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

0 1

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

0 1

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – MLP and linear separation

0
(0,0)

1

(0,1)

1
(0,1)

0

(1,1)

P1 P2

x1

x2

σ1 σ 1

σ1

−22 2 −2

1

−1

1

3

−2

▶ The line P1 is given by
−1 + 2x1 + 2x2 = 0

▶ The line P2 is given by
3 − 2x1 − 2x2 = 0

35

Activity – example

x1
1

σ

0
1

σ0 1

σ

0
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

36

Activity – example

x1
1

σ

1
1

σ0 1

σ

0
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

36

Activity – example

x1
1

σ

1
1

σ1 1

σ

0
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

36

Activity – example

x1
1

σ

1
1

σ1 1

σ

1
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

36

Activity – example

x1
1

σ

0
1

σ1 1

σ

1
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

36

Learning

Consider a network with n neurons, k input and ℓ output.

▶ Configuration of a network is a vector of all values of
weights.
(Configurations of a network with m connections are elements of Rm)

▶ Weight-space of a network is a set of all configurations.

▶ initial configuration
weights can be initialized randomly or using some sophisticated
algorithm

37

Learning

Consider a network with n neurons, k input and ℓ output.
▶ Configuration of a network is a vector of all values of

weights.
(Configurations of a network with m connections are elements of Rm)

▶ Weight-space of a network is a set of all configurations.

▶ initial configuration
weights can be initialized randomly or using some sophisticated
algorithm

37

Learning

Consider a network with n neurons, k input and ℓ output.
▶ Configuration of a network is a vector of all values of

weights.
(Configurations of a network with m connections are elements of Rm)

▶ Weight-space of a network is a set of all configurations.

▶ initial configuration
weights can be initialized randomly or using some sophisticated
algorithm

37

Learning algorithms

Learning rule for weight adaptation.
(the goal is to find a configuration in which the network computes
a desired function)

▶ Supervised learning
▶ The desired function is described using training examples

that are pairs of the form (input, output).
▶ Learning algorithm searches for a configuration which

"corresponds" to the training examples, typically by
minimizing an error function.

▶ Unsupervised learning
▶ The training set contains only inputs.
▶ The goal is to determine distribution of the inputs

(clustering, deep belief networks, etc.)

38

Learning algorithms

Learning rule for weight adaptation.
(the goal is to find a configuration in which the network computes
a desired function)

▶ Supervised learning
▶ The desired function is described using training examples

that are pairs of the form (input, output).
▶ Learning algorithm searches for a configuration which

"corresponds" to the training examples, typically by
minimizing an error function.

▶ Unsupervised learning
▶ The training set contains only inputs.
▶ The goal is to determine distribution of the inputs

(clustering, deep belief networks, etc.)

38

Learning algorithms

Learning rule for weight adaptation.
(the goal is to find a configuration in which the network computes
a desired function)

▶ Supervised learning
▶ The desired function is described using training examples

that are pairs of the form (input, output).
▶ Learning algorithm searches for a configuration which

"corresponds" to the training examples, typically by
minimizing an error function.

▶ Unsupervised learning
▶ The training set contains only inputs.
▶ The goal is to determine distribution of the inputs

(clustering, deep belief networks, etc.)

38

Supervised learning – illustration

A

A

A A

B

B

B

▶ classification in the plane using
a single neuron

▶ training examples are of the form
(point, value) where the value is
either 1, or 0 depending on whether
the point is either A , or B

▶ the algorithm considers examples
one after another

▶ whenever an incorrectly classified
point is considered, the learning
algorithm turns the line in
the direction of the point

39

Supervised learning – illustration

A

A

A A

B

B

B

▶ classification in the plane using
a single neuron

▶ training examples are of the form
(point, value) where the value is
either 1, or 0 depending on whether
the point is either A , or B

▶ the algorithm considers examples
one after another

▶ whenever an incorrectly classified
point is considered, the learning
algorithm turns the line in
the direction of the point

39

Supervised learning – illustration

A

A

A A

B

B

B

▶ classification in the plane using
a single neuron

▶ training examples are of the form
(point, value) where the value is
either 1, or 0 depending on whether
the point is either A , or B

▶ the algorithm considers examples
one after another

▶ whenever an incorrectly classified
point is considered, the learning
algorithm turns the line in
the direction of the point

39

Summary – Advantages of neural networks

▶ Massive parallelism
▶ neurons can be evaluated in parallel

▶ Learning
▶ many sophisticated learning algorithms used to "program"

neural networks
▶ generalization and robustness

▶ information is encoded in a distributed manner in weights
▶ "close" inputs typicaly get similar values

▶ Graceful degradation
▶ damage typically causes only a decrease in precision of

results

40

Summary – Advantages of neural networks

▶ Massive parallelism
▶ neurons can be evaluated in parallel

▶ Learning
▶ many sophisticated learning algorithms used to "program"

neural networks

▶ generalization and robustness
▶ information is encoded in a distributed manner in weights
▶ "close" inputs typicaly get similar values

▶ Graceful degradation
▶ damage typically causes only a decrease in precision of

results

40

Summary – Advantages of neural networks

▶ Massive parallelism
▶ neurons can be evaluated in parallel

▶ Learning
▶ many sophisticated learning algorithms used to "program"

neural networks
▶ generalization and robustness

▶ information is encoded in a distributed manner in weights
▶ "close" inputs typicaly get similar values

▶ Graceful degradation
▶ damage typically causes only a decrease in precision of

results

40

Summary – Advantages of neural networks

▶ Massive parallelism
▶ neurons can be evaluated in parallel

▶ Learning
▶ many sophisticated learning algorithms used to "program"

neural networks
▶ generalization and robustness

▶ information is encoded in a distributed manner in weights
▶ "close" inputs typicaly get similar values

▶ Graceful degradation
▶ damage typically causes only a decrease in precision of

results

40

Expressive power of neural networks

41

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

▶ x0 = 1, x1, . . . , xn ∈ R are inputs
▶ w0,w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

42

Boolean functions

Activation function: unit step function σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

σ

x1 x2 xn

x0 = 1

y = AND(x1, . . . , xn)

1 1
· · ·

1

−n
σ

x1 x2 xn

x0 = 1

y = OR(x1, . . . , xn)

1 1
· · ·

1

−1

σ

x1

x0 = 1

y = NOT(x1)

−1

0

43

Boolean functions

Activation function: unit step function σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

σ

x1 x2 xn

x0 = 1

y = AND(x1, . . . , xn)

1 1
· · ·

1

−n
σ

x1 x2 xn

x0 = 1

y = OR(x1, . . . , xn)

1 1
· · ·

1

−1

σ

x1

x0 = 1

y = NOT(x1)

−1

0

43

Boolean functions

Theorem
Let σ be the unit step function. Two layer MLPs, where each
neuron has σ as the activation function, are able to compute all
functions of the form F : {0,1}n → {0,1}.

Proof.
▶ Given a vector v⃗ = (v1, . . . , vn) ∈ {0,1}n, consider a neuron

Nv⃗ whose output is 1 iff the input is v⃗:

σ

y

x1 xi xn

x0 = 1

w1 wi
· · ·· · ·

wn

w0 w0 = −
∑n

i=1 vi

wi =

1 vi = 1
−1 vi = 0

▶ Now let us connect all outputs of all neurons Nv⃗ satisfying
F(v⃗) = 1 using a neuron implementing OR. □

44

Boolean functions

Theorem
Let σ be the unit step function. Two layer MLPs, where each
neuron has σ as the activation function, are able to compute all
functions of the form F : {0,1}n → {0,1}.

Proof.
▶ Given a vector v⃗ = (v1, . . . , vn) ∈ {0,1}n, consider a neuron

Nv⃗ whose output is 1 iff the input is v⃗:

σ

y

x1 xi xn

x0 = 1

w1 wi
· · ·· · ·

wn

w0 w0 = −
∑n

i=1 vi

wi =

1 vi = 1
−1 vi = 0

▶ Now let us connect all outputs of all neurons Nv⃗ satisfying
F(v⃗) = 1 using a neuron implementing OR. □

44

Non-linear separation

x1 x2

y
▶ Consider a three layer network; each neuron

has the unit step activation function.

▶ The network divides the input space in two
subspaces according to the output (0 or 1).

▶ The first (hidden) layer divides the input
space into half-spaces.

▶ The second layer may e.g. make
intersections of the half-spaces⇒ convex
sets.

▶ The third layer may e.g. make unions of some
convex sets.

45

Non-linear separation

x1 x2

y
▶ Consider a three layer network; each neuron

has the unit step activation function.

▶ The network divides the input space in two
subspaces according to the output (0 or 1).
▶ The first (hidden) layer divides the input

space into half-spaces.

▶ The second layer may e.g. make
intersections of the half-spaces⇒ convex
sets.

▶ The third layer may e.g. make unions of some
convex sets.

45

Non-linear separation

x1 x2

y
▶ Consider a three layer network; each neuron

has the unit step activation function.

▶ The network divides the input space in two
subspaces according to the output (0 or 1).
▶ The first (hidden) layer divides the input

space into half-spaces.
▶ The second layer may e.g. make

intersections of the half-spaces⇒ convex
sets.

▶ The third layer may e.g. make unions of some
convex sets.

45

Non-linear separation

x1 x2

y
▶ Consider a three layer network; each neuron

has the unit step activation function.

▶ The network divides the input space in two
subspaces according to the output (0 or 1).
▶ The first (hidden) layer divides the input

space into half-spaces.
▶ The second layer may e.g. make

intersections of the half-spaces⇒ convex
sets.

▶ The third layer may e.g. make unions of some
convex sets.

45

Non-linear separation – illustration

x1 xk

· · ·

· · ·

· · ·

y ▶ Consider three layer networks; each neuron
has the unit step activation function.

▶ Three layer nets are capable of
"approximating" any "reasonable" subset A of
the input space Rk .

▶ Cover A with hypercubes (in 2D squares, in
3D cubes, ...)

▶ Each hypercube K can be separated using
a two layer network NK
(i.e. a function computed by NK gives 1 for
points in K and 0 for the rest).

▶ Finally, connect outputs of the nets NK
satisfying K ∩ A , ∅ using a neuron
implementing OR.

46

Non-linear separation – illustration

x1 xk

· · ·

· · ·

· · ·

y ▶ Consider three layer networks; each neuron
has the unit step activation function.

▶ Three layer nets are capable of
"approximating" any "reasonable" subset A of
the input space Rk .
▶ Cover A with hypercubes (in 2D squares, in

3D cubes, ...)

▶ Each hypercube K can be separated using
a two layer network NK
(i.e. a function computed by NK gives 1 for
points in K and 0 for the rest).

▶ Finally, connect outputs of the nets NK
satisfying K ∩ A , ∅ using a neuron
implementing OR.

46

Non-linear separation – illustration

x1 xk

· · ·

· · ·

· · ·

y ▶ Consider three layer networks; each neuron
has the unit step activation function.

▶ Three layer nets are capable of
"approximating" any "reasonable" subset A of
the input space Rk .
▶ Cover A with hypercubes (in 2D squares, in

3D cubes, ...)
▶ Each hypercube K can be separated using

a two layer network NK
(i.e. a function computed by NK gives 1 for
points in K and 0 for the rest).

▶ Finally, connect outputs of the nets NK
satisfying K ∩ A , ∅ using a neuron
implementing OR.

46

Non-linear separation – illustration

x1 xk

· · ·

· · ·

· · ·

y ▶ Consider three layer networks; each neuron
has the unit step activation function.

▶ Three layer nets are capable of
"approximating" any "reasonable" subset A of
the input space Rk .
▶ Cover A with hypercubes (in 2D squares, in

3D cubes, ...)
▶ Each hypercube K can be separated using

a two layer network NK
(i.e. a function computed by NK gives 1 for
points in K and 0 for the rest).

▶ Finally, connect outputs of the nets NK
satisfying K ∩ A , ∅ using a neuron
implementing OR.

46

Power of ReLU

x

· · ·

y Consider a two layer network
▶ with a single input and single output;
▶ hidden neurons with the ReLU activation:
σ(ξ) = max(ξ,0);

▶ the output neuron with identity activation:
σ(ξ) = ξ (linear model)

For every continuous function f : [0,1]→ [0,1] and ε > 0 there
is a network of the above type computing a function
F : [0,1]→ R such that |f(x) − F(x)| ≤ ε for all x ∈ [0,1].

For every open subset A ⊆ [0,1] there is a network of the
above type such that for "most" x ∈ [0,1] we have that x ∈ A iff
the network’s output is > 0 for the input x.
Just consider a continuous function f where f(x) is the minimum difference
between x and a point on the boundary of A . Then uniformly approximate f
using the networks.

47

Power of ReLU

x

· · ·

y Consider a two layer network
▶ with a single input and single output;
▶ hidden neurons with the ReLU activation:
σ(ξ) = max(ξ,0);

▶ the output neuron with identity activation:
σ(ξ) = ξ (linear model)

For every continuous function f : [0,1]→ [0,1] and ε > 0 there
is a network of the above type computing a function
F : [0,1]→ R such that |f(x) − F(x)| ≤ ε for all x ∈ [0,1].

For every open subset A ⊆ [0,1] there is a network of the
above type such that for "most" x ∈ [0,1] we have that x ∈ A iff
the network’s output is > 0 for the input x.
Just consider a continuous function f where f(x) is the minimum difference
between x and a point on the boundary of A . Then uniformly approximate f
using the networks.

47

Power of ReLU

x

· · ·

y Consider a two layer network
▶ with a single input and single output;
▶ hidden neurons with the ReLU activation:
σ(ξ) = max(ξ,0);

▶ the output neuron with identity activation:
σ(ξ) = ξ (linear model)

For every continuous function f : [0,1]→ [0,1] and ε > 0 there
is a network of the above type computing a function
F : [0,1]→ R such that |f(x) − F(x)| ≤ ε for all x ∈ [0,1].

For every open subset A ⊆ [0,1] there is a network of the
above type such that for "most" x ∈ [0,1] we have that x ∈ A iff
the network’s output is > 0 for the input x.
Just consider a continuous function f where f(x) is the minimum difference
between x and a point on the boundary of A . Then uniformly approximate f
using the networks. 47

48

48

48

48

48

48

48

Non-linear separation - sigmoid

Theorem (Cybenko 1989 - informal version)
Let σ be a continuous function which is sigmoidal, i.e. satisfies

σ(x) =

1 for x → +∞

0 for x → −∞

For every "reasonable" set A ⊆ [0,1]n, there is a two layer
network where each hidden neuron has the activation function
σ (output neurons are linear), that satisfies the following:
For "most" vectors v⃗ ∈ [0,1]n we have that v⃗ ∈ A iff the network
output is > 0 for the input v⃗.
For mathematically oriented:
▶ "reasonable" means Lebesgue measurable
▶ "most" means that the set of incorrectly classified vectors has

the Lebesgue measure smaller than a given ε > 0

49

Non-linear separation - practical illustration

▶ ALVINN drives a car

▶ The net has 30×32 = 960 inputs
(the input space is thus R960)

▶ Input values correspond to
shades of gray of pixels.

▶ Output neurons "classify" images
of the road based on their
"curvature".

Image source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html

50

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Non-linear separation - practical illustration

▶ ALVINN drives a car
▶ The net has 30×32 = 960 inputs

(the input space is thus R960)

▶ Input values correspond to
shades of gray of pixels.

▶ Output neurons "classify" images
of the road based on their
"curvature".

Image source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html

50

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Non-linear separation - practical illustration

▶ ALVINN drives a car
▶ The net has 30×32 = 960 inputs

(the input space is thus R960)
▶ Input values correspond to

shades of gray of pixels.

▶ Output neurons "classify" images
of the road based on their
"curvature".

Image source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html

50

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Non-linear separation - practical illustration

▶ ALVINN drives a car
▶ The net has 30×32 = 960 inputs

(the input space is thus R960)
▶ Input values correspond to

shades of gray of pixels.
▶ Output neurons "classify" images

of the road based on their
"curvature".

Image source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html
50

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Function approximation - two-layer networks

Theorem (Cybenko 1989)
Let σ be a continuous function which is sigmoidal, i.e., is
increasing and satisfies

σ(x) =

1 for x → +∞

0 for x → −∞

For every continuous function f : [0,1]n → [0,1] and every ε > 0
there is a function F : [0,1]n → [0,1] computed by a two layer
network where each hidden neuron has the activation function
σ (output neurons are linear), that satisfies the following

|f(v⃗) − F(v⃗)| < ε for every v⃗ ∈ [0,1]n.

51

Neural networks and computability
▶ Consider recurrent networks (i.e., containing cycles)

▶ with real weights (in general);
▶ one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

▶ parallel activity rule (output values of all neurons are
recomputed in every step);

▶ activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

▶ We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =
|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

52

Neural networks and computability
▶ Consider recurrent networks (i.e., containing cycles)

▶ with real weights (in general);

▶ one input neuron and one output neuron (the network
computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

▶ parallel activity rule (output values of all neurons are
recomputed in every step);

▶ activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

▶ We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =
|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

52

Neural networks and computability
▶ Consider recurrent networks (i.e., containing cycles)

▶ with real weights (in general);
▶ one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

▶ parallel activity rule (output values of all neurons are
recomputed in every step);

▶ activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

▶ We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =
|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

52

Neural networks and computability
▶ Consider recurrent networks (i.e., containing cycles)

▶ with real weights (in general);
▶ one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

▶ parallel activity rule (output values of all neurons are
recomputed in every step);

▶ activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

▶ We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =
|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

52

Neural networks and computability
▶ Consider recurrent networks (i.e., containing cycles)

▶ with real weights (in general);
▶ one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

▶ parallel activity rule (output values of all neurons are
recomputed in every step);

▶ activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

▶ We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =
|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

52

Neural networks and computability
▶ Consider recurrent networks (i.e., containing cycles)

▶ with real weights (in general);
▶ one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

▶ parallel activity rule (output values of all neurons are
recomputed in every step);

▶ activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

▶ We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =
|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).
52

Neural networks and computability

A network recognizes a language L ⊆ {0,1}+ if it computes a
function F : A → R (A ⊆ R) such that

ω ∈ L iff δ(ω) ∈ A and F(δ(ω)) > 0.

▶ Recurrent networks with rational weights are equivalent to
Turing machines
▶ For every recursively enumerable language L ⊆ {0,1}+

there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L .

▶ The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

▶ There is "universal" network (equivalent of the universal
Turing machine)

▶ Recurrent networks are super-Turing powerful
▶ For every language L ⊆ {0,1}+ there is a recurrent network

with less than 1000 nerons which recognizes L .

53

Neural networks and computability

A network recognizes a language L ⊆ {0,1}+ if it computes a
function F : A → R (A ⊆ R) such that

ω ∈ L iff δ(ω) ∈ A and F(δ(ω)) > 0.

▶ Recurrent networks with rational weights are equivalent to
Turing machines
▶ For every recursively enumerable language L ⊆ {0,1}+

there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L .

▶ The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

▶ There is "universal" network (equivalent of the universal
Turing machine)

▶ Recurrent networks are super-Turing powerful
▶ For every language L ⊆ {0,1}+ there is a recurrent network

with less than 1000 nerons which recognizes L .

53

Neural networks and computability

A network recognizes a language L ⊆ {0,1}+ if it computes a
function F : A → R (A ⊆ R) such that

ω ∈ L iff δ(ω) ∈ A and F(δ(ω)) > 0.

▶ Recurrent networks with rational weights are equivalent to
Turing machines
▶ For every recursively enumerable language L ⊆ {0,1}+

there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L .

▶ The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

▶ There is "universal" network (equivalent of the universal
Turing machine)

▶ Recurrent networks are super-Turing powerful

▶ For every language L ⊆ {0,1}+ there is a recurrent network
with less than 1000 nerons which recognizes L .

53

Neural networks and computability

A network recognizes a language L ⊆ {0,1}+ if it computes a
function F : A → R (A ⊆ R) such that

ω ∈ L iff δ(ω) ∈ A and F(δ(ω)) > 0.

▶ Recurrent networks with rational weights are equivalent to
Turing machines
▶ For every recursively enumerable language L ⊆ {0,1}+

there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L .

▶ The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

▶ There is "universal" network (equivalent of the universal
Turing machine)

▶ Recurrent networks are super-Turing powerful
▶ For every language L ⊆ {0,1}+ there is a recurrent network

with less than 1000 nerons which recognizes L .

53

Summary of theoretical results

▶ Neural networks are very strong from the point of view of
theory:
▶ All Boolean functions can be expressed using two-layer

networks.
▶ Two-layer networks may approximate any continuous

function.
▶ Recurrent networks are at least as strong as Turing

machines.

▶ These results are purely theoretical!
▶ "Theoretical" networks are extremely huge.
▶ It is very difficult to handcraft them even for simplest

problems.

▶ From practical point of view, the most important
advantages of neural networks are: learning,
generalization, robustness.

54

Summary of theoretical results

▶ Neural networks are very strong from the point of view of
theory:
▶ All Boolean functions can be expressed using two-layer

networks.
▶ Two-layer networks may approximate any continuous

function.
▶ Recurrent networks are at least as strong as Turing

machines.
▶ These results are purely theoretical!

▶ "Theoretical" networks are extremely huge.
▶ It is very difficult to handcraft them even for simplest

problems.

▶ From practical point of view, the most important
advantages of neural networks are: learning,
generalization, robustness.

54

Neural networks vs classical computers

Neural networks "Classical" computers

Data implicitly in weights explicitly

Computation naturally parallel sequential, localized

Robustness robust w.r.t. input corruption
& damage

changing one bit may
completely crash the
computation

Precision imprecise, network recalls a
training example "similar" to
the input

(typically) precise

Programming learning manual

55

History & implementations

56

History of neurocomputers

▶ 1951: SNARC (Minski et al)
▶ the first implementation of neural network
▶ a rat strives to exit a maze
▶ 40 artificial neurons (300 vacuum tubes, engines, etc.)

57

History of neurocomputers

▶ 1957: Mark I Perceptron (Rosenblatt et al) - the first
successful network for image recognition

▶ single layer network
▶ image represented by 20 × 20 photocells
▶ intensity of pixels was treated as the input to a perceptron

(basically the formal neuron), which recognized figures
▶ weights were implemented using potentiometers, each set

by its own engine
▶ it was possible to arbitrarily reconnect inputs to neurons to

demonstrate adaptability

58

History of neurocomputers
▶ 1960: ADALINE (Widrow & Hof)

▶ single layer neural network
▶ weights stored in a newly invented electronic component

memistor, which remembers history of electric current in
the form of resistance.

▶ Widrow founded a company Memistor Corporation, which
sold implementations of neural networks.

▶ 1960-66: several companies concerned with neural
networks were founded.

59

History of neurocomputers

▶ 1967-82: dead still after publication of a book by Minski &
Papert (published 1969, title Perceptrons)

▶ 1983-end of 90s: revival of neural networks
▶ many attempts at hardware implementations

▶ application specific chips (ASIC)
▶ programmable hardware (FPGA)

▶ hw implementations typically not better than "software"
implementations on universal computers (problems with
weight storage, size, speed, cost of production etc.)

▶ end of 90s-cca 2005: NN suppressed by other machine
learning methods (support vector machines (SVM))

▶ 2006-now: The boom of neural networks!
▶ deep networks – often better than any other method
▶ GPU implementations
▶ ... specialized hw implementations (Google’s TPU)

60

History of neurocomputers

▶ 1967-82: dead still after publication of a book by Minski &
Papert (published 1969, title Perceptrons)

▶ 1983-end of 90s: revival of neural networks
▶ many attempts at hardware implementations

▶ application specific chips (ASIC)
▶ programmable hardware (FPGA)

▶ hw implementations typically not better than "software"
implementations on universal computers (problems with
weight storage, size, speed, cost of production etc.)

▶ end of 90s-cca 2005: NN suppressed by other machine
learning methods (support vector machines (SVM))

▶ 2006-now: The boom of neural networks!
▶ deep networks – often better than any other method
▶ GPU implementations
▶ ... specialized hw implementations (Google’s TPU)

60

Some highlights

▶ Breakthrough in image recognition.
Accuracy of image recognition improved by an order of magnitude in 5
years.

▶ Breakthrough in game playing.
Superhuman results in Go and Chess almost without any human
intervention. Master level in Starcraft, poker, etc.

▶ Breakthrough in machine translation.
Switching to deep learning produced a 60% increase in translation
accuracy compared to the phrase-based approach previously used in
Google Translate (in human evaluation)

▶ Breakthrough in speech processing.
▶ Breakthrough in text generation.

GPT-4 generates pretty realistic articles, short plays (for a theatre) have
been successfully generated, etc.

61

History in waves ...

Figure: The figure shows two of the three historical waves of artificial
neural nets research, as measured by the frequency of the phrases
"cybernetics" and "connectionism" or "neural networks" according to
Google Books (the third wave is too recent to appear).

62

Current hardware – What do we face?

Increasing dataset size ...

... weakly-supervised pre-training using hashtags from
the Instagram uses 3.6 ∗ 109 images.
Revisiting Weakly Supervised Pre-Training of Visual Perception Models. Singh et al.

https://arxiv.org/pdf/2201.08371.pdf, 2022

63

Current hardware – What do we face?

... and thus increasing size of neural networks ...

2. ADALINE

4. Early back-propagation network (Rumelhart et al., 1986b)

8. Image recognition: LeNet-5 (LeCun et al., 1998b)

10. Dimensionality reduction: Deep belief network (Hinton et al., 2006)
... here the third "wave" of neural networks started

15. Digit recognition: GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

18. Image recognition (AlexNet): Multi-GPU convolutional network (Krizhevsky et al., 2012)

20. Image recognition: GoogLeNet (Szegedy et al., 2014a)

64

GPT-4’s Scale: GPT-4 has 1.8 trillion parameters across 120 layers, which is
over 10 times larger than GPT-3.

65

Current hardware – What do we face?

... as a reward we get this ...

Figure: Since deep networks reached the scale necessary to
compete in the ImageNetLarge Scale Visual Recognition Challenge,
they have consistently won the competition every year, and yielded
lower and lower error rates each time. Data from Russakovsky et al.
(2014b) and He et al. (2015).

66

Current hardware

In 2012, Google trained a large network of 1.7
billion weights and 9 layers

The task was image recognition (10 million
youtube video frames)

The hw comprised a 1000 computer network
(16 000 cores), computation took three days.

67

Current hardware

In 2012, Google trained a large network of 1.7
billion weights and 9 layers

The task was image recognition (10 million
youtube video frames)

The hw comprised a 1000 computer network
(16 000 cores), computation took three days.

In 2014, similar task performed on Commodity
Off-The-Shelf High Performance Computing
(COTS HPC) technology: a cluster of GPU
servers with Infiniband interconnects and MPI.

Able to train 1 billion parameter networks on
just 3 machines in a couple of days.
Able to scale to 11 billion weights (approx. 6.5
times larger than the Google model) on 16
GPUs. 67

Current hardware – NVIDIA DGX Station

▶ 8x GPU (Nvidia A100 80GB
Tensor Core)

▶ 5 petaFLOPS

▶ System memory: 2 TB

▶ Network: 200 Gb/s InfiniBand

68

Deep learning in clouds
Big companies offer cloud services for deep learning:
▶ Amazon Web Services
▶ Google Cloud
▶ Deep Cognition
▶ ...

Advantages:
▶ Do not have to care (too much) about technical problems.
▶ Do not have to buy and optimize highend hw/sw, networks etc.
▶ Scaling & virtually limitless storage.

Disadvatages:
▶ Do not have full control.
▶ Performance can vary, connectivity problems.
▶ Have to pay for services.
▶ Privacy issues.

69

Current software
▶ TensorFlow (Google)

▶ open source software library for numerical computation
using data flow graphs

▶ allows implementation of most current neural networks
▶ allows computation on multiple devices (CPUs, GPUs, ...)
▶ Python API
▶ Keras: a part of TensorFlow that allows easy description of

most modern neural networks
▶ PyTorch (Facebook)

▶ similar to TensorFlow
▶ object oriented
▶ ... majority of new models in research papers implemented

in PyTorch
https://www.cioinsight.com/big-data/pytorch-vs-tensorflow/

▶ Theano (dead):
▶ The "academic" grand-daddy of deep-learning frameworks,

written in Python. Strongly inspired TensorFlow (some
people developing Theano moved on to develop
TensorFlow).

▶ There are others: Caffe, Deeplearning4j, ... 70

Current software – Keras

71

Current software – Keras functional API

72

Current software – TensorFlow

73

Current software – TensorFlow

74

Current software – PyTorch

75

Other software implementations

Most "mathematical" software packages contain some support
of neural networks:
▶ MATLAB
▶ R
▶ STATISTICA
▶ Weka
▶ ...

The implementations are typically not on par with the previously
mentioned dedicated deep-learning libraries.

76

Training linear models

77

Linear regression (ADALINE)

Architecture:

x1 x2 xn

· · ·

y

x⃗0 = 1
w0

w1 w2 wn

w⃗ = (w0,w1, . . . ,wn) and x⃗ = (x0, x1, . . . , xn) where x0 = 1.

Activity:
▶ inner potential: ξ = w0 +

∑n
i=1 wixi =

∑n
i=0 wixi = w⃗ · x⃗

▶ activation function: σ(ξ) = ξ
▶ network function: y[w⃗](x⃗) = σ(ξ) = w⃗ · x⃗

78

Linear regression (ADALINE)

Learning:
▶ Given a training dataset

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th
input, and dk ∈ R is the expected output.

Intuition: The network is supposed to compute an affine approximation of the
function (some of) whose values are given in the training set.

79

Oaks in Wisconsin

80

Linear regression (ADALINE)
▶ Error function:

E(w⃗) =
1
2

p∑
k=1

(
w⃗ · x⃗k − dk

)2
=

1
2

p∑
k=1

 n∑
i=0

wixki − dk


2

▶ The goal is to find w⃗ which minimizes E(w⃗).
81

Error function

82

Gradient of the error function

Consider gradient of the error function:

∇E(w⃗) =

(
∂E
∂w0

(w⃗), . . . ,
∂E
∂wn

(w⃗)

)

Intuition: ∇E(w⃗) is a vector in the weight space which points in
the direction of the steepest ascent of the error function.
Note that the vectors x⃗k are just parameters of the function E, and are thus
fixed!

Fact
If ∇E(w⃗) = 0⃗ = (0, . . . ,0), then w⃗ is a global minimum of E.
For ADALINE, the error function E(w⃗) is a convex paraboloid and thus has
the unique global minimum.

83

Gradient of the error function

Consider gradient of the error function:

∇E(w⃗) =

(
∂E
∂w0

(w⃗), . . . ,
∂E
∂wn

(w⃗)

)

Intuition: ∇E(w⃗) is a vector in the weight space which points in
the direction of the steepest ascent of the error function.
Note that the vectors x⃗k are just parameters of the function E, and are thus
fixed!

Fact
If ∇E(w⃗) = 0⃗ = (0, . . . ,0), then w⃗ is a global minimum of E.
For ADALINE, the error function E(w⃗) is a convex paraboloid and thus has
the unique global minimum.

83

Gradient - illustration

Caution! This picture just illustrates the notion of gradient ... it is not
the convex paraboloid E(w⃗) !

84

Gradient of the error function

∂E
∂wℓ

(w⃗) =
1
2

p∑
k=1

δ
δwℓ

 n∑
i=0

wixki − dk


2

=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk

 δδwℓ
 n∑

i=0

wixki − dk


=

1
2

p∑
k=1

2

 n∑
i=0

wixki − dk


 n∑

i=0

(
δ
δwℓ

wixki

)
−
δE
δwℓ

dk


=

p∑
k=1

(
w⃗ · x⃗k − dk

)
xkℓ

Thus

∇E(w⃗) =

(
∂E
∂w0

(w⃗), . . . ,
∂E
∂wn

(w⃗)

)
=

p∑
k=1

(
w⃗ · x⃗k − dk

)
x⃗k

85

Gradient of the error function

∂E
∂wℓ

(w⃗) =
1
2

p∑
k=1

δ
δwℓ

 n∑
i=0

wixki − dk


2

=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk

 δδwℓ
 n∑

i=0

wixki − dk



=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk


 n∑

i=0

(
δ
δwℓ

wixki

)
−
δE
δwℓ

dk


=

p∑
k=1

(
w⃗ · x⃗k − dk

)
xkℓ

Thus

∇E(w⃗) =

(
∂E
∂w0

(w⃗), . . . ,
∂E
∂wn

(w⃗)

)
=

p∑
k=1

(
w⃗ · x⃗k − dk

)
x⃗k

85

Gradient of the error function

∂E
∂wℓ

(w⃗) =
1
2

p∑
k=1

δ
δwℓ

 n∑
i=0

wixki − dk


2

=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk

 δδwℓ
 n∑

i=0

wixki − dk


=

1
2

p∑
k=1

2

 n∑
i=0

wixki − dk


 n∑

i=0

(
δ
δwℓ

wixki

)
−
δE
δwℓ

dk



=

p∑
k=1

(
w⃗ · x⃗k − dk

)
xkℓ

Thus

∇E(w⃗) =

(
∂E
∂w0

(w⃗), . . . ,
∂E
∂wn

(w⃗)

)
=

p∑
k=1

(
w⃗ · x⃗k − dk

)
x⃗k

85

Gradient of the error function

∂E
∂wℓ

(w⃗) =
1
2

p∑
k=1

δ
δwℓ

 n∑
i=0

wixki − dk


2

=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk

 δδwℓ
 n∑

i=0

wixki − dk


=

1
2

p∑
k=1

2

 n∑
i=0

wixki − dk


 n∑

i=0

(
δ
δwℓ

wixki

)
−
δE
δwℓ

dk


=

p∑
k=1

(
w⃗ · x⃗k − dk

)
xkℓ

Thus

∇E(w⃗) =

(
∂E
∂w0

(w⃗), . . . ,
∂E
∂wn

(w⃗)

)
=

p∑
k=1

(
w⃗ · x⃗k − dk

)
x⃗k

85

Gradient of the error function

∂E
∂wℓ

(w⃗) =
1
2

p∑
k=1

δ
δwℓ

 n∑
i=0

wixki − dk


2

=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk

 δδwℓ
 n∑

i=0

wixki − dk


=

1
2

p∑
k=1

2

 n∑
i=0

wixki − dk


 n∑

i=0

(
δ
δwℓ

wixki

)
−
δE
δwℓ

dk


=

p∑
k=1

(
w⃗ · x⃗k − dk

)
xkℓ

Thus

∇E(w⃗) =

(
∂E
∂w0

(w⃗), . . . ,
∂E
∂wn

(w⃗)

)
=

p∑
k=1

(
w⃗ · x⃗k − dk

)
x⃗k

85

Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.

The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2),
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1, weights w⃗(t+1) are computed as follows:

w⃗(t+1) = w⃗(t)
− ε · ∇E(w⃗(t))

= w⃗(t)
− ε ·

p∑
k=1

(
w⃗(t)
· x⃗k − dk

)
· x⃗k

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is a learning rate.

Proposition
For sufficiently small ε > 0 the sequence w⃗(0), w⃗(1), w⃗(2), . . .
converges (componentwise) to the global minimum of E (i.e. to
the vector w⃗ satisfying ∇E(w⃗) = 0⃗).

86

Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2),
▶ weights in w⃗(0) are randomly initialized to values close to 0

▶ in the step t + 1, weights w⃗(t+1) are computed as follows:
w⃗(t+1) = w⃗(t)

− ε · ∇E(w⃗(t))

= w⃗(t)
− ε ·

p∑
k=1

(
w⃗(t)
· x⃗k − dk

)
· x⃗k

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is a learning rate.

Proposition
For sufficiently small ε > 0 the sequence w⃗(0), w⃗(1), w⃗(2), . . .
converges (componentwise) to the global minimum of E (i.e. to
the vector w⃗ satisfying ∇E(w⃗) = 0⃗).

86

Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2),
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1, weights w⃗(t+1) are computed as follows:

w⃗(t+1) = w⃗(t)
− ε · ∇E(w⃗(t))

= w⃗(t)
− ε ·

p∑
k=1

(
w⃗(t)
· x⃗k − dk

)
· x⃗k

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is a learning rate.

Proposition
For sufficiently small ε > 0 the sequence w⃗(0), w⃗(1), w⃗(2), . . .
converges (componentwise) to the global minimum of E (i.e. to
the vector w⃗ satisfying ∇E(w⃗) = 0⃗).

86

Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2),
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1, weights w⃗(t+1) are computed as follows:

w⃗(t+1) = w⃗(t)
− ε · ∇E(w⃗(t))

= w⃗(t)
− ε ·

p∑
k=1

(
w⃗(t)
· x⃗k − dk

)
· x⃗k

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is a learning rate.

Proposition
For sufficiently small ε > 0 the sequence w⃗(0), w⃗(1), w⃗(2), . . .
converges (componentwise) to the global minimum of E (i.e. to
the vector w⃗ satisfying ∇E(w⃗) = 0⃗).

86

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

Linear regression - animation

87

MLP training – theory

88

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
▶ Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

▶ layers numbered from 0; the
input layer has number 0
▶ E.g. three-layer network has

two hidden layers and one
output layer

▶ Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

▶ Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

89

MLP – architecture

Notation:
▶ Denote

▶ X a set of input neurons
▶ Y a set of output neurons
▶ Z a set of all neurons (X ,Y ⊆ Z)

▶ individual neurons denoted by indices i, j etc.
▶ ξj is the inner potential of the neuron j after the computation

stops
▶ yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
▶ wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

▶ j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

▶ j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

90

MLP – architecture

Notation:
▶ Denote

▶ X a set of input neurons
▶ Y a set of output neurons
▶ Z a set of all neurons (X ,Y ⊆ Z)

▶ individual neurons denoted by indices i, j etc.
▶ ξj is the inner potential of the neuron j after the computation

stops

▶ yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
▶ wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

▶ j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

▶ j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

90

MLP – architecture

Notation:
▶ Denote

▶ X a set of input neurons
▶ Y a set of output neurons
▶ Z a set of all neurons (X ,Y ⊆ Z)

▶ individual neurons denoted by indices i, j etc.
▶ ξj is the inner potential of the neuron j after the computation

stops
▶ yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)

▶ wji is the weight of the connection from i to j
(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

▶ j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

▶ j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

90

MLP – architecture

Notation:
▶ Denote

▶ X a set of input neurons
▶ Y a set of output neurons
▶ Z a set of all neurons (X ,Y ⊆ Z)

▶ individual neurons denoted by indices i, j etc.
▶ ξj is the inner potential of the neuron j after the computation

stops
▶ yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
▶ wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

▶ j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

▶ j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

90

MLP – architecture

Notation:
▶ Denote

▶ X a set of input neurons
▶ Y a set of output neurons
▶ Z a set of all neurons (X ,Y ⊆ Z)

▶ individual neurons denoted by indices i, j etc.
▶ ξj is the inner potential of the neuron j after the computation

stops
▶ yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
▶ wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

▶ j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

▶ j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

90

MLP – architecture

Notation:
▶ Denote

▶ X a set of input neurons
▶ Y a set of output neurons
▶ Z a set of all neurons (X ,Y ⊆ Z)

▶ individual neurons denoted by indices i, j etc.
▶ ξj is the inner potential of the neuron j after the computation

stops
▶ yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
▶ wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

▶ j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

▶ j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

90

MLP – activity

Activity:
▶ inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

▶ activation function σj for neuron j (arbitrary differentiable)
▶ State of non-input neuron j ∈ Z \ X after the computation

stops:

yj = σj(ξj)

(yj depends on the configuration w⃗ and the input x⃗, so we sometimes
write yj(w⃗, x⃗))

▶ The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the ℓ-th step,
all neurons of the ℓ-th layer are evaluated.

91

MLP – activity

Activity:
▶ inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

▶ activation function σj for neuron j (arbitrary differentiable)

▶ State of non-input neuron j ∈ Z \ X after the computation
stops:

yj = σj(ξj)

(yj depends on the configuration w⃗ and the input x⃗, so we sometimes
write yj(w⃗, x⃗))

▶ The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the ℓ-th step,
all neurons of the ℓ-th layer are evaluated.

91

MLP – activity

Activity:
▶ inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

▶ activation function σj for neuron j (arbitrary differentiable)
▶ State of non-input neuron j ∈ Z \ X after the computation

stops:

yj = σj(ξj)

(yj depends on the configuration w⃗ and the input x⃗, so we sometimes
write yj(w⃗, x⃗))

▶ The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the ℓ-th step,
all neurons of the ℓ-th layer are evaluated.

91

MLP – activity

Activity:
▶ inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

▶ activation function σj for neuron j (arbitrary differentiable)
▶ State of non-input neuron j ∈ Z \ X after the computation

stops:

yj = σj(ξj)

(yj depends on the configuration w⃗ and the input x⃗, so we sometimes
write yj(w⃗, x⃗))

▶ The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the ℓ-th step,
all neurons of the ℓ-th layer are evaluated.

91

MLP – learning

Learning:
▶ Given a training dataset T of the form{ (

x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every d⃗k ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input x⃗k (the vector d⃗k can be written as

(
dkj

)
j∈Y

).

▶ Error function:

E(w⃗) =

p∑
k=1

Ek (w⃗)

where

Ek (w⃗) =
1
2

∑
j∈Y

(
yj(w⃗, x⃗k) − dkj

)2

92

MLP – learning

Learning:
▶ Given a training dataset T of the form{ (

x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every d⃗k ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input x⃗k (the vector d⃗k can be written as

(
dkj

)
j∈Y

).

▶ Error function:

E(w⃗) =

p∑
k=1

Ek (w⃗)

where

Ek (w⃗) =
1
2

∑
j∈Y

(
yj(w⃗, x⃗k) − dkj

)2

92

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2),
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), weights w⃗(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(w⃗(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E∂wji
(w⃗(t)) is a component of the gradient ∇E, i.e. the weight update

can be written as w⃗(t+1) = w⃗(t)
− ε(t) · ∇E(w⃗(t)).

93

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2),
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), weights w⃗(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(w⃗(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E∂wji
(w⃗(t)) is a component of the gradient ∇E, i.e. the weight update

can be written as w⃗(t+1) = w⃗(t)
− ε(t) · ∇E(w⃗(t)).

93

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2),
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), weights w⃗(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(w⃗(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E∂wji
(w⃗(t)) is a component of the gradient ∇E, i.e. the weight update

can be written as w⃗(t+1) = w⃗(t)
− ε(t) · ∇E(w⃗(t)).

93

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z ∖ X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj for j ∈ Z ∖ (Y ∪ X)

(Here all yj are in fact yj(w⃗, x⃗k)).

94

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z ∖ X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj for j ∈ Z ∖ (Y ∪ X)

(Here all yj are in fact yj(w⃗, x⃗k)).

94

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z ∖ X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj for j ∈ Z ∖ (Y ∪ X)

(Here all yj are in fact yj(w⃗, x⃗k)).

94

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z ∖ X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj for j ∈ Z ∖ (Y ∪ X)

(Here all yj are in fact yj(w⃗, x⃗k)).
94

MLP – error function gradient (history)

▶ If yj = σj(ξj) =
1

1+e−ξj
for all j ∈ Z , then

σ′j (ξj) = yj(1 − yj)

and thus for all j ∈ Z ∖ X :

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· yr(1 − yr) · wrj for j ∈ Z ∖ (Y ∪ X)

95

MLP – error function gradient (history)

▶ If yj = σj(ξj) =
1

1+e−ξj
for all j ∈ Z , then

σ′j (ξj) = yj(1 − yj)

and thus for all j ∈ Z ∖ X :

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· yr(1 − yr) · wrj for j ∈ Z ∖ (Y ∪ X)

95

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=
∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

96

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=
∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

96

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=
∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

96

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=
∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

96

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=
∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

96

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=
∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

96

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=
∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.
96

MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

▶ if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

▶ if j ∈ Z ∖ Y ∪ X , then assuming that j is in the ℓ-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ℓ + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj

(This works because all neurons of r ∈ j→ belong to the ℓ+ 1-st layer.)

97

MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

▶ if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

▶ if j ∈ Z ∖ Y ∪ X , then assuming that j is in the ℓ-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ℓ + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj

(This works because all neurons of r ∈ j→ belong to the ℓ+ 1-st layer.)

97

MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

▶ if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

▶ if j ∈ Z ∖ Y ∪ X , then assuming that j is in the ℓ-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ℓ + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj

(This works because all neurons of r ∈ j→ belong to the ℓ+ 1-st layer.)

97

Complexity of the batch algorithm

Computation of ∂E∂wji
(w⃗(t−1)) stops in time linear in the size of

the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

98

Complexity of the batch algorithm

Computation of ∂E∂wji
(w⃗(t−1)) stops in time linear in the size of

the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

98

Complexity of the batch algorithm

Computation of ∂E∂wji
(w⃗(t−1)) stops in time linear in the size of

the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

98

Complexity of the batch algorithm

Computation of ∂E∂wji
(w⃗(t−1)) stops in time linear in the size of

the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

98

Complexity of the batch algorithm

Computation of ∂E∂wji
(w⃗(t−1)) stops in time linear in the size of

the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

98

Complexity of the batch algorithm

Computation of ∂E∂wji
(w⃗(t−1)) stops in time linear in the size of

the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

98

Complexity of the batch algorithm

Computation of ∂E∂wji
(w⃗(t−1)) stops in time linear in the size of

the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

98

Illustration of the gradient descent – XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork
99

MLP – learning algorithm

Online algorithm:

The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2),
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), weights w⃗(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂Ek

∂wji
(w(t)

ji)

is the weight update of wji in the step t + 1 and 0 < ε(t) ≤ 1
is the learning rate in the step t + 1.

There are other variants determined by selection of the training examples
used for the error computation (more on this later).

100

SGD

▶ weights in w⃗(0) are randomly initialized to values close to 0

▶ in the step t + 1 (here t = 0,1,2 . . .), weights w⃗(t+1) are
computed as follows:

▶ Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
▶ Compute

w⃗(t+1) = w⃗(t) +∆w⃗(t)

where

∆w⃗(t) = −ε(t) ·
∑
k∈T

∇Ek (w⃗(t))

▶ 0 < ε(t) ≤ 1 is a learning rate in step t + 1

▶ ∇Ek (w⃗(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.

101

Output activations and error functions

Regression:
▶ The output activation is typically the identity yi = σ(ξi) = ξi .

▶ A training dataset{ (
x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every d⃗k ∈ R

|Y |

is the desired network output. For every i ∈ Y , denote by
dki the desired output of the neuron i for a given network
input x⃗k (the vector d⃗k can be written as (dki)i∈Y).

▶ The error function mean squared error (mse):

E(w⃗) =
1
p

p∑
k=1

Ek (w⃗)

where

Ek (w⃗) =
1
2

∑
i∈Y

(
yi(w⃗, x⃗k) − dki

)2

102

Output activations and error functions

Regression:
▶ The output activation is typically the identity yi = σ(ξi) = ξi .
▶ A training dataset{ (

x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every d⃗k ∈ R

|Y |

is the desired network output. For every i ∈ Y , denote by
dki the desired output of the neuron i for a given network
input x⃗k (the vector d⃗k can be written as (dki)i∈Y).

▶ The error function mean squared error (mse):

E(w⃗) =
1
p

p∑
k=1

Ek (w⃗)

where

Ek (w⃗) =
1
2

∑
i∈Y

(
yi(w⃗, x⃗k) − dki

)2

102

Output activations and error functions

Regression:
▶ The output activation is typically the identity yi = σ(ξi) = ξi .
▶ A training dataset{ (

x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every d⃗k ∈ R

|Y |

is the desired network output. For every i ∈ Y , denote by
dki the desired output of the neuron i for a given network
input x⃗k (the vector d⃗k can be written as (dki)i∈Y).

▶ The error function mean squared error (mse):

E(w⃗) =
1
p

p∑
k=1

Ek (w⃗)

where

Ek (w⃗) =
1
2

∑
i∈Y

(
yi(w⃗, x⃗k) − dki

)2

102

Output activations and error functions

Classification
▶ The output activation function softmax:

yi = σi(ξi) =
eξi∑

j∈Y eξj

▶ A training dataset{ (
x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every

d⃗k ∈ {0,1}|Y | is the desired network output. For every i ∈ Y ,
denote by dki the desired output of the neuron i for a given
network input x⃗k (the vector d⃗k can be written as (dki)i∈Y).

▶ The error function (categorical) cross entropy:

E(w⃗) = −
1
p

p∑
k=1

∑
i∈Y

dki log(yi(w⃗, x⃗k))

103

Output activations and error functions

Classification
▶ The output activation function softmax:

yi = σi(ξi) =
eξi∑

j∈Y eξj

▶ A training dataset{ (
x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every

d⃗k ∈ {0,1}|Y | is the desired network output. For every i ∈ Y ,
denote by dki the desired output of the neuron i for a given
network input x⃗k (the vector d⃗k can be written as (dki)i∈Y).

▶ The error function (categorical) cross entropy:

E(w⃗) = −
1
p

p∑
k=1

∑
i∈Y

dki log(yi(w⃗, x⃗k))

103

Output activations and error functions

Classification
▶ The output activation function softmax:

yi = σi(ξi) =
eξi∑

j∈Y eξj

▶ A training dataset{ (
x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every

d⃗k ∈ {0,1}|Y | is the desired network output. For every i ∈ Y ,
denote by dki the desired output of the neuron i for a given
network input x⃗k (the vector d⃗k can be written as (dki)i∈Y).

▶ The error function (categorical) cross entropy:

E(w⃗) = −
1
p

p∑
k=1

∑
i∈Y

dki log(yi(w⃗, x⃗k))

103

Gradient with Softmax & Cross-Entropy

Assume that V is the layer just below the output layer Y .

E(w⃗) = −
1
p

p∑
k=1

∑
i∈Y

dki log(yi(w⃗, x⃗k))

= −
1
p

p∑
k=1

∑
i∈Y

dki log

 eξi∑
j∈Y eξj


= −

1
p

p∑
k=1

∑
i∈Y

dki

ξi − log

∑
j∈Y

eξj




= −
1
p

p∑
k=1

∑
i∈Y

dki

∑
ℓ∈V

wiℓyℓ − log

∑
j∈Y

e
∑
ℓ∈V wjℓyℓ




Now compute the derivatives δEδyℓ for ℓ ∈ V .

104

Output activations and error functions

Binary classification
Assume a single output neuron o ∈ Y = {o}.
▶ The output activation function logistic sigmoid:

σo(ξo) =
eξo

eξo + 1
=

1
1 + e−ξo

▶ A training dataset

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th
input, and dk ∈ {0,1} is the desired output.

▶ The error function (Binary) cross-entropy:

E(w⃗) =

p∑
k=1

−(dk log(yo(w⃗, x⃗k))+(1−dk) log(1−yo(w⃗, x⃗k)))

105

Output activations and error functions

Binary classification
Assume a single output neuron o ∈ Y = {o}.
▶ The output activation function logistic sigmoid:

σo(ξo) =
eξo

eξo + 1
=

1
1 + e−ξo

▶ A training dataset

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th
input, and dk ∈ {0,1} is the desired output.

▶ The error function (Binary) cross-entropy:

E(w⃗) =

p∑
k=1

−(dk log(yo(w⃗, x⃗k))+(1−dk) log(1−yo(w⃗, x⃗k)))

105

Output activations and error functions

Binary classification
Assume a single output neuron o ∈ Y = {o}.
▶ The output activation function logistic sigmoid:

σo(ξo) =
eξo

eξo + 1
=

1
1 + e−ξo

▶ A training dataset

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th
input, and dk ∈ {0,1} is the desired output.

▶ The error function (Binary) cross-entropy:

E(w⃗) =

p∑
k=1

−(dk log(yo(w⃗, x⃗k))+(1−dk) log(1−yo(w⃗, x⃗k)))

105

But what is the meaning of the sigmoid?

The model gives a probability yo of the class 1 given an input x⃗.
But why do we model such a probability using 1/(1 + e−ξo) ?

106

But what is the meaning of the sigmoid?

The model gives a probability yo of the class 1 given an input x⃗.
But why do we model such a probability using 1/(1 + e−ξo) ?

Let ȳ be the "true" probability of the class 1 to be modeled.
What about odds of the class 1?

odds(ȳ) = ȳ/1 − ȳ

... stretches from 0 to ∞
106

But what is the meaning of the sigmoid?

The model gives a probability yo of the class 1 given an input x⃗.
But why do we model such a probability using 1/(1 + e−ξo) ?

Let ȳ be the "true" probability of the class 1 to be modeled.
What about log odds (aka logit) of the class 1?

logit(ȳ) = log(ȳ/(1 − ȳ))

... stretches from −∞ to ∞
106

But what is the meaning of the sigmoid?

Assume that ȳ is the probability of the class 1. Put

log(ȳ/(1 − ȳ)) = ξo

(here ξo is the inner potential of the output neuron).

Then

log((1 − ȳ)/ȳ) = −ξo

and

(1 − ȳ)/ȳ = e−ξo

and

ȳ =
1

1 + e−ξo

That is, modeling the probability using the classification model (with
the logistic output activation) corresponds to modeling log-odds using
the regression model (with the identity output activation).

107

But what is the meaning of the sigmoid?

Assume that ȳ is the probability of the class 1. Put

log(ȳ/(1 − ȳ)) = ξo

(here ξo is the inner potential of the output neuron). Then

log((1 − ȳ)/ȳ) = −ξo

and

(1 − ȳ)/ȳ = e−ξo

and

ȳ =
1

1 + e−ξo

That is, modeling the probability using the classification model (with
the logistic output activation) corresponds to modeling log-odds using
the regression model (with the identity output activation).

107

But what is the meaning of the sigmoid?

Assume that ȳ is the probability of the class 1. Put

log(ȳ/(1 − ȳ)) = ξo

(here ξo is the inner potential of the output neuron). Then

log((1 − ȳ)/ȳ) = −ξo

and

(1 − ȳ)/ȳ = e−ξo

and

ȳ =
1

1 + e−ξo

That is, modeling the probability using the classification model (with
the logistic output activation) corresponds to modeling log-odds using
the regression model (with the identity output activation).

107

But what is the meaning of the sigmoid?

Assume that ȳ is the probability of the class 1. Put

log(ȳ/(1 − ȳ)) = ξo

(here ξo is the inner potential of the output neuron). Then

log((1 − ȳ)/ȳ) = −ξo

and

(1 − ȳ)/ȳ = e−ξo

and

ȳ =
1

1 + e−ξo

That is, modeling the probability using the classification model (with
the logistic output activation) corresponds to modeling log-odds using
the regression model (with the identity output activation).

107

Log likelihood is your friend!

What is the statistical meaning of the cross-entropy?
▶ Let’s have a "coin" (sides 0 and 1).

▶ The probability of 1 is ȳ and is unknown!
▶ You have tossed the coin 5 times and got a training

dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

▶ What is the best model y of ȳ based on the data?
Answer: The one that generates the data with maximum
probability!

108

Log likelihood is your friend!

What is the statistical meaning of the cross-entropy?
▶ Let’s have a "coin" (sides 0 and 1).
▶ The probability of 1 is ȳ and is unknown!

▶ You have tossed the coin 5 times and got a training
dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

▶ What is the best model y of ȳ based on the data?
Answer: The one that generates the data with maximum
probability!

108

Log likelihood is your friend!

What is the statistical meaning of the cross-entropy?
▶ Let’s have a "coin" (sides 0 and 1).
▶ The probability of 1 is ȳ and is unknown!
▶ You have tossed the coin 5 times and got a training

dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

▶ What is the best model y of ȳ based on the data?
Answer: The one that generates the data with maximum
probability!

108

Log likelihood is your friend!

What is the statistical meaning of the cross-entropy?
▶ Let’s have a "coin" (sides 0 and 1).
▶ The probability of 1 is ȳ and is unknown!
▶ You have tossed the coin 5 times and got a training

dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

▶ What is the best model y of ȳ based on the data?

Answer: The one that generates the data with maximum
probability!

108

Log likelihood is your friend!

What is the statistical meaning of the cross-entropy?
▶ Let’s have a "coin" (sides 0 and 1).
▶ The probability of 1 is ȳ and is unknown!
▶ You have tossed the coin 5 times and got a training

dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Consider this to be a very special case where the input dimension is 0

▶ What is the best model y of ȳ based on the data?
Answer: The one that generates the data with maximum
probability!

108

Log likelihood is your friend!

Keep in mind our dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Assume that the data was generated by independent trials,
then the probability of getting exactly T from our model is

L = y · y · (1 − y) · (1 − y) · y

How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1−y)+log(1−y)+log(y)

But then

−LL = −1·log(y)−1·log(y)−(1−0)·log(1−y)−(1−0)·log(1−y)−1·log(y)

i.e. −LL is the cross-entropy.

109

Log likelihood is your friend!

Keep in mind our dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Assume that the data was generated by independent trials,
then the probability of getting exactly T from our model is

L = y · y · (1 − y) · (1 − y) · y

How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1−y)+log(1−y)+log(y)

But then

−LL = −1·log(y)−1·log(y)−(1−0)·log(1−y)−(1−0)·log(1−y)−1·log(y)

i.e. −LL is the cross-entropy.

109

Log likelihood is your friend!

Keep in mind our dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Assume that the data was generated by independent trials,
then the probability of getting exactly T from our model is

L = y · y · (1 − y) · (1 − y) · y

How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1−y)+log(1−y)+log(y)

But then

−LL = −1·log(y)−1·log(y)−(1−0)·log(1−y)−(1−0)·log(1−y)−1·log(y)

i.e. −LL is the cross-entropy.

109

Log likelihood is your friend!

Keep in mind our dataset:

T = {1,1,0,0,1} = {d1, . . . ,d5}

Assume that the data was generated by independent trials,
then the probability of getting exactly T from our model is

L = y · y · (1 − y) · (1 − y) · y

How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1−y)+log(1−y)+log(y)

But then

−LL = −1·log(y)−1·log(y)−(1−0)·log(1−y)−(1−0)·log(1−y)−1·log(y)

i.e. −LL is the cross-entropy.
109

Let the coin depend on the input

Consider our model giving a probability yo(w⃗, x⃗) given input x⃗.

Recall that the training dataset is

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th input,
and dk ∈ {0,1} is the expected output.

The likelihood:

L(w⃗) =

p∏
k=1

(
yo(w⃗, x⃗k)

)dk
·

(
1 − yo(w⃗, x⃗k)

)(1−dk)

log(L) =∑p
k=1

(
dk · log(yo(w⃗, x⃗k)) + (1 − dk) · log(1 − yo(w⃗, x⃗k))

)
and thus − log(L) = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood
(and vice versa).

110

Let the coin depend on the input

Consider our model giving a probability yo(w⃗, x⃗) given input x⃗.
Recall that the training dataset is

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th input,
and dk ∈ {0,1} is the expected output.

The likelihood:

L(w⃗) =

p∏
k=1

(
yo(w⃗, x⃗k)

)dk
·

(
1 − yo(w⃗, x⃗k)

)(1−dk)

log(L) =∑p
k=1

(
dk · log(yo(w⃗, x⃗k)) + (1 − dk) · log(1 − yo(w⃗, x⃗k))

)
and thus − log(L) = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood
(and vice versa).

110

Let the coin depend on the input

Consider our model giving a probability yo(w⃗, x⃗) given input x⃗.
Recall that the training dataset is

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th input,
and dk ∈ {0,1} is the expected output.

The likelihood:

L(w⃗) =

p∏
k=1

(
yo(w⃗, x⃗k)

)dk
·

(
1 − yo(w⃗, x⃗k)

)(1−dk)

log(L) =∑p
k=1

(
dk · log(yo(w⃗, x⃗k)) + (1 − dk) · log(1 − yo(w⃗, x⃗k))

)
and thus − log(L) = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood
(and vice versa).

110

Squared Error vs Logistic Output Activation

Consider a single neuron model y = σ(w · x) = 1/(1 + e−w·x)
where w ∈ R is the weight (ignore the bias).

A training dataset T = {(x ,d)} where x ∈ R and d ∈ {0,1}.

111

Squared Error vs Logistic Output Activation

Consider a single neuron model y = σ(w · x) = 1/(1 + e−w·x)
where w ∈ R is the weight (ignore the bias).

A training dataset T = {(x ,d)} where x ∈ R and d ∈ {0,1}.

Squared error E(w) = 1
2(y − d)2.

δE
δw

= (y − d) · y · (1 − y) · x

111

Squared Error vs Logistic Output Activation

Consider a single neuron model y = σ(w · x) = 1/(1 + e−w·x)
where w ∈ R is the weight (ignore the bias).

A training dataset T = {(x ,d)} where x ∈ R and d ∈ {0,1}.

Squared error E(w) = 1
2(y − d)2.

δE
δw

= (y − d) · y · (1 − y) · x

Thus
▶ If d = 1 and y ≈ 0, then δEδw ≈ 0
▶ If d = 0 and y ≈ 1, then δEδw ≈ 0

The gradient of E is small even though the model is wrong!

111

Squared Error vs Logistic Output Activation

Consider a single neuron model y = σ(w · x) = 1/(1 + e−w·x)
where w ∈ R is the weight (ignore the bias).

A training dataset T = {(x ,d)} where x ∈ R and d ∈ {0,1}.

Cross-entropy error E(w) = −d · log(y) − (1 − d) · log(1 − y).

111

Squared Error vs Logistic Output Activation

Consider a single neuron model y = σ(w · x) = 1/(1 + e−w·x)
where w ∈ R is the weight (ignore the bias).

A training dataset T = {(x ,d)} where x ∈ R and d ∈ {0,1}.

Cross-entropy error E(w) = −d · log(y) − (1 − d) · log(1 − y).

For d = 1

δE
δw

= −
1
y
· y · (1 − y) · x = −(1 − y) · x

which is close to −x for y ≈ 0.

111

Squared Error vs Logistic Output Activation

Consider a single neuron model y = σ(w · x) = 1/(1 + e−w·x)
where w ∈ R is the weight (ignore the bias).

A training dataset T = {(x ,d)} where x ∈ R and d ∈ {0,1}.

Cross-entropy error E(w) = −d · log(y) − (1 − d) · log(1 − y).

For d = 1

δE
δw

= −
1
y
· y · (1 − y) · x = −(1 − y) · x

which is close to −x for y ≈ 0.

For d = 0

δE
δw

= −
1

1 − y
· (−y) · (1 − y) · x = y · x

which is close to x for y ≈ 1.
111

MLP training – practical issues

112

Practical issues of gradient descent

▶ Training efficiency:
▶ What size of a minibatch?
▶ How to choose the learning rate ε(t) and control SGD ?
▶ How to pre-process the inputs?
▶ How to initialize weights?
▶ How to choose desired output values of the network?

▶ Quality of the resulting model:
▶ When to stop training?
▶ Regularization techniques.
▶ How large network?

For simplicity, I will illustrate the reasoning on MLP + mse.
Later we will see other topologies and error functions with
different but always somewhat related issues.

113

Practical issues of gradient descent

▶ Training efficiency:
▶ What size of a minibatch?
▶ How to choose the learning rate ε(t) and control SGD ?
▶ How to pre-process the inputs?
▶ How to initialize weights?
▶ How to choose desired output values of the network?

▶ Quality of the resulting model:
▶ When to stop training?
▶ Regularization techniques.
▶ How large network?

For simplicity, I will illustrate the reasoning on MLP + mse.
Later we will see other topologies and error functions with
different but always somewhat related issues.

113

Issues in gradient descent
▶ Small networks: Lots of local minima where the descent

gets stuck.
▶ The model identifiability problem: Swapping incoming

weights of neurons i and j leaves the same network
topology – weight space symmetry.

▶ Recent studies show that for sufficiently large networks all
local minima have low values of the error function.

Saddle points
One can show (by a combinatorial
argument) that larger networks
have exponentially more saddle
points than local minima.

114

Issues in gradient descent
▶ Small networks: Lots of local minima where the descent

gets stuck.
▶ The model identifiability problem: Swapping incoming

weights of neurons i and j leaves the same network
topology – weight space symmetry.

▶ Recent studies show that for sufficiently large networks all
local minima have low values of the error function.

Saddle points
One can show (by a combinatorial
argument) that larger networks
have exponentially more saddle
points than local minima.

114

Issues in gradient descent – too slow descent

▶ flat regions
E.g. if the inner potentials are too large (in abs. value), then their
derivative is extremely small.

115

Issues in gradient descent – too fast descent

▶ steep cliffs: the gradient is extremely large, descent skips
important weight vectors

116

Issues in gradient descent – local vs global
structure

What if we initialize on the left?

117

Gradient Descent in Large Networks

Theorem
Assume (roughly),

▶ activation functions: "smooth" ReLU (softplus)

σ(z) = log(1 + exp(z))

In general: Smooth, non-polynomial, analytic, Lipschitz continuous.

▶ inputs x⃗k of Euclidean norm equal to 1, desired values dk such
that all |dk | are bounded by a constant,

▶ the number of hidden neurons per layer sufficiently large
(polynomial in certain numerical characteristics of inputs roughly
measuring their similarity, and exponential in the depth of the network),

▶ the learning rate constant and sufficiently small.

The gradient descent converges (with high probability w.r.t. random
initialization) to a global minimum with zero error at linear rate.

Later we get to a special type of networks called ResNet where the above
result demands only polynomially many neurons per layer (w.r.t. depth). 118

Issues in computing the gradient

▶ vanishing and exploding gradients

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj for j ∈ Z ∖ (Y ∪ X)

▶ inexact gradient computation:
▶ Minibatch gradient is only an estimate of the true gradient.
▶ Note that the standard deviation of the estimate is (roughly)
σ/
√

m where m is the size of the minibatch and σ is the
variance of the gradient estimate for a single training
example.
(E.g. minibatch size 10 000 means 100 times more computation
than the size 100 but gives only 10 times less deviation.)

119

Issues in computing the gradient

▶ vanishing and exploding gradients

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj for j ∈ Z ∖ (Y ∪ X)

▶ inexact gradient computation:
▶ Minibatch gradient is only an estimate of the true gradient.
▶ Note that the standard deviation of the estimate is (roughly)
σ/
√

m where m is the size of the minibatch and σ is the
variance of the gradient estimate for a single training
example.
(E.g. minibatch size 10 000 means 100 times more computation
than the size 100 but gives only 10 times less deviation.)

119

Minibatch size

▶ Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

▶ Multicore architectures are usually underutilized by extremely
small batches.

▶ If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

▶ It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

▶ Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)

120

Minibatch size

▶ Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

▶ Multicore architectures are usually underutilized by extremely
small batches.

▶ If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

▶ It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

▶ Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)

120

Minibatch size

▶ Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

▶ Multicore architectures are usually underutilized by extremely
small batches.

▶ If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

▶ It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

▶ Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)

120

Minibatch size

▶ Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

▶ Multicore architectures are usually underutilized by extremely
small batches.

▶ If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

▶ It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

▶ Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)

120

Minibatch size

▶ Larger batches provide a more accurate estimate of the
gradient, but with less than linear returns.

▶ Multicore architectures are usually underutilized by extremely
small batches.

▶ If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups this is the limiting factor in
batch size.

▶ It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. Typical power of 2 batch sizes
range from 32 to 256, with 16 sometimes being attempted for
large models.

▶ Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima". Keskar et al, ICLR’17)
120

Momentum

Issue in the gradient descent:
▶ ∇E(w⃗(t)) constantly changes direction (but the error

steadily decreases).

Solution: In every step add the change made in the previous
step (weighted by a factor α):

∆w⃗(t) = −ε(t) ·
∑
k∈T

∇Ek (w⃗(t)) + α ·∆w⃗(t−1)

where 0 < α < 1.

121

Momentum

Issue in the gradient descent:
▶ ∇E(w⃗(t)) constantly changes direction (but the error

steadily decreases).

Solution: In every step add the change made in the previous
step (weighted by a factor α):

∆w⃗(t) = −ε(t) ·
∑
k∈T

∇Ek (w⃗(t)) + α ·∆w⃗(t−1)

where 0 < α < 1.
121

Momentum – illustration

122

SGD with momentum

▶ weights in w⃗(0) are randomly initialized to values close to 0

▶ in the step t + 1 (here t = 0,1,2 . . .), weights w⃗(t+1) are
computed as follows:
▶ Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
▶ Compute

w⃗(t+1) = w⃗(t) +∆w⃗(t)

where

∆w⃗(t) = −ε(t) ·
∑
k∈T

∇Ek (w⃗(t)) + α∆w⃗(t−1)

▶ 0 < ε(t) ≤ 1 is a learning rate in step t + 1

▶ 0 < α < 1 measures the "influence" of the momentum

▶ ∇Ek (w⃗(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.

123

Learning rate

124

Search for the learning rate

▶ Use settings from a successful solution of a similar problem as a
baseline.

▶ Search for the learning rate using the learning monitoring:

▶ Search through values from small (e.g. 0.001) to (0.1),
possibly multiplying by 2.

▶ Train for several epochs, observe the learning curves (see
cross-validation later).

125

Adaptive learning rate

▶ Power scheduling: Set ϵ(t) = ϵ0/(1 + t/s) where ϵ0 is an initial
learning rate and s is a number
(after s steps the learning rate is ϵ0/2, after 2s it is ϵ0/3 etc.)

▶ Exponential scheduling: Set ϵ(t) = ϵ0 · 0.1t/s .
(the learning rate decays faster than in the power scheduling)

▶ Piecewise constant scheduling: A constant learning rate for a
number of steps/epochs, then a smaller learning rate, and so on.

▶ 1cycle scheduling: Start by increasing the initial learning rate
from ϵ0 linearly to ϵ1 (approx. ϵ1 = 10ϵ0) halfway through
training. Then decrease from ϵ1 linearly to ϵ0. Finish by dropping
the learning rate by several orders of magnitude (still linearly).
According to a 2018 paper by Leslie Smith this may converge much
faster (100 epochs vs 800 epochs on CIFAR10 dataset).

For comparison of some methods see: AN EMPIRICAL STUDY OF LEARNING RATES IN DEEP NEURAL

NETWORKS FOR SPEECH RECOGNITION, Senior et al

126

Adaptive learning rate

▶ Power scheduling: Set ϵ(t) = ϵ0/(1 + t/s) where ϵ0 is an initial
learning rate and s is a number
(after s steps the learning rate is ϵ0/2, after 2s it is ϵ0/3 etc.)

▶ Exponential scheduling: Set ϵ(t) = ϵ0 · 0.1t/s .
(the learning rate decays faster than in the power scheduling)

▶ Piecewise constant scheduling: A constant learning rate for a
number of steps/epochs, then a smaller learning rate, and so on.

▶ 1cycle scheduling: Start by increasing the initial learning rate
from ϵ0 linearly to ϵ1 (approx. ϵ1 = 10ϵ0) halfway through
training. Then decrease from ϵ1 linearly to ϵ0. Finish by dropping
the learning rate by several orders of magnitude (still linearly).
According to a 2018 paper by Leslie Smith this may converge much
faster (100 epochs vs 800 epochs on CIFAR10 dataset).

For comparison of some methods see: AN EMPIRICAL STUDY OF LEARNING RATES IN DEEP NEURAL

NETWORKS FOR SPEECH RECOGNITION, Senior et al

126

Adaptive learning rate

▶ Power scheduling: Set ϵ(t) = ϵ0/(1 + t/s) where ϵ0 is an initial
learning rate and s is a number
(after s steps the learning rate is ϵ0/2, after 2s it is ϵ0/3 etc.)

▶ Exponential scheduling: Set ϵ(t) = ϵ0 · 0.1t/s .
(the learning rate decays faster than in the power scheduling)

▶ Piecewise constant scheduling: A constant learning rate for a
number of steps/epochs, then a smaller learning rate, and so on.

▶ 1cycle scheduling: Start by increasing the initial learning rate
from ϵ0 linearly to ϵ1 (approx. ϵ1 = 10ϵ0) halfway through
training. Then decrease from ϵ1 linearly to ϵ0. Finish by dropping
the learning rate by several orders of magnitude (still linearly).
According to a 2018 paper by Leslie Smith this may converge much
faster (100 epochs vs 800 epochs on CIFAR10 dataset).

For comparison of some methods see: AN EMPIRICAL STUDY OF LEARNING RATES IN DEEP NEURAL

NETWORKS FOR SPEECH RECOGNITION, Senior et al

126

Adaptive learning rate

▶ Power scheduling: Set ϵ(t) = ϵ0/(1 + t/s) where ϵ0 is an initial
learning rate and s is a number
(after s steps the learning rate is ϵ0/2, after 2s it is ϵ0/3 etc.)

▶ Exponential scheduling: Set ϵ(t) = ϵ0 · 0.1t/s .
(the learning rate decays faster than in the power scheduling)

▶ Piecewise constant scheduling: A constant learning rate for a
number of steps/epochs, then a smaller learning rate, and so on.

▶ 1cycle scheduling: Start by increasing the initial learning rate
from ϵ0 linearly to ϵ1 (approx. ϵ1 = 10ϵ0) halfway through
training. Then decrease from ϵ1 linearly to ϵ0. Finish by dropping
the learning rate by several orders of magnitude (still linearly).
According to a 2018 paper by Leslie Smith this may converge much
faster (100 epochs vs 800 epochs on CIFAR10 dataset).

For comparison of some methods see: AN EMPIRICAL STUDY OF LEARNING RATES IN DEEP NEURAL

NETWORKS FOR SPEECH RECOGNITION, Senior et al

126

AdaGrad

So far we have considered fixed schedules for learning rates.

It is better to have
▶ larger rates for weights with smaller updates,
▶ smaller rates for weights with larger updates.

AdaGrad uses individually adapting learning rate for each
weight.

127

SGD with AdaGrad

▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), compute w⃗(t+1) :

▶ Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
▶ Compute

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(w⃗(t))

and

r (t)ji = r (t−1)
ji +

∑
k∈T

∂Ek

∂wji
(w⃗(t))


2

▶ η is a constant expressing the influence of the learning rate,
typically 0.01.

▶ δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.

128

SGD with AdaGrad

▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), compute w⃗(t+1) :

▶ Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
▶ Compute

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(w⃗(t))

and

r (t)ji = r (t−1)
ji +

∑
k∈T

∂Ek

∂wji
(w⃗(t))


2

▶ η is a constant expressing the influence of the learning rate,
typically 0.01.

▶ δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.
128

RMSProp

The main disadvantage of AdaGrad is the accumulation of the
gradient throughout the whole learning process.

In case the learning needs to get over several "hills" before
settling in a deep "valley", the weight updates get far too small
before getting to it.

RMSProp uses an exponentially decaying average to discard
history from the extreme past so that it can converge rapidly
after finding a convex bowl, as if it were an instance of the
AdaGrad algorithm initialized within that bowl.

129

SGD with RMSProp
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), compute w⃗(t+1) :

▶ Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
▶ Compute

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(w⃗(t))

and

r (t)ji = ρr (t−1)
ji + (1 − ρ)

∑
k∈T

∂Ek

∂wji
(w⃗(t))


2

▶ η is a constant expressing the influence of the learning rate
(Hinton suggests ρ = 0.9 and η = 0.001).

▶ δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.

130

SGD with RMSProp
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), compute w⃗(t+1) :

▶ Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
▶ Compute

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(w⃗(t))

and

r (t)ji = ρr (t−1)
ji + (1 − ρ)

∑
k∈T

∂Ek

∂wji
(w⃗(t))


2

▶ η is a constant expressing the influence of the learning rate
(Hinton suggests ρ = 0.9 and η = 0.001).

▶ δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.
130

Other optimization methods

There are more methods such as AdaDelta, Adam (roughly
RMSProp combined with momentum), etc.

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with
adaptive learning rates (represented by RMSProp and
AdaDelta) performed fairly robustly, no single best algorithm
has emerged.

Currently, the most popular optimization algorithms actively in
use include SGD, SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta and Adam.

The choice of which algorithm to use, at this point, seems to
depend largely on the user’s familiarity with the algorithm.

131

Other optimization methods

There are more methods such as AdaDelta, Adam (roughly
RMSProp combined with momentum), etc.

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with
adaptive learning rates (represented by RMSProp and
AdaDelta) performed fairly robustly, no single best algorithm
has emerged.

Currently, the most popular optimization algorithms actively in
use include SGD, SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta and Adam.

The choice of which algorithm to use, at this point, seems to
depend largely on the user’s familiarity with the algorithm.

131

Other optimization methods

There are more methods such as AdaDelta, Adam (roughly
RMSProp combined with momentum), etc.

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with
adaptive learning rates (represented by RMSProp and
AdaDelta) performed fairly robustly, no single best algorithm
has emerged.

Currently, the most popular optimization algorithms actively in
use include SGD, SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta and Adam.

The choice of which algorithm to use, at this point, seems to
depend largely on the user’s familiarity with the algorithm.

131

Choice of (hidden) activations

Generic requirements imposed on activation functions:

1. differentiability
(to do gradient descent)

2. non-linearity
(linear multi-layer networks are equivalent to single-layer)

3. monotonicity
(local extrema of activation functions induce local extrema of the error
function)

4. "linearity"
(i.e. preserve as much linearity as possible; linear models are easiest to
fit; find the "minimum" non-linearity needed to solve a given task)

The choice of activation functions is closely related to input
preprocessing and the initial choice of weights. I will illustrate the
reasoning on sigmoidal functions; say few words about other
activation functions later.

132

Activation functions – tanh

σ(ξ) = 1.7159 · tanh(2
3 · ξ), we have limξ→∞ σ(ξ) = 1.7159 and

limξ→−∞ σ(ξ) = −1.7159
133

Activation functions – tanh

σ(ξ) = 1.7159 · tanh(2
3 · ξ) is almost linear on [−1,1]

134

Activation functions – tanh

first derivative: σ(ξ) = 1.7159 · tanh(2
3 · ξ)

135

Input preprocessing
▶ Some inputs may be much larger than others.

E.g..: Height vs weight of a person, maximum speed of
a car (in km/h) vs its price (in CZK), etc.

▶ Large inputs have greater influence on the training than the
small ones. In addition, too large inputs may slow down
learning (saturation of activation functions).

▶ Typical standardization:
▶ average = 0 (subtract the mean)
▶ variance = 1 (divide by the standard deviation)

Here the mean and standard deviation may be estimated
from data (the training set).

(illustration of standard deviation)

136

Input preprocessing
▶ Some inputs may be much larger than others.

E.g..: Height vs weight of a person, maximum speed of
a car (in km/h) vs its price (in CZK), etc.

▶ Large inputs have greater influence on the training than the
small ones. In addition, too large inputs may slow down
learning (saturation of activation functions).

▶ Typical standardization:
▶ average = 0 (subtract the mean)
▶ variance = 1 (divide by the standard deviation)

Here the mean and standard deviation may be estimated
from data (the training set).

(illustration of standard deviation)

136

Input preprocessing
▶ Some inputs may be much larger than others.

E.g..: Height vs weight of a person, maximum speed of
a car (in km/h) vs its price (in CZK), etc.

▶ Large inputs have greater influence on the training than the
small ones. In addition, too large inputs may slow down
learning (saturation of activation functions).

▶ Typical standardization:
▶ average = 0 (subtract the mean)
▶ variance = 1 (divide by the standard deviation)

Here the mean and standard deviation may be estimated
from data (the training set).

(illustration of standard deviation)
136

Initial weights (for tanh)

▶ Assume weights chosen in random. What distribution?

▶ Consider the activation function σ(ξ) = 1.7159 · tanh(2
3 · ξ)

for all neurons.
▶ σ is almost linear on [−1,1],
▶ σ saturates out of the interval [−4,4] (i.e. it is close to its

limit values and its derivative is close to 0.
Thus
▶ for too small weights we may get (almost) linear model.
▶ for too large weights the activations may get saturated and

the learning will be very slow.

Hence, we want to choose weights so that the inner
potentials of neurons will be roughly in the interval [−1,1].

137

Initial weights (for tanh)

▶ Assume weights chosen in random. What distribution?
▶ Consider the activation function σ(ξ) = 1.7159 · tanh(2

3 · ξ)
for all neurons.
▶ σ is almost linear on [−1,1],
▶ σ saturates out of the interval [−4,4] (i.e. it is close to its

limit values and its derivative is close to 0.

Thus
▶ for too small weights we may get (almost) linear model.
▶ for too large weights the activations may get saturated and

the learning will be very slow.

Hence, we want to choose weights so that the inner
potentials of neurons will be roughly in the interval [−1,1].

137

Initial weights (for tanh)

▶ Assume weights chosen in random. What distribution?
▶ Consider the activation function σ(ξ) = 1.7159 · tanh(2

3 · ξ)
for all neurons.
▶ σ is almost linear on [−1,1],
▶ σ saturates out of the interval [−4,4] (i.e. it is close to its

limit values and its derivative is close to 0.
Thus
▶ for too small weights we may get (almost) linear model.
▶ for too large weights the activations may get saturated and

the learning will be very slow.

Hence, we want to choose weights so that the inner
potentials of neurons will be roughly in the interval [−1,1].

137

Normal LeCun initialization

▶ Assume the input data have the mean = 0 and the variance = 1.
Consider a neuron j from the first layer with n inputs. Assume its
weights chosen randomly by the normal distribution N(0,w2).

Assume that all random choices are independent of each other.

▶ The rule: Choose the standard deviation of weights w so that
the standard deviation of ξj (denote by oj) satisfies oj ≈ 1.

▶ Basic properties of the variance of independent variables give
oj =

√
n · w.

Thus by putting w =
√

1
n we obtain oj = 1.

▶ The same works for higher layers, n corresponds to the number
of neurons in the layer one level lower.

This gives normal LeCun initialization:

wi ∼ N

(
0,

1
n

)

138

Normal LeCun initialization

▶ Assume the input data have the mean = 0 and the variance = 1.
Consider a neuron j from the first layer with n inputs. Assume its
weights chosen randomly by the normal distribution N(0,w2).

Assume that all random choices are independent of each other.

▶ The rule: Choose the standard deviation of weights w so that
the standard deviation of ξj (denote by oj) satisfies oj ≈ 1.

▶ Basic properties of the variance of independent variables give
oj =

√
n · w.

Thus by putting w =
√

1
n we obtain oj = 1.

▶ The same works for higher layers, n corresponds to the number
of neurons in the layer one level lower.

This gives normal LeCun initialization:

wi ∼ N

(
0,

1
n

)

138

Normal LeCun initialization

▶ Assume the input data have the mean = 0 and the variance = 1.
Consider a neuron j from the first layer with n inputs. Assume its
weights chosen randomly by the normal distribution N(0,w2).

Assume that all random choices are independent of each other.

▶ The rule: Choose the standard deviation of weights w so that
the standard deviation of ξj (denote by oj) satisfies oj ≈ 1.

▶ Basic properties of the variance of independent variables give
oj =

√
n · w.

Thus by putting w =
√

1
n we obtain oj = 1.

▶ The same works for higher layers, n corresponds to the number
of neurons in the layer one level lower.

This gives normal LeCun initialization:

wi ∼ N

(
0,

1
n

)
138

Derivation of the LeCun initialization

Consider a single neuron without bias with the inner potential

ξ =
n∑

i=1

wixi

Consider all wi and xi as independent random variables
(hence also ξ is a random variable) where
▶ wi ∈ N(0,w2) for i = 1, . . . ,n where w is a constant,
▶ Exi = 0 and Var [xi] = E[(xi − Exi)

2] = 1 for i = 1, . . . ,n
We prove that Eξ = n · w2 as follows:

Eξ = E
n∑

i=1

wixi =

n∑
i=1

Ewixi
ind.
=

n∑
i=1

EwiExi = 0

and Var [wixi] = E[w2
i x2

i] − E[wixi]
2 ind.
= E[w2

i]E[x
2
i] − 0 = w2

implies

Var [ξ] = Var [
n∑

i=1

wixi]
ind.
=

n∑
i=1

Var [wixi] =

n∑
i=1

w2 = n · w2

139

Derivation of the LeCun initialization

Consider a single neuron without bias with the inner potential

ξ =
n∑

i=1

wixi

Consider all wi and xi as independent random variables
(hence also ξ is a random variable) where
▶ wi ∈ N(0,w2) for i = 1, . . . ,n where w is a constant,
▶ Exi = 0 and Var [xi] = E[(xi − Exi)

2] = 1 for i = 1, . . . ,n

We prove that Eξ = n · w2 as follows:

Eξ = E
n∑

i=1

wixi =

n∑
i=1

Ewixi
ind.
=

n∑
i=1

EwiExi = 0

and Var [wixi] = E[w2
i x2

i] − E[wixi]
2 ind.
= E[w2

i]E[x
2
i] − 0 = w2

implies

Var [ξ] = Var [
n∑

i=1

wixi]
ind.
=

n∑
i=1

Var [wixi] =

n∑
i=1

w2 = n · w2

139

Derivation of the LeCun initialization

Consider a single neuron without bias with the inner potential

ξ =
n∑

i=1

wixi

Consider all wi and xi as independent random variables
(hence also ξ is a random variable) where
▶ wi ∈ N(0,w2) for i = 1, . . . ,n where w is a constant,
▶ Exi = 0 and Var [xi] = E[(xi − Exi)

2] = 1 for i = 1, . . . ,n
We prove that Eξ = n · w2 as follows:

Eξ = E
n∑

i=1

wixi =

n∑
i=1

Ewixi
ind.
=

n∑
i=1

EwiExi = 0

and Var [wixi] = E[w2
i x2

i] − E[wixi]
2 ind.
= E[w2

i]E[x
2
i] − 0 = w2

implies

Var [ξ] = Var [
n∑

i=1

wixi]
ind.
=

n∑
i=1

Var [wixi] =

n∑
i=1

w2 = n · w2

139

Derivation of the LeCun initialization

Consider a single neuron without bias with the inner potential

ξ =
n∑

i=1

wixi

Consider all wi and xi as independent random variables
(hence also ξ is a random variable) where
▶ wi ∈ N(0,w2) for i = 1, . . . ,n where w is a constant,
▶ Exi = 0 and Var [xi] = E[(xi − Exi)

2] = 1 for i = 1, . . . ,n
We prove that Eξ = n · w2 as follows:

Eξ = E
n∑

i=1

wixi =

n∑
i=1

Ewixi
ind.
=

n∑
i=1

EwiExi = 0

and Var [wixi] = E[w2
i x2

i] − E[wixi]
2 ind.
= E[w2

i]E[x
2
i] − 0 = w2

implies

Var [ξ] = Var [
n∑

i=1

wixi]
ind.
=

n∑
i=1

Var [wixi] =

n∑
i=1

w2 = n · w2

139

Derivation of the LeCun initialization

Consider a single neuron without bias with the inner potential

ξ =
n∑

i=1

wixi

Consider all wi and xi as independent random variables
(hence also ξ is a random variable) where
▶ wi ∈ N(0,w2) for i = 1, . . . ,n where w is a constant,
▶ Exi = 0 and Var [xi] = E[(xi − Exi)

2] = 1 for i = 1, . . . ,n
We prove that Eξ = n · w2 as follows:

Eξ = E
n∑

i=1

wixi =

n∑
i=1

Ewixi
ind.
=

n∑
i=1

EwiExi = 0

and Var [wixi] = E[w2
i x2

i] − E[wixi]
2 ind.
= E[w2

i]E[x
2
i] − 0 = w2

implies

Var [ξ] = Var [
n∑

i=1

wixi]
ind.
=

n∑
i=1

Var [wixi] =

n∑
i=1

w2 = n · w2

139

Derivation of the LeCun initialization

Consider a single neuron without bias with the inner potential

ξ =
n∑

i=1

wixi

Consider all wi and xi as independent random variables
(hence also ξ is a random variable) where
▶ wi ∈ N(0,w2) for i = 1, . . . ,n where w is a constant,
▶ Exi = 0 and Var [xi] = E[(xi − Exi)

2] = 1 for i = 1, . . . ,n
We prove that Eξ = n · w2 as follows:

Eξ = E
n∑

i=1

wixi =

n∑
i=1

Ewixi
ind.
=

n∑
i=1

EwiExi = 0

and Var [wixi] = E[w2
i x2

i] − E[wixi]
2 ind.
= E[w2

i]E[x
2
i] − 0 = w2

implies

Var [ξ] = Var [
n∑

i=1

wixi]
ind.
=

n∑
i=1

Var [wixi] =

n∑
i=1

w2 = n · w2

139

Normal Glorot initialization
The previous heuristics for weight initialization ignores variance of the
gradient (i.e. it is concerned only with the "size" of activations in the
forward pass).

Glorot & Bengio (2010) presented a normalized initialization by
choosing weights randomly from the following normal distribution:

N
(
0,

2
m + n

)
= N

(
0,

1
(m + n)/2

)
Here n is the number of inputs to the layer, m is the number of
neurons in the layer above.

This is designed to compromise between the goal of initializing all
layers to have the same activation variance and the goal of initializing
all layers to have the same gradient variance.

This gives normal Glorot initialization (also called normal Xavier
initialization):

wi ∼ N

(
(0,

2
m + n

)

140

Normal Glorot initialization
The previous heuristics for weight initialization ignores variance of the
gradient (i.e. it is concerned only with the "size" of activations in the
forward pass).

Glorot & Bengio (2010) presented a normalized initialization by
choosing weights randomly from the following normal distribution:

N
(
0,

2
m + n

)
= N

(
0,

1
(m + n)/2

)
Here n is the number of inputs to the layer, m is the number of
neurons in the layer above.

This is designed to compromise between the goal of initializing all
layers to have the same activation variance and the goal of initializing
all layers to have the same gradient variance.

This gives normal Glorot initialization (also called normal Xavier
initialization):

wi ∼ N

(
(0,

2
m + n

)

140

Normal Glorot initialization
The previous heuristics for weight initialization ignores variance of the
gradient (i.e. it is concerned only with the "size" of activations in the
forward pass).

Glorot & Bengio (2010) presented a normalized initialization by
choosing weights randomly from the following normal distribution:

N
(
0,

2
m + n

)
= N

(
0,

1
(m + n)/2

)
Here n is the number of inputs to the layer, m is the number of
neurons in the layer above.

This is designed to compromise between the goal of initializing all
layers to have the same activation variance and the goal of initializing
all layers to have the same gradient variance.

This gives normal Glorot initialization (also called normal Xavier
initialization):

wi ∼ N

(
(0,

2
m + n

)
140

Uniform LeCun initialization

▶ Assume that the input data have mean = 0 and variance = 1.

Consider a neuron j from the first layer with n inputs. Assume its
weights chosen randomly by the uniform distribution U(−w,w).

Assume that all random choices are independent of each other.

▶ As before, we want the standard deviation oj of the inner
potential ξj to be approximately 1.

▶ Basic properties of the variance of independent variables give

oj =
√

n
3 · w.

Thus by putting w =
√

3
n we obtain oj = 1.

We obtain uniform LeCun initialization:

wi ∼ U

−
√

3
n
,

√
3
n


141

Uniform Glorot initialization

Similarly to the normal case, we want to normalize the initialization
w.r.t. both forward and backward passes.

We obtain uniform Glorot initialization (aka uniform Xavier init.):

wi ∼ U

−√
6

m + n
,

√
6

m + n

 = U

−
√

3
(m + n)/2

,

√
3

(m + n)/2


Here n is the number of inputs to the layer, m is the number of
neurons in the layer above.

142

Modern activation functions
For hidden neurons sigmoidal functions are often substituted with
piece-wise linear activations functions. Most prominent is ReLU:

σ(ξ) = max{0, ξ}

▶ THE default activation function recommended for use with most
feedforward neural networks.

▶ As close to linear function as possible; very simple; does not
saturate for large potentials.

▶ Dead for negative potentials.

143

Normal He initialization

▶ The ReLU is not as sensitive to the large variance of
the inner potential as sigmoidal functions (large variance
does not matter as much).

▶ Still the variance is good to be constant (at least due to the
output layer).

▶ LeCun initialization cannot be justified for ReLU due to
the following reason:
The ReLU is not a symmetric function. So even if the inner
potential ξj has mean = 0 and variance = 1, it is not true of
the output (the variance is halved).

Modifying the normal LeCun initialization to take the halving
variance into account, we obtain normal He initialization:

wi ∈ N

(
0,

2
n

) (
LeCun is wi ∈ N

(
0,

1
n

))

144

Normal He initialization

▶ The ReLU is not as sensitive to the large variance of
the inner potential as sigmoidal functions (large variance
does not matter as much).

▶ Still the variance is good to be constant (at least due to the
output layer).

▶ LeCun initialization cannot be justified for ReLU due to
the following reason:
The ReLU is not a symmetric function. So even if the inner
potential ξj has mean = 0 and variance = 1, it is not true of
the output (the variance is halved).

Modifying the normal LeCun initialization to take the halving
variance into account, we obtain normal He initialization:

wi ∈ N

(
0,

2
n

) (
LeCun is wi ∈ N

(
0,

1
n

))

144

Normal He initialization

▶ The ReLU is not as sensitive to the large variance of
the inner potential as sigmoidal functions (large variance
does not matter as much).

▶ Still the variance is good to be constant (at least due to the
output layer).

▶ LeCun initialization cannot be justified for ReLU due to
the following reason:
The ReLU is not a symmetric function. So even if the inner
potential ξj has mean = 0 and variance = 1, it is not true of
the output (the variance is halved).

Modifying the normal LeCun initialization to take the halving
variance into account, we obtain normal He initialization:

wi ∈ N

(
0,

2
n

) (
LeCun is wi ∈ N

(
0,

1
n

))

144

Normal He initialization

▶ The ReLU is not as sensitive to the large variance of
the inner potential as sigmoidal functions (large variance
does not matter as much).

▶ Still the variance is good to be constant (at least due to the
output layer).

▶ LeCun initialization cannot be justified for ReLU due to
the following reason:
The ReLU is not a symmetric function. So even if the inner
potential ξj has mean = 0 and variance = 1, it is not true of
the output (the variance is halved).

Modifying the normal LeCun initialization to take the halving
variance into account, we obtain normal He initialization:

wi ∈ N

(
0,

2
n

) (
LeCun is wi ∈ N

(
0,

1
n

))
144

More modern activation functions

▶ Leaky ReLU (greenboard):
▶ Generalizes ReLU, not dead for negative potentials.
▶ Experimentally not much better than ReLU.

▶ ELU: "Smoothed" ReLU:

σ(ξ) =

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Here α is a parameter, ELU converges to −α as ξ→ −∞. As
opposed to ReLU: Smooth, always non-zero gradient (but
saturates), slower to compute.

▶ SELU: Scaled variant of ELU: :

σ(ξ) = λ

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Self-normalizing, i.e. output of each layer will tend to preserve
a mean (close to) 0 and a standard deviation (close to) 1 for
λ ≈ 1.050 and α ≈ 1.673, properly initialized weights (see below)
and normalized inputs (zero mean, standard deviation 1).

145

More modern activation functions

▶ Leaky ReLU (greenboard):
▶ Generalizes ReLU, not dead for negative potentials.
▶ Experimentally not much better than ReLU.

▶ ELU: "Smoothed" ReLU:

σ(ξ) =

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Here α is a parameter, ELU converges to −α as ξ→ −∞. As
opposed to ReLU: Smooth, always non-zero gradient (but
saturates), slower to compute.

▶ SELU: Scaled variant of ELU: :

σ(ξ) = λ

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Self-normalizing, i.e. output of each layer will tend to preserve
a mean (close to) 0 and a standard deviation (close to) 1 for
λ ≈ 1.050 and α ≈ 1.673, properly initialized weights (see below)
and normalized inputs (zero mean, standard deviation 1).

145

More modern activation functions

▶ Leaky ReLU (greenboard):
▶ Generalizes ReLU, not dead for negative potentials.
▶ Experimentally not much better than ReLU.

▶ ELU: "Smoothed" ReLU:

σ(ξ) =

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Here α is a parameter, ELU converges to −α as ξ→ −∞. As
opposed to ReLU: Smooth, always non-zero gradient (but
saturates), slower to compute.

▶ SELU: Scaled variant of ELU: :

σ(ξ) = λ

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Self-normalizing, i.e. output of each layer will tend to preserve
a mean (close to) 0 and a standard deviation (close to) 1 for
λ ≈ 1.050 and α ≈ 1.673, properly initialized weights (see below)
and normalized inputs (zero mean, standard deviation 1).

145

Initializing with Normal Distribution
Denote by n the number of inputs to the initialized layer, and m the
number of neurons in the layer.

▶ normal Glorot:

wi ∼ N

(
(0,

2
m + n

)
Suitable for none, tanh, logistic, softmax

▶ normal He:

wi ∈ N

(
0,

2
n

)
Suitable for ReLU, leaky ReLU

▶ normal LeCun:

wi ∼ N

(
0,

1
n

)
Suitable for SELU (by the authors)

146

Initializing with Normal Distribution
Denote by n the number of inputs to the initialized layer, and m the
number of neurons in the layer.

▶ normal Glorot:

wi ∼ N

(
(0,

2
m + n

)
Suitable for none, tanh, logistic, softmax

▶ normal He:

wi ∈ N

(
0,

2
n

)
Suitable for ReLU, leaky ReLU

▶ normal LeCun:

wi ∼ N

(
0,

1
n

)
Suitable for SELU (by the authors)

146

Initializing with Normal Distribution
Denote by n the number of inputs to the initialized layer, and m the
number of neurons in the layer.

▶ normal Glorot:

wi ∼ N

(
(0,

2
m + n

)
Suitable for none, tanh, logistic, softmax

▶ normal He:

wi ∈ N

(
0,

2
n

)
Suitable for ReLU, leaky ReLU

▶ normal LeCun:

wi ∼ N

(
0,

1
n

)
Suitable for SELU (by the authors)

146

How to choose activation of hidden neurons

▶ The default is ReLU.
▶ According to Aurélien Géron:

SELU > ELU > leakyReLU > ReLU > tanh > logistic

For discussion see: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and

Techniques to Build Intelligent Systems, Aurélien Géron

147

Batch normalization (roughly)

Intuition: Instead of keeping mean = 0 and variance = 1
implicitly due to a clever weight initialization, we may
renormalize values of neurons throughout the layers.

Consider the ℓ-th layer of the network.

Note that the output values of neurons in the ℓ-th layer can be
seen as inputs to the sub-network consisting of all layers above
the ℓ-th one.

What if we standardize the values of the ℓ-th layer as we did
with the input data?

For this we need to form a "dataset" of values of the ℓ-th layer.

148

Batch normalization (roughly)

Intuition: Instead of keeping mean = 0 and variance = 1
implicitly due to a clever weight initialization, we may
renormalize values of neurons throughout the layers.

Consider the ℓ-th layer of the network.

Note that the output values of neurons in the ℓ-th layer can be
seen as inputs to the sub-network consisting of all layers above
the ℓ-th one.

What if we standardize the values of the ℓ-th layer as we did
with the input data?

For this we need to form a "dataset" of values of the ℓ-th layer.

148

Batch normalization (roughly)

Intuition: Instead of keeping mean = 0 and variance = 1
implicitly due to a clever weight initialization, we may
renormalize values of neurons throughout the layers.

Consider the ℓ-th layer of the network.

Note that the output values of neurons in the ℓ-th layer can be
seen as inputs to the sub-network consisting of all layers above
the ℓ-th one.

What if we standardize the values of the ℓ-th layer as we did
with the input data?

For this we need to form a "dataset" of values of the ℓ-th layer.

148

Batch normalization (roughly)

Let us consider the ℓ-th layer with n neurons.

Consider a batch of training examples:

{(x⃗k , d⃗k) | k = 1, . . . ,p}

(This is typically a minibatch.)

▶ For every k = 1, . . . ,p: Compute the values of neurons in
the ℓ-th layer for the input x⃗k and obtain a vector

z⃗k = (z⃗k1, . . . , z⃗kn)

▶ Set all components of all vectors z⃗k to the mean = 0 and
the variance = 1 and obtain normalized vectors: ẑ1, . . . , ẑp.

▶ For every k = 1, . . . ,p give

γ⃗ · ẑk + δ⃗

as the output of the ℓ-th layer instead of z⃗k . Here γ⃗ and δ⃗
are new trainable weights.

149

Batch normalization (roughly)

Let us consider the ℓ-th layer with n neurons.

Consider a batch of training examples:

{(x⃗k , d⃗k) | k = 1, . . . ,p}

(This is typically a minibatch.)
▶ For every k = 1, . . . ,p: Compute the values of neurons in

the ℓ-th layer for the input x⃗k and obtain a vector

z⃗k = (z⃗k1, . . . , z⃗kn)

▶ Set all components of all vectors z⃗k to the mean = 0 and
the variance = 1 and obtain normalized vectors: ẑ1, . . . , ẑp.

▶ For every k = 1, . . . ,p give

γ⃗ · ẑk + δ⃗

as the output of the ℓ-th layer instead of z⃗k . Here γ⃗ and δ⃗
are new trainable weights.

149

Batch normalization (roughly)

Let us consider the ℓ-th layer with n neurons.

Consider a batch of training examples:

{(x⃗k , d⃗k) | k = 1, . . . ,p}

(This is typically a minibatch.)
▶ For every k = 1, . . . ,p: Compute the values of neurons in

the ℓ-th layer for the input x⃗k and obtain a vector

z⃗k = (z⃗k1, . . . , z⃗kn)

▶ Set all components of all vectors z⃗k to the mean = 0 and
the variance = 1 and obtain normalized vectors: ẑ1, . . . , ẑp.

▶ For every k = 1, . . . ,p give

γ⃗ · ẑk + δ⃗

as the output of the ℓ-th layer instead of z⃗k . Here γ⃗ and δ⃗
are new trainable weights.

149

Batch normalization (roughly)

Let us consider the ℓ-th layer with n neurons.

Consider a batch of training examples:

{(x⃗k , d⃗k) | k = 1, . . . ,p}

(This is typically a minibatch.)
▶ For every k = 1, . . . ,p: Compute the values of neurons in

the ℓ-th layer for the input x⃗k and obtain a vector

z⃗k = (z⃗k1, . . . , z⃗kn)

▶ Set all components of all vectors z⃗k to the mean = 0 and
the variance = 1 and obtain normalized vectors: ẑ1, . . . , ẑp.

▶ For every k = 1, . . . ,p give

γ⃗ · ẑk + δ⃗

as the output of the ℓ-th layer instead of z⃗k . Here γ⃗ and δ⃗
are new trainable weights.

149

Generalization

Intuition: Generalization = ability to cope with new unseen
instances.

Data are mostly noisy, so it is not good idea to fit exactly.

In case of function approximation, the network should not
return exact results as in the training set.

More formally: It is typically assumed that the training set has
been generated as follows:

dkj = gj(x⃗k) + Θkj

where gj is the "underlying" function corresponding to
the output neuron j ∈ Y and Θkj is random noise.
The network should fit gj not the noise.

Methods improving generalization are called regularization
methods.

150

Generalization

Intuition: Generalization = ability to cope with new unseen
instances.

Data are mostly noisy, so it is not good idea to fit exactly.

In case of function approximation, the network should not
return exact results as in the training set.

More formally: It is typically assumed that the training set has
been generated as follows:

dkj = gj(x⃗k) + Θkj

where gj is the "underlying" function corresponding to
the output neuron j ∈ Y and Θkj is random noise.
The network should fit gj not the noise.

Methods improving generalization are called regularization
methods.

150

Regularization

Regularization is a big issue in neural networks, as they
typically use a huge amount of parameters and thus are very
susceptible to overfitting.

von Neumann: "With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk."

... and I ask you prof. Neumann:

What can you fit with 40GB of parameters??

151

Regularization

Regularization is a big issue in neural networks, as they
typically use a huge amount of parameters and thus are very
susceptible to overfitting.

von Neumann: "With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk."

... and I ask you prof. Neumann:

What can you fit with 40GB of parameters??

151

Early stopping

Early stopping means that we stop learning before it reaches
a minimum of the error E.

When to stop?

In many applications the error function is not the main thing we
want to optimize.
E.g. in the case of a trading system, we typically want to maximize our profit
not to minimize (strange) error functions designed to be easily differentiable.

Also, as noted before, minimizing E completely is not good for
generalization.

For start: We may employ standard approach of training on one
set and stopping on another one.

152

Early stopping

Early stopping means that we stop learning before it reaches
a minimum of the error E.

When to stop?

In many applications the error function is not the main thing we
want to optimize.
E.g. in the case of a trading system, we typically want to maximize our profit
not to minimize (strange) error functions designed to be easily differentiable.

Also, as noted before, minimizing E completely is not good for
generalization.

For start: We may employ standard approach of training on one
set and stopping on another one.

152

Early stopping

Divide your dataset into several subsets:
▶ training set (e.g. 60%) – train the network here
▶ validation set (e.g. 20%) – use to stop the training

▶ test set (e.g. 20%) – use to evaluate the final model
What to use as a stopping rule?

You may observe E (or any other function of interest) on the
validation set, if it does not improve for last k steps, stop.

Alternatively, you may observe the gradient, if it is small for
some time, stop.
(recent studies shown that this traditional rule is not too good: it may happen
that the gradient is larger close to minimum values; on the other hand, E
does not have to be evaluated which saves time.

To compare models you may use ML techniques such as
various types of cross-validation etc.

153

Early stopping

Divide your dataset into several subsets:
▶ training set (e.g. 60%) – train the network here
▶ validation set (e.g. 20%) – use to stop the training

▶ test set (e.g. 20%) – use to evaluate the final model
What to use as a stopping rule?

You may observe E (or any other function of interest) on the
validation set, if it does not improve for last k steps, stop.

Alternatively, you may observe the gradient, if it is small for
some time, stop.
(recent studies shown that this traditional rule is not too good: it may happen
that the gradient is larger close to minimum values; on the other hand, E
does not have to be evaluated which saves time.

To compare models you may use ML techniques such as
various types of cross-validation etc.

153

Size of the network

Similar problem as in the case of the training duration:
▶ Too small network is not able to capture intrinsic properties

of the training set.
▶ Large networks overfit faster.

Solution: Optimal number of neurons :-)

▶ there are some (useless) theoretical bounds
▶ there are algorithms dynamically adding/removing neurons

(not much use nowadays)
▶ In practice: Start with an existing network solving similar

problem.
If you are trully desperate trying to solve a brand new problem, you may
try an ancient rule of thumb: the number of neurons ≈ ten times less
than the number of training instances.

Experiment, experiment, experiment.

154

Size of the network

Similar problem as in the case of the training duration:
▶ Too small network is not able to capture intrinsic properties

of the training set.
▶ Large networks overfit faster.

Solution: Optimal number of neurons :-)
▶ there are some (useless) theoretical bounds
▶ there are algorithms dynamically adding/removing neurons

(not much use nowadays)
▶ In practice: Start with an existing network solving similar

problem.
If you are trully desperate trying to solve a brand new problem, you may
try an ancient rule of thumb: the number of neurons ≈ ten times less
than the number of training instances.

Experiment, experiment, experiment.

154

Feature extraction

Consider a two layer network. Hidden neurons are supposed to
represent "patterns" in the inputs.

Example: Network 64-2-3 for letter classification:

155

Ensemble methods

Techniques for reducing generalization error by combining
several models.
The reason that ensemble methods work is that different models will usually
not make all the same errors on the test set.

Idea: Train several different models separately, then have all of
the models vote on the output for test examples.

Bagging:
▶ Generate k training sets T1, ...,Tk by sampling from T

uniformly with replacement.
If the number of samples is |T |, then on average |Ti | = (1 − 1/e)|T |.

▶ For each i, train a model Mi on Ti .
▶ Combine outputs of the models: for regression by

averaging, for classification by (majority) voting.

156

Ensemble methods

Techniques for reducing generalization error by combining
several models.
The reason that ensemble methods work is that different models will usually
not make all the same errors on the test set.

Idea: Train several different models separately, then have all of
the models vote on the output for test examples.

Bagging:
▶ Generate k training sets T1, ...,Tk by sampling from T

uniformly with replacement.
If the number of samples is |T |, then on average |Ti | = (1 − 1/e)|T |.

▶ For each i, train a model Mi on Ti .
▶ Combine outputs of the models: for regression by

averaging, for classification by (majority) voting.

156

Dropout

The algorithm: In every step of the gradient descent

▶ choose randomly a set N of neurons, each neuron is included
independently with probability 1/2,
(in practice, different probabilities are used as well).

▶ do forward and backward propagations only using the selected
neurons
(i.e. leave weights of the other neurons unchanged)

Dropout resembles bagging: Large ensemble of neural networks is
trained "at once" on parts of the data.

Dropout is not exactly the same as bagging: The models share
parameters, with each model inheriting a different subset of
parameters from the parent neural network. This parameter sharing
makes it possible to represent an exponential number of models with
a tractable amount of memory.
In the case of bagging, each model is trained to convergence on its respective
training set. This would be infeasible for large networks/training sets.

157

Dropout

The algorithm: In every step of the gradient descent

▶ choose randomly a set N of neurons, each neuron is included
independently with probability 1/2,
(in practice, different probabilities are used as well).

▶ do forward and backward propagations only using the selected
neurons
(i.e. leave weights of the other neurons unchanged)

Dropout resembles bagging: Large ensemble of neural networks is
trained "at once" on parts of the data.

Dropout is not exactly the same as bagging: The models share
parameters, with each model inheriting a different subset of
parameters from the parent neural network. This parameter sharing
makes it possible to represent an exponential number of models with
a tractable amount of memory.
In the case of bagging, each model is trained to convergence on its respective
training set. This would be infeasible for large networks/training sets.

157

Dropout – details

▶ The inner potential of a neuron j without dropout:

ξj =
∑
i∈j←

wjiyi

▶ The inner potential of a neuron j with dropout:

ri ∼ Bernoulli(1/2) for all i ∈ j← ∖ {0}

ξj =
∑
i∈j←

wji(riyi)

(Intuitively, randomly chosen neurons are masked out.)

▶ During inference do not drop out neurons and multiply
values of neurons with 1/2.
This compensates for the fact that without the drop out there are twice
as many neurons.

158

Weight decay and L2 regularization
Generalization can be improved by removing "unimportant" weights.

Penalising large weights gives stronger indication about their
importance.

In every step we decrease weights (multiplicatively) as follows:

w(t+1)
ji = (1 − ζ)w(t)

ji − ε ·
∂E
∂wji

(w⃗(t))

Intuition: Unimportant weights will be pushed to 0, important weights
will survive the decay.

Weight decay is equivalent to the gradient descent with a constant
learning rate ε and the following error function:

E′(w⃗) = E(w⃗) +
ζ
2ε

(w⃗ · w⃗)

Here ζ
2ε (w⃗ · w⃗) is the L2 regularization that penalizes large weights.

We use the gradient descent with a constant learning rate to illustrate
the equivalence between L2 regularization and the weight decay. Both
methods can be combined with other learning algorithnms (AdaGrad, etc.).

159

Weight decay and L2 regularization
Generalization can be improved by removing "unimportant" weights.

Penalising large weights gives stronger indication about their
importance.

In every step we decrease weights (multiplicatively) as follows:

w(t+1)
ji = (1 − ζ)w(t)

ji − ε ·
∂E
∂wji

(w⃗(t))

Intuition: Unimportant weights will be pushed to 0, important weights
will survive the decay.

Weight decay is equivalent to the gradient descent with a constant
learning rate ε and the following error function:

E′(w⃗) = E(w⃗) +
ζ
2ε

(w⃗ · w⃗)

Here ζ
2ε (w⃗ · w⃗) is the L2 regularization that penalizes large weights.

We use the gradient descent with a constant learning rate to illustrate
the equivalence between L2 regularization and the weight decay. Both
methods can be combined with other learning algorithnms (AdaGrad, etc.).

159

Weight decay and L2 regularization
Generalization can be improved by removing "unimportant" weights.

Penalising large weights gives stronger indication about their
importance.

In every step we decrease weights (multiplicatively) as follows:

w(t+1)
ji = (1 − ζ)w(t)

ji − ε ·
∂E
∂wji

(w⃗(t))

Intuition: Unimportant weights will be pushed to 0, important weights
will survive the decay.

Weight decay is equivalent to the gradient descent with a constant
learning rate ε and the following error function:

E′(w⃗) = E(w⃗) +
ζ
2ε

(w⃗ · w⃗)

Here ζ
2ε (w⃗ · w⃗) is the L2 regularization that penalizes large weights.

We use the gradient descent with a constant learning rate to illustrate
the equivalence between L2 regularization and the weight decay. Both
methods can be combined with other learning algorithnms (AdaGrad, etc.).

159

More optimization, regularization ...

There are many more practical tips, optimization methods,
regularization methods, etc.

For a very nice survey see

http://www.deeplearningbook.org/

... and also all other infinitely many urls concerned with deep
learning.

160

http://www.deeplearningbook.org/

