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Course organization
Course materials:
▶ Main: The lecture
▶ Neural Networks and Deep Learning by Michael Nielsen
http://neuralnetworksanddeeplearning.com/

(Extremely well written online textbook (a little outdated))

▶ Deep learning by Ian Goodfellow, Yoshua Bengio and Aaron
Courville
http://www.deeplearningbook.org/

("Classical" overview of the theory of neural networks (a little outdated))

▶ Probabilistic Machine Learning: An Introduction by Kevin Murphy
https://probml.github.io/pml-book/book1.html
(Great advanced ML textbook with (almost) up-to-date basic neural
networks.)

▶ Inifinitely many online tutorials on everything (to build intuition)

Suggested: deeplearning.ai courses by Andrew Ng
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Course organization

Evaluation:

▶ Project (Dr. Tomáš Foltýnek)

▶ implementation of a selected model + analysis of given data
▶ implementation C/C++/Java/Rust without use of any

specialized libraries for data analysis and machine
learning

▶ need to get over a given accuracy threshold (a gentle one,
just to eliminate non-functional implementations)

▶ Oral exam

▶ I may ask about anything from the lecture! You will get
a detailed manual specifying the mandatory knowledge.
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FAQ

Q: Why we cannot use specialized libraries in projects?

A: In order to "touch" the low level implementation details of the
algorithms. You should not even use libraries for linear algebra
and numerical methods, so that you will be confronted with
rounding errors and numerical instabilities.

Q: Why should you attend this course when there are infinitely
many great reasources elsewhere?

A: There are at least two reasons:

▶ You may discuss issues with me, my colleagues and other
students.

▶ I will make you truly learn fundamentals by heart.
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Notable features of the course

▶ Use of mathematical notation and reasoning (mandatory for
the exam)

▶ Sometimes goes deeper into statistical underpinnings of neural
networks learning

▶ The project demands a complete working solution which must
satisfy a prescribed performance specification

An unusual exam system! You can repeat the oral exam as many
times as needed (only the best grade goes into IS).

An example of an instruction email (from another course with the
same system):

It is typically not sufficient to devote a single
afternoon to the preparation for the exam.
You have to know _everything_ (which means every
single thing) starting with the slide 42
and ending with the slide 245 with notable exceptions
of slides: 121 - 123, 137 - 140, 165, 167.
Proofs presented on the whiteboard are also mandatory.
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Machine learning in general
▶ Machine learning = construction of systems that learn their

functionality from data
(... and thus do not need to be programmed.)

▶ spam filter
▶ learns to recognize spam from a database of "labelled"

emails
▶ consequently is able to distinguish spam from ham

▶ handwritten text reader
▶ learns from a database of handwritten

letters (or text) labelled by their correct
meaning

▶ consequently is able to recognize text
▶ · · ·
▶ and lots of much much more sophisticated applications ...

▶ Basic attributes of learning algorithms:
▶ representation: ability to capture the inner structure of

training data
▶ generalization: ability to work properly on new data
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Machine learning in general

Machine learning algorithms typically construct mathematical
models of given data. The models may be subsequently
applied to fresh data.

There are many types of models:
▶ decision trees
▶ support vector machines
▶ hidden Markov models
▶ Bayes networks and other graphical models
▶ neural networks
▶ · · ·

Neural networks, based on models of a (human) brain, form
a natural basis for learning algorithms!
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Artificial neural networks
▶ Artificial neuron is a rough mathematical approximation

of a biological neuron.
▶ (Aritificial) neural network (NN) consists of a number of

interconnected artificial neurons. "Behavior" of the network
is encoded in connections between neurons.

σ
ξ

x1 x2 xn

y

Zdroj obrázku: http://tulane.edu/sse/cmb/people/schrader/
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Why artificial neural networks?

Modelling of biological neural networks (computational
neuroscience).
▶ simplified mathematical models help to identify important

mechanisms
▶ How the brain receives information?
▶ How the information is stored?
▶ How the brain develops?
▶ · · ·

▶ neuroscience is strongly multidisciplinary; precise
mathematical descriptions help in communication among
experts and in design of new experiments.

I will not spend much time on this area!
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Why artificial neural networks?

Neural networks in machine learning.
▶ Typically primitive models, far from their biological

counterparts (but often inspired by biology).

▶ Strongly oriented towards concrete application domains:
▶ decision making and control - autonomous vehicles,

manufacturing processes, control of natural resources
▶ games - backgammon, poker, GO, Starcraft, ...
▶ finance - stock prices, risk analysis
▶ medicine - diagnosis, signal processing (EKG, EEG, ...), image

processing (MRI, CT, WSI ...)
▶ text and speech processing - machine translation, text

generation, speech recognition
▶ other signal processing - filtering, radar tracking, noise

reduction
▶ art - music and painting generation, deepfakes
▶ · · ·

I will concentrate on this area!
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Important features of neural networks

▶ Massive parallelism
▶ many slow (and "dumb") computational elements work in

parallel on several levels of abstraction

▶ Learning
▶ a kid learns to recognize a rabbit after seeing several

rabbits
▶ Generalization

▶ a kid is able to recognize a new rabbit after seeing several
(old) rabbits

▶ Robustness
▶ a blurred photo of a rabbit may still be classified as an

image of a rabbit
▶ Graceful degradation

▶ Experiments have shown that damaged neural network is
still able to work quite well

▶ Damaged network may re-adapt, remaining neurons may
take on functionality of the damaged ones
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The aim of the course

▶ We will concentrate on
▶ basic techniques and principles of neural networks,
▶ fundamental models of neural networks and their

applications.
▶ You should learn

▶ basic models
(multilayer perceptron, convolutional networks, recurrent networks,
transformers, autoencoders and generative adversarial networks)

▶ Simple applications of these models
(image processing, a little bit of text processing)

▶ Basic learning algorithms
(gradient descent with backpropagation)

▶ Basic practical training techniques
(data preparation, setting various hyper-parameters, control of
learning, improving generalization)

▶ Basic information about current implementations
(TensorFlow-Keras, Pytorch)
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Biological neural network

▶ Human neural network consists of approximately 1011 (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

▶ Each neuron is connected with approx. 104 neurons.
▶ Neurons themselves are very complex systems.

Rough description of nervous system:
▶ External stimulus is received by sensory receptors (e.g.

eye cells).
▶ Information is futher transfered via peripheral nervous

system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqently, an output
signal is produced.

▶ Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).
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Biological neural network

Zdroj: N. Campbell and J. Reece; Biology, 7th Edition; ISBN: 080537146X
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Summation
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Biological and Mathematical neurons
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Formal neuron (without bias)

σ
ξ

x1 x2 xn

y

w1 w2

· · ·

wn

▶ x1, . . . , xn ∈ R are inputs

▶ w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ =
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ h ;

0 ξ < h.

where h ∈ R is a threshold.
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Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

▶ x0 = 1, x1, . . . , xn ∈ R are inputs

▶ w0,w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

(The threshold h has been substituted
with the new input x0 = 1 and the weight
w0 = −h.)
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Neuron and linear separation

ξ = 0

ξ > 0

ξ > 0

ξ < 0

ξ < 0

▶ inner potential

ξ = w0 +

n∑
i=1

wixi

determines a separation
hyperplane in
the n-dimensional input space
▶ in 2d line
▶ in 3d plane
▶ · · ·
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Neuron geometry

20



Neuron and linear separation

σ σ(
∑

wixi)

x1 xn

· · ·

1/0 by A/B

w1 wn

n = 8 · 8, i.e. the number of pixels in the images. Inputs are
binary vectors of dimension n (black pixel ≈ 1, white pixel ≈ 0).
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σ

x1 xn

· · ·

x0 = 1
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w1 wn

w0
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Neuron and linear separation

w̄0 +
∑n

i=1 w̄ixi = 0
w0 +

∑n
i=1 wixi = 0

A

A

A A

B

B

B

▶ Red line classifies incorrectly
▶ Green line classifies correctly

(may be a result of
a correction by a learning
algorithm)

23



Neuron and linear separation (XOR)

0
(0,0)

1

(0,1)

1
(0,1)

0

(1,1)

x1

x2

▶ No line separates ones from
zeros.
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Neural networks

Neural network consists of formal neurons interconnected in
such a way that the output of one neuron is an input of several
other neurons.

In order to describe a particular type of neural networks we
need to specify:
▶ Architecture

How the neurons are connected.

▶ Activity
How the network transforms inputs to outputs.

▶ Learning
How the weights are changed during training.

25



Architecture

Network architecture is given as a digraph whose nodes are
neurons and edges are connections.

We distinguish several categories of
neurons:
▶ Output neurons
▶ Hidden neurons
▶ Input neurons

(In general, a neuron may be both input and
output; a neuron is hidden if it is neither input,
nor output.)

26



Architecture – Cycles

▶ A network is cyclic (recurrent) if its architecture contains a
directed cycle.

▶ Otherwise it is acyclic (feed-forward)
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Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
▶ Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

▶ layers numbered from 0; the
input layer has number 0
▶ E.g. three-layer network has

two hidden layers and one
output layer

▶ Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

▶ Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)
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Activity

Consider a network with n neurons, k input and ℓ output.

▶ State of a network is a vector of output values of all
neurons.
(States of a network with n neurons are vectors of Rn)

▶ State-space of a network is a set of all states.

▶ Network input is a vector of k real numbers, i.e.
an element of Rk .

▶ Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of Rk )

▶ Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.
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Activity – computation of a network
▶ Computation (typically) proceeds in discrete steps.

In every step the following happens:
1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input x⃗ if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on x⃗.

▶ Network output is a vector of values of all output neurons
in the network (i.e., an element of Rℓ).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

30
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Activity – semantics of a network

Definition
Consider a network with n neurons, k input, ℓ output.
Let A ⊆ Rk and B ⊆ Rℓ. Suppose that the network stops on
every input of A.
Then we say that the network computes a function F : A → B if
for every network input x⃗ the vector F(x⃗) ∈ B is the output of
the network after the computation on x⃗ stops.

Example 1

This network computes a function
from R2 to R.
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Activity – inner potential and activation functions

In order to specify activity of the network, we need to specify
how the inner potentials ξ are computed and what are
the activation functions σ.

We assume (unless otherwise specified) that

ξ = w0 +

n∑
i=1

wi · xi

here x⃗ = (x1, . . . , xn) are inputs of the neuron and
w⃗ = (w1, . . . ,wn) are weights.

There are special types of neural networks where the inner
potential is computed differently, e.g., as a "distance" of
an input from the weight vector:

ξ =
∣∣∣∣∣∣x⃗ − w⃗

∣∣∣∣∣∣
here ||·|| is a vector norm, typically Euclidean.
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Activity – inner potential and activation functions

There are many activation functions, typical examples:
▶ Unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ (Logistic) sigmoid

σ(ξ) =
1

1 + e−λ·ξ
here λ ∈ R is a steepness parameter.

▶ Hyperbolic tangens

σ(ξ) =
1 − e−ξ

1 + e−ξ

▶ ReLU

σ(ξ) = max(ξ,0)
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Activity – XOR

1 1

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34



Activity – XOR

1 1

σ 11 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34



Activity – XOR

0 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34



Activity – XOR

0 0

σ 01 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34



Activity – XOR

1 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34



Activity – XOR

1 0

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34



Activity – XOR

1 0

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34



Activity – XOR

0 1

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34



Activity – XOR

0 1

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34



Activity – XOR

0 1

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34



Activity – MLP and linear separation

0
(0,0)

1

(0,1)

1
(0,1)

0

(1,1)

P1 P2

x1

x2

σ1 σ 1

σ1

−22 2 −2

1

−1

1

3

−2

▶ The line P1 is given by
−1 + 2x1 + 2x2 = 0

▶ The line P2 is given by
3 − 2x1 − 2x2 = 0
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Activity – example

x1
1
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−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1
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Learning

Consider a network with n neurons, k input and ℓ output.

▶ Configuration of a network is a vector of all values of
weights.
(Configurations of a network with m connections are elements of Rm)

▶ Weight-space of a network is a set of all configurations.

▶ initial configuration
weights can be initialized randomly or using some sophisticated
algorithm

37



Learning

Consider a network with n neurons, k input and ℓ output.
▶ Configuration of a network is a vector of all values of

weights.
(Configurations of a network with m connections are elements of Rm)

▶ Weight-space of a network is a set of all configurations.

▶ initial configuration
weights can be initialized randomly or using some sophisticated
algorithm

37



Learning

Consider a network with n neurons, k input and ℓ output.
▶ Configuration of a network is a vector of all values of

weights.
(Configurations of a network with m connections are elements of Rm)

▶ Weight-space of a network is a set of all configurations.

▶ initial configuration
weights can be initialized randomly or using some sophisticated
algorithm

37



Learning algorithms

Learning rule for weight adaptation.
(the goal is to find a configuration in which the network computes
a desired function)

▶ Supervised learning
▶ The desired function is described using training examples

that are pairs of the form (input, output).
▶ Learning algorithm searches for a configuration which

"corresponds" to the training examples, typically by
minimizing an error function.

▶ Unsupervised learning
▶ The training set contains only inputs.
▶ The goal is to determine distribution of the inputs

(clustering, deep belief networks, etc.)

38
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Supervised learning – illustration

A

A

A A

B

B

B

▶ classification in the plane using
a single neuron

▶ training examples are of the form
(point, value) where the value is
either 1, or 0 depending on whether
the point is either A , or B

▶ the algorithm considers examples
one after another

▶ whenever an incorrectly classified
point is considered, the learning
algorithm turns the line in
the direction of the point
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Summary – Advantages of neural networks

▶ Massive parallelism
▶ neurons can be evaluated in parallel

▶ Learning
▶ many sophisticated learning algorithms used to "program"

neural networks
▶ generalization and robustness

▶ information is encoded in a distributed manner in weights
▶ "close" inputs typicaly get similar values

▶ Graceful degradation
▶ damage typically causes only a decrease in precision of

results
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Expressive power of neural networks

41



Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

▶ x0 = 1, x1, . . . , xn ∈ R are inputs
▶ w0,w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.
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Boolean functions

Activation function: unit step function σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

σ

x1 x2 xn

x0 = 1

y = AND(x1, . . . , xn)

1 1
· · ·

1

−n
σ

x1 x2 xn

x0 = 1

y = OR(x1, . . . , xn)

1 1
· · ·

1

−1

σ

x1

x0 = 1

y = NOT(x1)

−1

0
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Boolean functions

Theorem
Let σ be the unit step function. Two layer MLPs, where each
neuron has σ as the activation function, are able to compute all
functions of the form F : {0,1}n → {0,1}.

Proof.
▶ Given a vector v⃗ = (v1, . . . , vn) ∈ {0,1}n, consider a neuron

Nv⃗ whose output is 1 iff the input is v⃗:

σ

y

x1 xi xn

x0 = 1

w1 wi
· · ·· · ·

wn

w0 w0 = −
∑n

i=1 vi

wi =

1 vi = 1
−1 vi = 0

▶ Now let us connect all outputs of all neurons Nv⃗ satisfying
F(v⃗) = 1 using a neuron implementing OR. □
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Non-linear separation

x1 x2

y
▶ Consider a three layer network; each neuron

has the unit step activation function.

▶ The network divides the input space in two
subspaces according to the output (0 or 1).

▶ The first (hidden) layer divides the input
space into half-spaces.

▶ The second layer may e.g. make
intersections of the half-spaces⇒ convex
sets.

▶ The third layer may e.g. make unions of some
convex sets.
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Non-linear separation – illustration

x1 xk

· · ·

· · ·

· · ·

y ▶ Consider three layer networks; each neuron
has the unit step activation function.

▶ Three layer nets are capable of
"approximating" any "reasonable" subset A of
the input space Rk .

▶ Cover A with hypercubes (in 2D squares, in
3D cubes, ...)

▶ Each hypercube K can be separated using
a two layer network NK
(i.e. a function computed by NK gives 1 for
points in K and 0 for the rest).

▶ Finally, connect outputs of the nets NK
satisfying K ∩ A , ∅ using a neuron
implementing OR.
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Power of ReLU

x

· · ·

y Consider a two layer network
▶ with a single input and single output;
▶ hidden neurons with the ReLU activation:
σ(ξ) = max(ξ,0);

▶ the output neuron with identity activation:
σ(ξ) = ξ (linear model)

For every continuous function f : [0,1]→ [0,1] and ε > 0 there
is a network of the above type computing a function
F : [0,1]→ R such that |f(x) − F(x)| ≤ ε for all x ∈ [0,1].

For every open subset A ⊆ [0,1] there is a network of the
above type such that for "most" x ∈ [0,1] we have that x ∈ A iff
the network’s output is > 0 for the input x.
Just consider a continuous function f where f(x) is the minimum difference
between x and a point on the boundary of A . Then uniformly approximate f
using the networks.

47



Power of ReLU

x

· · ·

y Consider a two layer network
▶ with a single input and single output;
▶ hidden neurons with the ReLU activation:
σ(ξ) = max(ξ,0);

▶ the output neuron with identity activation:
σ(ξ) = ξ (linear model)

For every continuous function f : [0,1]→ [0,1] and ε > 0 there
is a network of the above type computing a function
F : [0,1]→ R such that |f(x) − F(x)| ≤ ε for all x ∈ [0,1].

For every open subset A ⊆ [0,1] there is a network of the
above type such that for "most" x ∈ [0,1] we have that x ∈ A iff
the network’s output is > 0 for the input x.
Just consider a continuous function f where f(x) is the minimum difference
between x and a point on the boundary of A . Then uniformly approximate f
using the networks.

47



Power of ReLU

x

· · ·

y Consider a two layer network
▶ with a single input and single output;
▶ hidden neurons with the ReLU activation:
σ(ξ) = max(ξ,0);

▶ the output neuron with identity activation:
σ(ξ) = ξ (linear model)

For every continuous function f : [0,1]→ [0,1] and ε > 0 there
is a network of the above type computing a function
F : [0,1]→ R such that |f(x) − F(x)| ≤ ε for all x ∈ [0,1].

For every open subset A ⊆ [0,1] there is a network of the
above type such that for "most" x ∈ [0,1] we have that x ∈ A iff
the network’s output is > 0 for the input x.
Just consider a continuous function f where f(x) is the minimum difference
between x and a point on the boundary of A . Then uniformly approximate f
using the networks. 47



48



48



48



48



48



48



48



Non-linear separation - sigmoid

Theorem (Cybenko 1989 - informal version)
Let σ be a continuous function which is sigmoidal, i.e. satisfies

σ(x) =

1 pro x → +∞

0 pro x → −∞

For every "reasonable" set A ⊆ [0,1]n, there is a two layer
network where each hidden neuron has the activation function
σ (output neurons are linear), that satisfies the following:
For "most" vectors v⃗ ∈ [0,1]n we have that v⃗ ∈ A iff the network
output is > 0 for the input v⃗.
For mathematically oriented:
▶ "reasonable" means Lebesgue measurable
▶ "most" means that the set of incorrectly classified vectors has

the Lebesgue measure smaller than a given ε > 0
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Non-linear separation - practical illustration

▶ ALVINN drives a car

▶ The net has 30×32 = 960 inputs
(the input space is thus R960)

▶ Input values correspond to
shades of gray of pixels.

▶ Output neurons "classify" images
of the road based on their
"curvature".

Zdroj obrázku: http://jmvidal.cse.sc.edu/talks/ann/alvin.html
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Function approximation - two-layer networks

Theorem (Cybenko 1989)
Let σ be a continuous function which is sigmoidal, i.e. is
increasing and satisfies

σ(x) =

1 pro x → +∞

0 pro x → −∞

For every continuous function f : [0,1]n → [0,1] and every ε > 0
there is a function F : [0,1]n → [0,1] computed by a two layer
network where each hidden neuron has the activation function
σ (output neurons are linear), that satisfies the following

|f(v⃗) − F(v⃗)| < ε for every v⃗ ∈ [0,1]n.
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Neural networks and computability
▶ Consider recurrent networks (i.e., containing cycles)

▶ with real weights (in general);
▶ one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

▶ parallel activity rule (output values of all neurons are
recomputed in every step);

▶ activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

▶ We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =
|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).
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Neural networks and computability

A network recognizes a language L ⊆ {0,1}+ if it computes a
function F : A → R (A ⊆ R) such that

ω ∈ L iff δ(ω) ∈ A and F(δ(ω)) > 0.

▶ Recurrent networks with rational weights are equivalent to
Turing machines
▶ For every recursively enumerable language L ⊆ {0,1}+

there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L .

▶ The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

▶ There is "universal" network (equivalent of the universal
Turing machine)

▶ Recurrent networks are super-Turing powerful
▶ For every language L ⊆ {0,1}+ there is a recurrent network

with less than 1000 nerons which recognizes L .
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Summary of theoretical results

▶ Neural networks are very strong from the point of view of
theory:
▶ All Boolean functions can be expressed using two-layer

networks.
▶ Two-layer networks may approximate any continuous

function.
▶ Recurrent networks are at least as strong as Turing

machines.

▶ These results are purely theoretical!
▶ "Theoretical" networks are extremely huge.
▶ It is very difficult to handcraft them even for simplest

problems.

▶ From practical point of view, the most important
advantages of neural networks are: learning,
generalization, robustness.
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Neural networks vs classical computers

Neural networks "Classical" computers

Data implicitly in weights explicitly

Computation naturally parallel sequential, localized

Robustness robust w.r.t. input corruption
& damage

changing one bit may
completely crash the
computation

Precision imprecise, network recalls a
training example "similar" to
the input

(typically) precise

Programming learning manual
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History & implementations
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History of neurocomputers

▶ 1951: SNARC (Minski et al)
▶ the first implementation of neural network
▶ a rat strives to exit a maze
▶ 40 artificial neurons (300 vacuum tubes, engines, etc.)

57



History of neurocomputers

▶ 1957: Mark I Perceptron (Rosenblatt et al) - the first
successful network for image recognition

▶ single layer network
▶ image represented by 20 × 20 photocells
▶ intensity of pixels was treated as the input to a perceptron

(basically the formal neuron), which recognized figures
▶ weights were implemented using potentiometers, each set

by its own engine
▶ it was possible to arbitrarily reconnect inputs to neurons to

demonstrate adaptability

58



History of neurocomputers
▶ 1960: ADALINE (Widrow & Hof)

▶ single layer neural network
▶ weights stored in a newly invented electronic component

memistor, which remembers history of electric current in
the form of resistance.

▶ Widrow founded a company Memistor Corporation, which
sold implementations of neural networks.

▶ 1960-66: several companies concerned with neural
networks were founded.
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History of neurocomputers

▶ 1967-82: dead still after publication of a book by Minski &
Papert (published 1969, title Perceptrons)

▶ 1983-end of 90s: revival of neural networks
▶ many attempts at hardware implementations

▶ application specific chips (ASIC)
▶ programmable hardware (FPGA)

▶ hw implementations typically not better than "software"
implementations on universal computers (problems with
weight storage, size, speed, cost of production etc.)

▶ end of 90s-cca 2005: NN suppressed by other machine
learning methods (support vector machines (SVM))

▶ 2006-now: The boom of neural networks!
▶ deep networks – often better than any other method
▶ GPU implementations
▶ ... specialized hw implementations (Google’s TPU)
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Some highlights

▶ Breakthrough in image recognition.
Accuracy of image recognition improved by an order of magnitude in 5
years.

▶ Breakthrough in game playing.
Superhuman results in Go and Chess almost without any human
intervention. Master level in Starcraft, poker, etc.

▶ Breakthrough in machine translation.
Switching to deep learning produced a 60% increase in translation
accuracy compared to the phrase-based approach previously used in
Google Translate (in human evaluation)

▶ Breakthrough in speech processing.
▶ Breakthrough in text generation.

GPT-4 generates pretty realistic articles, short plays (for a theatre) have
been successfully generated, etc.
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History in waves ...

Figure: The figure shows two of the three historical waves of artificial
neural nets research, as measured by the frequency of the phrases
"cybernetics" and "connectionism" or "neural networks" according to
Google Books (the third wave is too recent to appear).
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Current hardware – What do we face?

Increasing dataset size ...

... weakly-supervised pre-training using hashtags from
the Instagram uses 3.6 ∗ 109 images.
Revisiting Weakly Supervised Pre-Training of Visual Perception Models. Singh et al.

https://arxiv.org/pdf/2201.08371.pdf, 2022
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Current hardware – What do we face?

... and thus increasing size of neural networks ...

2. ADALINE

4. Early back-propagation network (Rumelhart et al., 1986b)

8. Image recognition: LeNet-5 (LeCun et al., 1998b)

10. Dimensionality reduction: Deep belief network (Hinton et al., 2006)
... here the third "wave" of neural networks started

15. Digit recognition: GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

18. Image recognition (AlexNet): Multi-GPU convolutional network (Krizhevsky et al., 2012)

20. Image recognition: GoogLeNet (Szegedy et al., 2014a)
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GPT-4’s Scale: GPT-4 has 1.8 trillion parameters across 120 layers, which is
over 10 times larger than GPT-3.
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Current hardware – What do we face?

... as a reward we get this ...

Figure: Since deep networks reached the scale necessary to
compete in the ImageNetLarge Scale Visual Recognition Challenge,
they have consistently won the competition every year, and yielded
lower and lower error rates each time. Data from Russakovsky et al.
(2014b) and He et al. (2015).
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Current hardware

In 2012, Google trained a large network of 1.7
billion weights and 9 layers

The task was image recognition (10 million
youtube video frames)

The hw comprised a 1000 computer network
(16 000 cores), computation took three days.
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Current hardware

In 2012, Google trained a large network of 1.7
billion weights and 9 layers

The task was image recognition (10 million
youtube video frames)

The hw comprised a 1000 computer network
(16 000 cores), computation took three days.

In 2014, similar task performed on Commodity
Off-The-Shelf High Performance Computing
(COTS HPC) technology: a cluster of GPU
servers with Infiniband interconnects and MPI.

Able to train 1 billion parameter networks on
just 3 machines in a couple of days.
Able to scale to 11 billion weights (approx. 6.5
times larger than the Google model) on 16
GPUs. 67



Current hardware – NVIDIA DGX Station

▶ 8x GPU (Nvidia A100 80GB
Tensor Core)

▶ 5 petaFLOPS

▶ System memory: 2 TB

▶ Network: 200 Gb/s InfiniBand
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Deep learning in clouds
Big companies offer cloud services for deep learning:
▶ Amazon Web Services
▶ Google Cloud
▶ Deep Cognition
▶ ...

Advantages:
▶ Do not have to care (too much) about technical problems.
▶ Do not have to buy and optimize highend hw/sw, networks etc.
▶ Scaling & virtually limitless storage.

Disadvatages:
▶ Do not have full control.
▶ Performance can vary, connectivity problems.
▶ Have to pay for services.
▶ Privacy issues.

69



Current software
▶ TensorFlow (Google)

▶ open source software library for numerical computation
using data flow graphs

▶ allows implementation of most current neural networks
▶ allows computation on multiple devices (CPUs, GPUs, ...)
▶ Python API
▶ Keras: a part of TensorFlow that allows easy description of

most modern neural networks
▶ PyTorch (Facebook)

▶ similar to TensorFlow
▶ object oriented
▶ ... majority of new models in research papers implemented

in PyTorch
https://www.cioinsight.com/big-data/pytorch-vs-tensorflow/

▶ Theano (dead):
▶ The "academic" grand-daddy of deep-learning frameworks,

written in Python. Strongly inspired TensorFlow (some
people developing Theano moved on to develop
TensorFlow).

▶ There are others: Caffe, Deeplearning4j, ... 70



Current software – Keras

71



Current software – Keras functional API
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Current software – TensorFlow
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Current software – TensorFlow
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Current software – PyTorch
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Other software implementations

Most "mathematical" software packages contain some support
of neural networks:
▶ MATLAB
▶ R
▶ STATISTICA
▶ Weka
▶ ...

The implementations are typically not on par with the previously
mentioned dedicated deep-learning libraries.
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Training linear models
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Linear regression (ADALINE)

Architecture:

x1 x2 xn

· · ·

y

x⃗0 = 1
w0

w1 w2 wn

w⃗ = (w0,w1, . . . ,wn) and x⃗ = (x0, x1, . . . , xn) where x0 = 1.

Activity:
▶ inner potential: ξ = w0 +

∑n
i=1 wixi =

∑n
i=0 wixi = w⃗ · x⃗

▶ activation function: σ(ξ) = ξ
▶ network function: y[w⃗](x⃗) = σ(ξ) = w⃗ · x⃗
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Linear regression (ADALINE)

Learning:
▶ Given a training dataset

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th
input, and dk ∈ R is the expected output.

Intuition: The network is supposed to compute an affine approximation of the
function (some of) whose values are given in the training set.
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Oaks in Wisconsin
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Linear regression (ADALINE)
▶ Error function:

E(w⃗) =
1
2

p∑
k=1

(
w⃗ · x⃗k − dk

)2
=

1
2

p∑
k=1

 n∑
i=0

wixki − dk


2

▶ The goal is to find w⃗ which minimizes E(w⃗).
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Error function
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Gradient of the error function

Consider gradient of the error function:

∇E(w⃗) =

(
∂E
∂w0

(w⃗), . . . ,
∂E
∂wn

(w⃗)

)

Intuition: ∇E(w⃗) is a vector in the weight space which points in
the direction of the steepest ascent of the error function.
Note that the vectors x⃗k are just parameters of the function E, and are thus
fixed!

Fact
If ∇E(w⃗) = 0⃗ = (0, . . . ,0), then w⃗ is a global minimum of E.
For ADALINE, the error function E(w⃗) is a convex paraboloid and thus has
the unique global minimum.
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Gradient - illustration

Caution! This picture just illustrates the notion of gradient ... it is not
the convex paraboloid E(w⃗) !

84



Gradient of the error function

∂E
∂wℓ

(w⃗) =
1
2

p∑
k=1

δ
δwℓ

 n∑
i=0

wixki − dk


2

=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk

 δδwℓ
 n∑

i=0

wixki − dk


=

1
2

p∑
k=1

2

 n∑
i=0

wixki − dk


 n∑

i=0

(
δ
δwℓ

wixki

)
−
δE
δwℓ

dk


=

p∑
k=1

(
w⃗ · x⃗k − dk

)
xkℓ

Thus

∇E(w⃗) =

(
∂E
∂w0

(w⃗), . . . ,
∂E
∂wn

(w⃗)

)
=

p∑
k=1

(
w⃗ · x⃗k − dk

)
x⃗k
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Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.

The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2), . . ..
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1, weights w⃗(t+1) are computed as follows:

w⃗(t+1) = w⃗(t)
− ε · ∇E(w⃗(t))

= w⃗(t)
− ε ·

p∑
k=1

(
w⃗(t)
· x⃗k − dk

)
· x⃗k

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is a learning rate.

Proposition
For sufficiently small ε > 0 the sequence w⃗(0), w⃗(1), w⃗(2), . . .
converges (componentwise) to the global minimum of E (i.e. to
the vector w⃗ satisfying ∇E(w⃗) = 0⃗).

86



Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2), . . ..
▶ weights in w⃗(0) are randomly initialized to values close to 0

▶ in the step t + 1, weights w⃗(t+1) are computed as follows:
w⃗(t+1) = w⃗(t)

− ε · ∇E(w⃗(t))

= w⃗(t)
− ε ·

p∑
k=1

(
w⃗(t)
· x⃗k − dk

)
· x⃗k

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is a learning rate.

Proposition
For sufficiently small ε > 0 the sequence w⃗(0), w⃗(1), w⃗(2), . . .
converges (componentwise) to the global minimum of E (i.e. to
the vector w⃗ satisfying ∇E(w⃗) = 0⃗).

86



Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2), . . ..
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1, weights w⃗(t+1) are computed as follows:

w⃗(t+1) = w⃗(t)
− ε · ∇E(w⃗(t))

= w⃗(t)
− ε ·

p∑
k=1

(
w⃗(t)
· x⃗k − dk

)
· x⃗k

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is a learning rate.

Proposition
For sufficiently small ε > 0 the sequence w⃗(0), w⃗(1), w⃗(2), . . .
converges (componentwise) to the global minimum of E (i.e. to
the vector w⃗ satisfying ∇E(w⃗) = 0⃗).

86



Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2), . . ..
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1, weights w⃗(t+1) are computed as follows:

w⃗(t+1) = w⃗(t)
− ε · ∇E(w⃗(t))

= w⃗(t)
− ε ·

p∑
k=1

(
w⃗(t)
· x⃗k − dk

)
· x⃗k

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is a learning rate.

Proposition
For sufficiently small ε > 0 the sequence w⃗(0), w⃗(1), w⃗(2), . . .
converges (componentwise) to the global minimum of E (i.e. to
the vector w⃗ satisfying ∇E(w⃗) = 0⃗).

86



Linear regression - animation
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