Recurrent Neural Networks - LSTM
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RNN - formally

> Minputs: X = (Xq,...,Xm)
> H hidden neurons: h = (hy,..., hy)
» N output neurons: y = (y1,..., ¥n)

> Weights:

> U from input xi to hidden hg
» Wi from hidden hy to hidden hg
> Vi from hidden hy. to output yk




=2 =2
> Input sequence: X = Xy,...,XT

Xt = (Xt1, .-, Xtm)



RNN - formally
> Input sequence: X = Xy,..., X1

)_()t:(xth---,XtM)

> Hidden sequence: h = Fro, FH,...,F)T
At = (he1, - .., hy)

We have hy = (0,...,0) and
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RNN - formally
> Input sequence: X = Xy,..., X1

)_()t:(xth---/XtM)

> Hidden sequence: h = Fro, FH,...,F)T
e = (1, ..., )
We have ﬁo =(0,...,0)and
B M H
hy =0 Z Uik Xtk + Z Wik ht-1)k
k=1 k=1
» Output sequence: y = yi,..., YT
Vi = (Vt1, -, YiN)
_ H
Where }/tk =0 (Zk':‘l ka/ htk/).



» Input sequence: X = Xi,..., Xt



» Input sequence: X = Xi,..., Xt
. > o -
» Hidden sequence: h = hg, hy, ..., ht where

and

At = o(U; + Why_y)



RNN — in matrix form

=2 =2
> Input sequence: X = X1,..., XT
. - o —>
» Hidden sequence: h = hg, hy, ..., ht where

ho = (0,...,0)
and

At = o(USe + Why_q)

» Output sequence: y = i, ..., Yt where

yt = o(Vhy)



RNN - Comments

>

>

F)t is the memory of the network, captures what happened
in all previous steps (with decaying quality).

RNN shares weights U, V, W along the sequence.

Note the similarity to convolutional networks where the weights were
shared spatially over images, here they are shared temporally over
sequences.

RNN can deal with sequences of variable length.
Compare with MLP which accepts only fixed-dimension vectors on
input.



Binary adder

The Task: Design a recurrent network with a single hidden
layer which works as a binary adder.

Example of behavior: Input two binary numbers, e.g., 111 and
101 (we assume that the least significant bit is on the left).

The input of the network will be: (1,1),(1,0),(1,1)

The output is supposet to be: 0,0, 1 (we ignore the carry at the
end).



RNN - training

Training set

T — {(x1,d1),---, (Xprdp)}

here
> each X; = X1,..., X7, is an input sequence,
- - .
» each d, = dy,...,der, is an expected output sequence.

Here each X;t = (X¢t1,. .., Xetm) iS @an input vector and each
3“ = (dgt1,--.,den) is an expected output vector.



Error function

In what follows | will consider a training set with a single
element (x,d). l.e. drop the index £ and have

> X = Xi,..., X7 where Xt = (X¢1,..., Xm)
- - -
» d=d,...,dr where d; = (di,...,di)

The squared error of (x,d) is defined by

.
:ZZ (Vi — du)?

t=1 k=1

—_

Recall that we have a sequence of network outputs
Y = V1,...,y7 and thus yy is the k-th component of y;



Gradient descent (single training example)

Consider a single training example (x, d).

The algorithm computes a sequence of weight matrices as
follows:



Gradient descent (single training example)

Consider a single training example (x, d).

The algorithm computes a sequence of weight matrices as
follows:

» Initialize all weights randomly close to 0.



Gradient descent (single training example)

Consider a single training example (x, d).
The algorithm computes a sequence of weight matrices as
follows:

» Initialize all weights randomly close to 0.

» Inthestep{+ 1 (here { =0,1,2,...) compute "new"
weights U1, v W) from the "old" weights
U, v W as follows:

OE
(e+1) 40 (x.d)
Ukk' - Ukk/ —e&(l) - 5Urr
OE,
(e+1) /() (x.d)
Vi~ = Vi —€(0)- Vi
0E(xa)

(t+1) _ w0
Wi ™ = Wy —e(0)- W



Gradient descent (single training example)

Consider a single training example (x, d).
The algorithm computes a sequence of weight matrices as
follows:

» Initialize all weights randomly close to 0.

» Inthestep{+ 1 (here { =0,1,2,...) compute "new"
weights U1, v W) from the "old" weights
U, v W as follows:

=
(e+1) 40 (x.d)
Uge " = Ugo —e(0) - 5Urr
OE,
(t+1) /(0 (xd)
Vi~ = Vi —€(0)- Vi
OE,
(e4+1) (0 (xd)
Wi " = Wao =) S

The above is THE learning algorithm that modifies weights!



Computes the derivatives of E, no weights are modified!



Backpropagation

Computes the derivatives of E, no weights are modified!

0Exd) v OExd)

= co’ Xy kI:1,...,M
OUnk ; Ohi t
= _ZT:(SE“.) ) o Y
Vi &= Oyw T
OExd)

! , k' =1,...,H

oWir tz: o’ - hi-1yk



Backpropagation

Computes the derivatives of E, no weights are modified!

: — -0’ X k'=1,...,M
6 Ukk/ =1 6hﬁ( o th 7 7
0Exd) v OExd)
— = — .0’ hye k'=1,...,H
0Exd) o OExd) ,
S Wik ; Shy “h-ye k"=1,...,H
Backpropagation:
0Exa) .
5 = Yk — di (assuming squared error)
Yik
0Ewa) _ 3 OEwa) +i Ewa)
Ohy = oy ok = Ny oK



Long-term dependencies

(5E(x d) N 5E(x d) xd)
aul 2 " W
Shye i o - Viek + Z 5h 10 Wik

> Unless Y_, o’ - Wk ~ 1, the gradient either vanishes, or
explodes.

» For alarge T (long-term dependency), the gradient
"deeper” in the past tends to be too small (large).

» A solution: LSTM
LSTM is currently a bit obsolete. The main idea is to decompose W into
several matrices, each responsible for a different task. One is
concerned about memory, one is concerned about the output at each
step, etc.

https://arxiv.org/pdf/2205.13504.pdf



LSTM

Et = 5 o Gh(ét) OUtpUt

51290@ 1+1toCt memory

Ci = on(Wg-hiy + Ug-%)  new memory contents
Ot = ag(W, - At + Us - Xt) output gate

? og(Ws - ht 1+ Us-xt) forget gate

it =

ag(W; - ht 1+ Ui xt) input gate

> o is the component-wise product of vectors

> . is the matrix-vector product

> op hyperbolic tangents (applied component-wise)
> og logistic sigmoid (aplied component-wise)



>

E:
)
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Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/



t=5t°0h(5t)
?OCt 1 +ItOCt
F Ct=0h(WC'ht-1 + Ug - Xt)
Ot = og(Wo - Ht—1 + U )?t)
= f= (Wf'ﬁt—1 + Ur - Xt)

>

it =og(W;- A1 + U;- X)

Te

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/



F')t = 5t00h(5t)
ét:ﬁ‘oét—1 +7;°ét
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Ot = og(Wo - Ht—1 + U )?t)
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Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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it = ag(Wi - Pe_y + Uy~ %)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM - summary

» LSTM (almost) solves the vanishing gradient problem w.r.t.
the "internal" state of the network.

> Learns to control its own memory (via forget gate).
» Revolution in machine translation and text processing.

... but the development goes on ...



Time-series Forecasting with LSTM

(see: https://www.tensorflow.org/tutorials/structured_data/
time_series)

» Weather time series dataset

> 14 different features such as air temperature, atmospheric
pressure, and humidity

> collected every 10 minutes, beginning in 2003 (only 2009 -
2016 considered in the example)

max.

p T Tpot  Tdew rh VPmax VPact VPdef sh H20C rho wv . wd

(mbar) (degC) (K) (degC) (%) (mbar) (mbar) (mbar) (g/kg) (mmol/mel) (g/m**3) (m/s) (m:g (deg)

5 99650 805 26538 -878 944 333 3.4 0.19 196 315 1307.86 021 063 1927
11 99662 888 26454 977 932 312 290 0.21 1.81 291 131225 025 063 1903
17 996.84 -8.81 264.59 -9.66 935 313 293 0.20 183 294 131218 018 063 167.2
g3 99699 905 26434 -1002 926 3.07 2.85 0.23 178 285 131361 010 038 2400
gg 997.46 963 26372 -1065 922 294 2n 0.23 169 27 131719 040 088 157.0

The Task: Predict the temperature for the next hour.


https://www.tensorflow.org/tutorials/structured_data/time_series
https://www.tensorflow.org/tutorials/structured_data/time_series
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Preprocessing (omitted)

Before applying any prediction model, proper preprocessing is
essential for time series data.

>

Train-test Split: It is crucial to split the data into training and test
sets while ensuring that the temporal order is maintained. This
allows the model to learn from past input data of the training set
and evaluate its performance on unseen future data.

Handling Missing Values: Addressing missing values is crucial
as gaps in the data can affect the model’s performance. You can
use techniques like interpolation or forward/backward filling.

Data Normalization: Normalizing the data ensures that all
features are on the same scale, preventing any single feature
from dominating the model’s learning process.

Detrending: Removing the trend component from the data can
help in better understanding the underlying patterns and making
accurate predictions.

Seasonal Adjustment: For data with seasonality, seasonal
adjustment methods like seasonal differencing or seasonal
decomposition can be applied.

20



The baseline: Predict that the temperature stays constant.

—=— Inputs
@ Labels
027 g predictions

T (degC) [normed]

T (degC) [normed]

T (degC) (normed]

21



Simple linear model

The linear model: Consider the current values of all variables

and predict the temperature using linear regression.

0.4
—— Inputs
@ Labels

021 g Predictions

T (degC) [normed]

T (degC) [normed]

T (degC) [normed]

Time [h]

22
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Data Windowing

Assume that the samples are taken hourly (subsample the 10
minutes samples).

Consider windowed inputs to the model.

E.g., predict one hour given 6 hours from the past:

Input width = 6 offset = 1
- A V_Aﬁ
t=0 | t=1 =2 | t=3 | t= =5 | t=
—
Label width = 1
. J
A

Total width = 7

24



LSTM

Given 24 hours in the past, predict the next hour with LSTM.

A possible LSTM architecture:

t=0

t=1

t=2

t=22

t=23

i

I

t=23

t=24

t=1

t=2

t=3

t=23

t=24

The used LSTM had the memory dimension equal to 32.

Inputs

Model

Predictions

Labels

25
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mean absolute error

MAE =

B validation

m Test
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0.01 1

0.00 -
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Time-series prediction summary

» The presented approach is very basic!
» Omitted lots of important ideas:

>
>
>

>

Preprocessing - extremely important!

Cross-validation - tricky!

Classical models ARIMA etc. - very deep and advanced
areal

Proper evaluation, explainability, ... (a whole new course
possible!)

> Read books, e.g.

| 4

>

Hyndman and Athanasopoulos. Forecasting: Principles and
Practice. Online: https://otexts.com/fpp2/

Manu Joseph. Modern Time Series Forecasting with
Python. Packt Publishing. 2022

28



RNN text generator (a little obsolete example)
Generating texts letter by letter.

target chars: “e” il T

1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
oulput layer I -1.0 1.9 0.1
4.1 1.2 -1.1 2.2
0.3 1.0 0.1 -0.3
hidden layer | 0.1 = 0.3 -0.5 > 0.9
0.9 0.1 -0.3 0.7
1 0 0 0
; 0 1 0 0
input layer 0 0 1 1
0 0 0 0
input chars:  “h" ‘e" | P

29



Shakespeare

» Generating Shakespeare letter by letter.
» Trained on Shakespeare’s plays (4.4MB).

VIOLA: Why, Salisbury must find his flesh and thought That which |
am not aps, not a man and in fire, To show the reining of the raven
and the wars To grace my hand reproach within, and not a fair are
hand, That Caesar and my goodly father’s world; When | was heaven
of presence and our fleets, We spare with hours, but cut thy council |
am great, Murdered and by thy master’s ready there My power to give
thee but so much as hell: Some service in the noble bondman here,
Would show him to her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods With his heads, and
my hands are wonder’d at the deeds, So drop upon your lordship’s
head, and your opinion Shall be against your honour.

30



Wikipedia
» Hutter Prize 100MB dataset from Wikipedia (96MB)

Naturalism and decision for the majority of Arab countries’ capitalide was
grounded by the Irish language by [[John Clair]], [[An Imperial Japanese
Revolt]], associated with Guangzham’s sovereignty. His generals were the
powerful ruler of the Portugal in the [[Protestant Immineners]], which could be
said to be directly in Cantonese Communication, which followed a ceremony
and set inspired prison, training. The emperor travelled back to [[Antioch,
Perth, October 25|21]] to note, the Kingdom of Costa Rica, unsuccessful
fashioned the [[Thrales]], [[Cynth’s Dajoard]], known in western [[Scotland]],
near ltaly to the conquest of India with the conflict. Copyright was the
succession of independence in the slop of Syrian influence that was a famous
German movement based on a more popular servicious, non-doctrinal and
sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]] (PJS)[http:
//www . humah.yahoo.com/guardian.cfm/7754800786d17551963s89.htm

Official economics Adjoint for the Nazism, Montgomery was swear to
advance to the recoiircee for thoce KRaocialiem’e riile wae etartina to <ianina a 31


http://www.humah.yahoo.com/guardian. cfm/7754800786d17551963s89.htm
http://www.humah.yahoo.com/guardian. cfm/7754800786d17551963s89.htm

Xml halucination:

<page>
<title>Antichrist</title>
<id>865</id>
<revision>
<id>15900676</id>
<timestamp>2002-08-03T18:14:12Z</timestamp>
<contributor>
<username>Paris</username>
<id>23</id>
</contributor>
<minor />
<comment>Automated conversion</comment>
<text xml:space="preserve'>
#REDIRECT [[Christianity]]l</text>
</revision>
</page>

32



» Algebraic geometry textbook.
» LaTeX source (16MB).
» Almost compilable.

33



Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = 0x(L)

Proof. This is an algebraic space with the composition of sheaves F on Xz, we
have

Ox(F) = {morphy xoy (G, F)}
where G defines an isomorphism F — F of O-modules. m]
Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma 77, O

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let Y C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complez.

The following to the construction of the lemmma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: XY a3Y Y 3 Y xxY o5 X,
be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.
(2) If X is an affine open covering,.

Coancider a coommaoan ctriictnnre on Y and Y the Binectnr M« (T which ic 1ncallyy nf
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» Trained on all source files of Linux kernel concatenated
into a single file (474MB of C code).

35



static int indicate policy(void)
{

int error;

if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock graph and set blocked();

else
ret = 1;
goto bail;
}

segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = 0; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;
if (fd) {
current = blocked;

}
rw->name = "Getjbbregs”;
bprm_self clearl(&iv->version);

regs->new = blocks[(BPF_STATS << info->historidac)]

return segtable;

| PFMR_CLOBATHINC SECONDS << 12;

36



Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.

This program is free software; you can redistribute it and/or modify it

under

the terms of the GNU General Public License version 2 as published by

the Free Software Foundation.

This program is distributed in the hope that it will be useful,

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

*
*
*
*
*
*
*
* but WITHOUT ANY WARRANTY; without even the implied warranty of
*
*
*
*
*
*
*

Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

#include <linux/kexec.h>

#include <linux/errno.h>

#include <linux/io.h>

#include <linux/platform_device.h>
#include <linux/multi.h>

#include <linux/ckevent.h>

#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system_info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>

37



Evolution of Shakespeare
100 iter.:

tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

300 iter.:

"Tmont thithey" fomesscerliund

Keushey. Thom here

sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

500 iter.:

we counter. He stutn co des. His stanted out one ofler that concossions and was
to gearang reay Jotrets and with fre colt otf paitt thin wall. Which das stimn

700 iter.:
Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter

1200 iter.:

"Kite vouch!" he repeated by her
door. "But I would be done and quarts, feeling, then, son is people...."

2000 iter.:

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

38



Attention

Consider the following task: Given a sequence of vectors

generate a new sequence
- -
Y=Vi,..., YT

of possibly different length (i.e., possibly T # T’).

E.g., a machine translation task, x is an embedding of an
English sentence, y is a sequence of probability distributions on
a German vocabulary.

39



Attention

Consider two recurrent networks:
> Enc the encoder

> Hidden state ﬁo initialized by standard methods for
recurrent networks
> Reads X, ..., Xr, does not output anything but produces

a sequence of hidden states 51, el HT

40



Attention

Consider two recurrent networks:

> Enc the encoder
> Hidden state ﬁo initialized by standard methods for
recurrent networks
> Reads X, ..., Xr, does not output anything but produces
a sequence of hidden states Fn, el HT

> Dec the decoder
> The initial hidden state is hr
> Does not read anything but outputs the sequence yj, ..., y1
This is a simplification. Typically, Dec reads yo, V1, ..., yr -1 Where
Yo is a special vector embedding a separator.
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Attention

Consider two recurrent networks:
> Enc the encoder

> Hidden state ﬁo initialized by standard methods for
recurrent networks
> Reads X, ..., Xr, does not output anything but produces

a sequence of hidden states Fn, el HT
» Dec the decoder
> The initial hidden state is hr
> Does not read anything but outputs the sequence yj, ..., y1
This is a simplification. Typically, Dec reads yo, V1, ..., yr -1 Where
Yo is a special vector embedding a separator.
Trained on pairs of sentences, able to learn a fine translation between major
languages (if the recurrent networks are LSTM).

Is not perfect because all info about x = X;, ..., X1 is squeezed
. . >

into the single state vector hr.

In particular, the network tends to forget the context of each word.

40



Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

M



Attention in Recurrent Networks
What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encoder Enc producing the sequence of
hidden states: hy, ..., hr
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Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encoder Enc producing the sequence of
hidden states: hy,..., hr
The decoder Dec is still a recurrent network but

> the hidden state ﬁé initialized by ET and a sequence of

hidden states ﬁé, ey E’T, is computed,
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Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encgder Enc producing the sequence of
hidden states: hy,..., hr
The decoder Dec is still a recurrent network but
> the hidden state ﬁ(’) initialized by ﬁr and a sequence of
hidden states ﬁé, ., h’T, is computed,
> reads a sequence of context vectors &, ..., G where

.
exp(ejj

Ci = Z oc,-,-ﬁ,- where ajj = #

j=1 Y1 exp(€ik)

i-17 H)
> outputs the sequence ¥, ...,y

where ejj = MLP(h’_

M



» The attention mechanism extracts the information from
the sequence quite well.

42



Do We Still Need the Recurrence?

» The attention mechanism extracts the information from
the sequence quite well.

> |s there a reason for reading the input sequence
sequentially?
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Do We Still Need the Recurrence?

» The attention mechanism extracts the information from
the sequence quite well.

> |s there a reason for reading the input sequence
sequentially?

» Could we remove the recurrent network itself and preserve
only the attention?

42



Self-Attention Layer (is all you need)

Fix an input sequence: Xy, ..., Xt

Consider three learnable matrices: Wy, Wy, W,

Generate sequences of queries, keys, and values:
> Gi,...,Gr where Gk = WyX forallk =1,..., T
> Ki,..., Kr where kK = WX forallk =1,..., T
> Vi,..., VT where v, = W X, forallk =1,..., T

43



Self-Attention Layer (is all you need)

Fix an input sequence: Xy, ..., Xt
Consider three learnable matrices: Wy, Wy, W,

Generate sequences of queries, keys, and values:
> Gi,...,Gr where Gk = WyX forallk =1,..., T
> Ki,...,Kr where kK = Wi X% forallk =1,..., T
> Vi,..., VT where vV = W X, forallk =1,..., T

Define a vector score forall i,je {1,..., T} by
> -
ej=di-k
Intuitively, e; measures how much the input at the position i is related to the
input at the position j, in other words, how much the query fits the key.
Define
o eXP(eij / Vdatn)
- T
Yk—1exp(€ik / Vdatn)

l.e., we apply the good old softmax to (e, ..., i) / Vdatn

ajj datin is the dimension of V;
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Self-Attention Layer (is all you need)

Define a vector score for all i,j e {1,..., T} by
ej = Gi-K
Intuitively, e; measures how much the input at the position i is related to the
input at the position j, in other words, how much the query fits the key.
Define
B exp(ejj / Vatn)
Yk—1 exp(eik / Vattn)

l.e., we apply the good old softmax to (e, ..., i) / Vdatn

ajj datin is the dimension of V;

Define a sequence of outputs yi, ..., YT by
T

- -
Yi= ) aij-Vj

=
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Language Model

A sequence of tokens ay,...,ar e **
E.g. words from a vocabulary X.

The goal: Maximize

.
HP(ak|a1,...,ak_1;W) (=P(ay,...,ar; W))
k=1

where

» P is the conditional probability measure over ¥ modeled
using a neural network with weights W.
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Language Model

A sequence of tokens ay,...,ar e **
E.g. words from a vocabulary X.

The goal: Maximize

T

HP(ak|a1,...,ak_1;W) (=P(ay,...,ar; W))
k=1

where

» P is the conditional probability measure over ¥ modeled
using a neural network with weights W.

Can be used to generate text:

Given ay, ..., ax, sample ax.¢ from P(ax.1 | a1,...,ak; W)
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Masked Self-Attention Layer (is all you need)

Assume an attention mechanism which given an input
sequence X;, ..., Xt generates yi, ..., jr.

The Problem: How to generate yx only based on X, ..., Xx_1 ?
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Masked Self-Attention Layer (is all you need)

Assume an attention mechanism which given an input
sequence X;, ..., Xt generates yi, ..., jr.

The Problem: How to generate yx only based on X, ..., Xx_1 ?
Define a vector score for all i,j e {1,..., T} by
G-k ifj<i
€jj = .
—00 otherwise.

This means that

exp(€ji / Vatn)
ajj = Yor_i exp(ei / Vatn)
0

ifj<i

otherwise.
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Masked Self-Attention Layer (is all you need)

Assume an attention mechanism which given an input
sequence X;, ..., Xt generates yi, ..., jr.

The Problem: How to generate yx only based on X, ..., Xx_1 ?
Define a vector score for all i,j e {1,..., T} by
G-k ifj<i
€jj = .
—00 otherwise.

This means that

exp(€ji / Vatn)
ajj = Yor_i exp(ei / Vatn)
0

if j<i
otherwise.

Define a sequence of outputs i, ..., Y by

47



Multi-head Self-Attention Layer (is all you need)

Assume the number of heads is H.

For h=1,...,Hthe h-th head is an attention mechanism which
given the input X;, ..., X7 produces

~h ~h

P
Note that the output may be different which means that, in particular, the
matrices W,, Wi, W, may be different for each head.

Assume that all vectors )7,’(7 are of the same dimension dp,jg and
consider a learnable matrix W, of dimensions dout X (H - dmiq)-
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Multi-head Self-Attention Layer (is all you need)

Assume the number of heads is H.

For h=1,...,Hthe h-th head is an attention mechanism which
given the input X, ..., X7 produces

~h —~h
Vi, Y71
Note that the output may be different which means that, in particular, the

matrices W,, Wi, W, may be different for each head.

Assume that all vectors )7,’(7 are of the same dimension dp,jg and
consider a learnable matrix W, of dimensions dout X (H - dmiq)-

The multi-head attention produces the following output:
.)71 JARNE .)77—

where
Vi = Wou - (7 0 72 0+ Jf)

Here © is a concatenation of vectors.
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Input: A sequence Xi,..., Xt

Output: A sequence i, ..., yT
l.e., a sequence of the same length. The dimensions of yx and X, do not have

to be equal.
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Multi-head Self-Attention Summary

Input: A sequence Xy, ..., Xt

Output: A sequence ¥, ..., yT

l.e., a sequence of the same length. The dimensions of y, and Xx do not have
to be equal.

Attention:

Learnable parameters: Matrices Wq, Wy, W,.

These matrices are used to compute queries, keys, and values from
%i,...,Xr. Output ys, ..., yr is computed using values "scaled" by
the query-key attention.
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Multi-head Self-Attention Summary

Input: A sequence Xy, ..., Xt

Output: A sequence ¥, ..., yT

l.e., a sequence of the same length. The dimensions of y, and Xx do not have
to be equal.

Attention:
Learnable parameters: Matrices Wq, Wy, W,.
These matrices are used to compute queries, keys, and values from
%i,...,Xr. Output ys, ..., yr is computed using values "scaled" by
the query-key attention.
Multi-head attention:
Learnable parameters:
» Matrices W[;, W,f, W/ where h=1,...,Hand His
the number of heads.
Each attention head operates independently on the input X;, ..., Xr.

> Matrix Woy;.
Linearly transforms the concatenated results of the attention heads.
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The Goal: To encode a position (index) k € {1,..., T} into
a vector Py of real numbers.
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Positional encoding
The Goal To encode a position (index) k € {1,..., T} into
a vector Py of real numbers.

Assume that I3k should have a dimension d.
Given a position k € {1,..., T} and i € {0,...,d/2} define

_ k
Pk,2i = SIn (W)

k
Pk, it1) = cos(nzl./d)
Here n = 10000.

A user defined constant, the original paper suggests n = 10000.
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Positional encoding
The Goal To encode a position (index) k € {1,..., T} into
a vector Py of real numbers.

Assume that f’k should have a dimension d.
Given a position k € {1,..., T} and i € {0,...,d/2} define

_ k
Pk,2i = SIn (W)

k
Pk, it1) = cos(nzl./d)
Here n = 10000.

A user defined constant, the original paper suggests n = 10000.

Given an input sequence X, ..., Xt we add the position
embedding to each X, obtaining a new input sequence
x1, x where

X;( = Xk + Pk

51



Positional Encoding

Index i .
Sequence  of token, Matbrix with d=4, n=100
¢ i=0 i=0 i=1 i=1
Poo=sin(0) Poi1=cos(0) Po2=sin(0) Pos=cos(0)
I — 0 — _9 =1 =0 =1
Pio=sin(1/1) = P11=cos(1/1) Pi2=sin(1/10) Pis=cos(1/10)
am | —| 1 =0.84 = 0.54 = 0.10 = 1.0
Po=sin(2/1) = Pzi1=cos(2/1) P22=sin(2/10) Pas=cos(2/10)
a T" 2 7" _091 =-042 =020 =098
—» Pa0=sin(3/1) Psi=cos(3/1) Ps2=sin(3/10) Pas=cos(3/10)
Robot |—| 3 - 014  =-099 =030 =09
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Positional encoding/embedding

The positional encoding matrix for n=10,000, d=512, sequence length=100

» Vertically: Sinusoidal functions
» Horizontally: Decreasing frequency
For any offset 0 € {1, ..., T} there is a linear transformation M

such that for any k € {1,..., T — o} we have MPy = Py_,.
Intuitively, just rotate each component of the Py appropriately.
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Layer normalization

Given a vector X € RY, the layer normalization computes:

Here
> u=1Y xando? = LT, (x - p)?
> y,B € R? are vectors of trainable parameters
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Layer normalization

Given a vector X € RY, the layer normalization computes:

Here
> u=1Y xando? = LT, (x - p)?
> y,B € R? are vectors of trainable parameters

In Transformer:
The input to the layer normalization is a sequence of vectors:

X1,...,Xr. The layer normalization is applied to each X,
producing a sequence of "normalized" vectors.
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GPT - learning

A sequence of tokens ay,...,ar € ¥ and their
one-hot encodings Uy, ..., Ut € {0, 1}/*

We assume that a; is a special token marking the start of
the sequence.

Embed to vectors and add the position
encoding (W, is an embedding matrix):

)_()k = Weﬂk + Py € Rsetd
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GPT - learning

A sequence of tokens ay,...,ar € ¥ and their
one-hot encodings Uy, ..., Ut € {0, 1}/*

We assume that a; is a special token marking the start of
the sequence.

Embed to vectors and add the position
encoding (W, is an embedding matrix):

Xk = Weﬂk + Py € Rsetd

Apply the network (W|th the transformer block repeated 12x) to
X1,...,Xr and obtain yi, ..., yt
(Here assume that each y € [0, 1]* is a probability distribution on ¥)
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GPT - learning

A sequence of tokens ay,...,ar € ¥ and their
one-hot encodings Uy, ..., Ut € {0, 1}/*

We assume that a; is a special token marking the start of
the sequence.

Embed to vectors and add the position
encoding (W, is an embedding matrix):

Xk = Weﬂk + Py € Rsetd

Apply the network (W|th the transformer block repeated 12x) to
X1,...,Xr and obtain yi, ..., yt
(Here assume that each y € [0, 1]* is a probability distribution on ¥)

Compute the error:

T-1
=Y log (elar1])
=

Here y;[ak.1] is the probability of ax_ ¢ in the distribution . 56



GPT - inference

Text Task
Prediction | Classifier

—

Layer Norm

Feed Forward

Layer Norm
e
(

D)t
H

Masked Multi
Self Attention

12x —

Text & Position Embed

https://transformer.huggingface.co/doc/distil-gpt2

A sequence of tokens
aiy,...,ar € ¥ and their one-hot
encodings U, ..., e € {0, 1}/

Embed to vectors and add
the position encoding:

X« = W, - Uk + Py € Rset?

Apply the network to X, ..., X, and
obtain }71, R ,)_/)g

(Assume that each yy € [0,1]% is

a probability distribution on ¥)

Sample the next token from
arq1 ~ Ve
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Feed-forward networks summary

Architectures:
» Multi-layer perceptron (MLP):
> dense connections between layers
» Convolutional networks (CNN):
> |ocal receptors, feature maps
> pooling
» Recurrent networks (RNN):
> self-loops but still feed-forward through time
> Transformer
> Attention, query-key-value
Training:
» gradient descent algorithm + heuristics
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