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Course organization

Course materials:
» Main: The lecture

> Neural Networks and Deep Learning by Michael Nielsen
http://neuralnetworksanddeeplearning.com/

(Extremely well written modern online textbook.)

> Deep learning by lan Goodfellow, Yoshua Bengio and Aaron
Courville

http://www.deeplearningbook.org/
(A very good overview of the state-of-the-art in neural networks.)

» Inifinitely many online tutorials on everything (to build intuition)

Suggested: deeplearning.ai courses by Andrew Ng


http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/

Course organization

Evaluation:

> Project

»
>
>

teams of two students

implementation of a selected model + analysis of given data
implementation either in C, C++ without use of any
specialized libraries for data analysis and machine
learning

need to get over a given accuracy threshold (a gentle one,
just to eliminate non-functional implementations)
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Evaluation:
> Project

> teams of two students

> implementation of a selected model + analysis of given data

> implementation either in C, C++ without use of any
specialized libraries for data analysis and machine
learning

> need to get over a given accuracy threshold (a gentle one,
just to eliminate non-functional implementations)

» Oral exam

> | may ask about anything from the lecture! You will get
a detailed manual specifying the mandatory knowledge.
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and numerical methods, so that you will be confronted with
rounding errors and numerical instabilities.



FAQ

Q: Why we cannot use specialized libraries in projects?

A: In order to "touch" the low level implementation details of the
algorithms. You should not even use libraries for linear algebra
and numerical methods, so that you will be confronted with
rounding errors and numerical instabilities.

Q: Why should you attend this course when there are infinitely
many great reasources elsewhere?

A: There are at least two reasons:

> You may discuss issues with me, my colleagues and other

students.
> | will make you truly learn fundamentals by heart.
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» Use of mathematical notation and reasoning (contains several
proofs that are mandatory for the exam)

» Sometimes goes deeper into statistical underpinnings of neural
networks learning

» The project demands a complete working solution which must
satisfy a prescribed performance specification
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Notable features of the course

» Use of mathematical notation and reasoning (contains several
proofs that are mandatory for the exam)

» Sometimes goes deeper into statistical underpinnings of neural
networks learning

» The project demands a complete working solution which must
satisfy a prescribed performance specification

An unusual exam system! You can repeat the oral exam as many
times as needed (only the best grade goes into IS).

An example of an instruction email (from another course with the
same system):

It is typically not sufficient to devote a single
afternoon to the preparation for the exam.

You have to know _everything_ (which means every
single thing) starting with the slide 42

and ending with the slide 245 with notable exceptions
of slides: 121 - 123, 137 - 140, 165, 167.

Proofs presented on the whiteboard are also mandatory.
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Machine learning in general

» Machine learning = construction of systems that may learn their
functionality from data

(... and thus do not need to be programmed.)
> spam filter
> learns to recognize spam from a database of "labelled”
emails
> consequently is able to distinguish spam from ham
> handwritten text reader

> |earns from a database of handwritten aULa a
letters (or text) labelled by their correct " wﬁ'{\ n
meaning -? f %

> consequently is able to recognize text QEZQ/ e

> ...
> and lots of much much more sophisticated applications ...

» Basic attributes of learning algorithms:
> representation: ability to capture the inner structure of
training data
> generalization: ability to work properly on new data



Machine learning in general

Machine learning algorithms typically construct mathematical
models of given data. The models may be subsequently
applied to fresh data.



Machine learning in general

Machine learning algorithms typically construct mathematical
models of given data. The models may be subsequently
applied to fresh data.
There are many types of models:
» decision trees
support vector machines
hidden Markov models

>
>
> Bayes networks and other graphical models
» neural networks

>

Neural networks, based on models of a (human) brain, form
a natural basis for learning algorithms!



Artificial neural networks

> Artificial neuron is a rough mathematical approximation
of a biological neuron.

> (Aritificial) neural network (NN) consists of a number of
interconnected artificial neurons. "Behavior" of the network
is encoded in connections between neurons.

Zdroj obrézku: http://tulane.edu/sse/cmb/people/schrader/


http://tulane.edu/sse/cmb/people/schrader/

Why artificial neural networks?

Modelling of biological neural networks (computational
neuroscience).
> simplified mathematical models help to identify important
mechanisms
» How a brain receives information?
» How the information is stored?
> How a brain develops?
>



Why artificial neural networks?

Modelling of biological neural networks (computational
neuroscience).
> simplified mathematical models help to identify important
mechanisms

» How a brain receives information?
» How the information is stored?

> How a brain develops?
> ...

> neuroscience is strongly multidisciplinary; precise
mathematical descriptions help in communication among
experts and in design of new experiments.

| will not spend much time on this area!
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counterparts (but often inspired by biology).



Why artificial neural networks?

Neural networks in machine learning.
» Typically primitive models, far from their biological
counterparts (but often inspired by biology).
» Strongly oriented towards concrete application domains:

>

>
>

decision making and control - autonomous vehicles,
manufacturing processes, control of natural resources
games - backgammon, poker, GO, Starcraft, ...

finance - stock prices, risk analysis

medicine - diagnosis, signal processing (EKG, EEG, ...), image
processing (MRI, CT, WSI ...)

text and speech processing - machine translation, text
generation, speech recognition

other signal processing - filtering, radar tracking, noise
reduction

art - music and painting generation, deepfakes

| will concentrate on this areal!
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Important features of neural networks

> Massive parallelism
> many slow (and "dumb") computational elements work in
parallel on several levels of abstraction
» Learning
> a kid learns to recognize a rabbit after seeing several
rabbits
» Generalization
> a kid is able to recognize a new rabbit after seeing several
(old) rabbits
» Robustness
> a blurred photo of a rabbit may still be classified as an
image of a rabbit
» Graceful degradation
> Experiments have shown that damaged neural network is
still able to work quite well

» Damaged network may re-adapt, remaining neurons may
take on functionality of the damaged ones
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The aim of the course

» We will concentrate on

»
>

basic techniques and principles of neural networks,
fundamental models of neural networks and their
applications.

> You should learn

| 4

basic models

(multilayer perceptron, convolutional networks, recurrent networks,
transformers, autoencoders and generative adversarial networks)
Simple applications of these models

(image processing, a little bit of speech and text processing)
Basic learning algorithms

(gradient descent with backpropagation)

Basic practical training techniques

(data preparation, setting various hyper-parameters, control of
learning, improving generalization)

Basic information about current implementations
(TensorFlow-Keras, Pytorch)



Biological neural network

» Human neural network consists of approximately 10" (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

» Each neuron is connected with approx. 10* neurons.
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Biological neural network

» Human neural network consists of approximately 10" (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

» Each neuron is connected with approx. 10* neurons.
» Neurons themselves are very complex systems.
Rough description of nervous system:

> External stimulus is received by sensory receptors (e.g.
eye cells).

> Information is futher transfered via peripheral nervous
system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqgently, an output
signal is produced.

> Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).



Cell body of Gray
sensory neuron in
dorsal root
ganglion

Quadriceps
muscle

Hamstring
muscle

(cross section)

@ Sensory neuron
@® Motor neuron
@ Interneuron

Zdroj: N. Campbell and J. Reece; Biology, 7th Edition; ISBN: 080537146X 14



Figure 48.11(a), page 972, Campbell's Biology, 5th Edition
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Formal neuron (without bias)

y > Xi,...,Xn € R are inputs
| > wy,..., W, € R are weights

» ¢ is an inner potential,;
almost always & = Y.L, w;x;

) > yis an output given by y = d(¢)
P, where ¢ is an activation function;
e.g. a unit step function
W wg/ Wi o(¢) = {0 &< h.
X1 X2 Xn where h € R is a threshold.
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> wp, Wq,..., W, € R are weights

» £ is an inner potential;
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Formal neuron (with bias)

> Xo=1,X1,...,Xn € R are inputs
> wp, Wq,..., W, € R are weights
» £ is an inner potential;
almost always & = wy + Y7, wix;
> yis an output given by y = (&)
where ¢ is an activation
function;

y
Xo = 1 —0 = —h @ e.g. a unit step function

1 £>0;
G(é)_{o E<0.
W1 Wo Wh

(The threshold h has been substituted
with the new input x, = 1 and the weight
Wo = —h)

threshold

bias

X4 X2 Xn



Neuron and linear separation

£=0 » inner potential

E>0 n
° 5=Wo+ZWiXi
i—1

&>0 determines a separation
® hyperplane in
<0 the n-dimensional input space
r<co ? > in 2d line
° > in 3d plane
> ...






Neuron and linear separation
1/0by A/B

|
/ '
)

n=8-8, i.e. the number of pixels in the images. Inputs are
binary vectors of dimension n (black pixel ~ 1, white pixel ~ 0).

21



Neuron and linear separation

1/0pro A/B

|

Xo =1 —)WO @

X1 Xn

n=8-8,i.e. the number of pixels in the images. Inputs are

binary vectors of dimension n (black pixel ~ 1, white pixel ~ 0).
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Neuron and linear separation

> Red line classifies incorrectly

» Green line classifies correctly
(may be a result of
a correction by a learning
algorithm)

n
Wo + Ljq WiX; =0

_ n o -
Wo + Zi:1 wixi=0

23



X4

(0,1) (1.1) > No line separates ones from

CI)—@ Zeros.

(0,0 (0,1)

24



Neural networks

Neural network consists of formal neurons interconnected in
such a way that the output of one neuron is an input of several
other neurons.

In order to describe a particular type of neural networks we
need to specify:

> Architecture

How the neurons are connected.
> Activity

How the network transforms inputs to outputs.
» Learning

How the weights are changed during training.

25



Architecture

Network architecture is given as a digraph whose nodes are
neurons and edges are connections.

We distinguish several categories of O
neurons:

» Output neurons / \
» Hidden neurons O O
» Input neurons

(In general, a neuron may be both input and I [
output; a neuron is hidden if it is neither input, O O
nor output.)

26



» A network is cyclic (recurrent) if its architecture contains a

directed cycle.
o—0O

N/

O

27



Architecture — Cycles

» A network is cyclic (recurrent) if its architecture contains a

directed cycle. O—)O
\/

> Otherwise it is acyclic (feed-forward)

27



Architecture — Multilayer Perceptron (MLP)

y1 y2 > Neurons partitioned into layers;
one input layer, one output layer,

m possibly several hidden layers

Input O O
X1 X2

Output
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Architecture — Multilayer Perceptron (MLP)

y1 y2 > Neurons partitioned into layers;
one input layer, one output layer,

possibly several hidden layers
/ \ layers numbered from 0; the
input layer has number 0
> E.g. three-layer network has
two hidden layers and one
Hidden output layer
Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer
Input O O > Architecture of a MLP is typically
1 Xo described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

Output

v

v
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Consider a network with n neurons, k input and ¢ output.

29
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> State of a network is a vector of output values of all
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(States of a network with n neurons are vectors of R")
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Activity

Consider a network with n neurons, k input and ¢ output.
> State of a network is a vector of output values of all
neurons.
(States of a network with n neurons are vectors of IR")

> State-space of a network is a set of all states.

» Network input is a vector of k real numbers, i.e.
an element of RX.

> Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of IR¥)

> Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.

29
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Activity — computation of a network

» Computation (typically) proceeds in discrete steps.
In every step the following happens:
1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their
inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)
A computation is finite on a network input X if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on X.

» Network output is a vector of values of all output neurons
in the network (i.e. an element of RY).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.
30



Activity — semantics of a network

Definition

Consider a network with n neurons, k input, £ output.

Let A C R¥ and B c R¢. Suppose that the network stops on
every input of A.

Then we say that the network computes a function F: A — B if
for every network input X the vector F(X) € B is the output of
the network after the computation on X stops.
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Activity — semantics of a network

Definition

Consider a network with n neurons, k input, £ output.

Let A C R¥ and B c R¢. Suppose that the network stops on
every input of A.

Then we say that the network computes a function F: A — B if
for every network input X the vector F(X) € B is the output of
the network after the computation on X stops.

Example 1

This network computes a function / \

from R? to R. O O
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Activity — inner potential and activation functions

In order to specify activity of the network, we need to specify
how the inner potentials & are computed and what are
the activation functions .
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In order to specify activity of the network, we need to specify
how the inner potentials & are computed and what are
the activation functions .

We assume (unless otherwise specified) that
n
&=Wwo+ Z Wi - X
i=1

here X = (x1,...,xn) are inputs of the neuron and
w = (wy,..., wp) are weights.

32



Activity — inner potential and activation functions

In order to specify activity of the network, we need to specify
how the inner potentials & are computed and what are
the activation functions .

We assume (unless otherwise specified) that
n
&=Wwo+ Z Wi - X
i=1

here X = (x1,...,xn) are inputs of the neuron and
w = (wy,..., wp) are weights.

There are special types of neural networks where the inner
potential is computed differently, e.g., as a "distance" of
an input from the weight vector:

& =[x - w]

here ||| is a vector norm, typically Euclidean.
32



Activity — inner potential and activation functions

There are many activation functions, typical examples:
> Unit step function

B 1 &£€>0;
0(5)_{0 £<o.
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Activity — inner potential and activation functions

There are many activation functions, typical examples:
> Unit step function

B 1 &£€>0;
0(5)_{0 £<o.

» (Logistic) sigmoid
a(¢)

= —— here A € Ris a steepness parameter.
14+ e M P P
» Hyperbolic tangens

1-e¢
o) = 14+e¢
> RelU

a(&) = max(&,0)

33



Activity — XOR

» Activation function is a unit
step function

-2 .
;=2 (5):{1 £20;

o
0 &<0.
1 1
» The network computes
-1 3

1 —>@ 0 0 @<— 1 XOR(xy,x2)

X1 | Xo || Y
1110
2 _ -2
2 1101
011
C1) ? ololo
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Activity — XOR

» Activation function is a unit
step function

:

_2 .
;=2 (5):{1 £20;

o
0 &<0.
1 1
» The network computes
g1, 1 1 @L1 XOR(x1, X2)
X1
O O

-2

o = = 0O

X2
]
0
1
0

1
1
0
0
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» The network computes
-1 3

1 ; 1 1 @é 1 XOR(X1,X2)
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Activity — XOR

» Activation function is a unit
step function

:

_2 .
;=2 (5):{1 £20;

o
0 &<0.
1 1
» The network computes
g1, 1 1 @L1 XOR(x1, X2)
X1
O O

-2

o = = 0O

X2
]
0
1
0

1
1
0
0
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Activity — MLP and linear separation

| A

(0,1) (1,1 @(—1
S P
O

O
@ @ p » The line Py is given by
(0,0) (0,1) i "1 24t 2% =0
P; P, » The line P» is given by

3-2x1-2x =0
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Activity — example

0 0
1—2@ -5 @—11

The activation function is
the unit step function

1 £>0;
0(5)_{0 &<0.

The input is equal to 1
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The activation function is
the unit step function

1 £>0;
0(5)_{0 &<0.

The input is equal to 1
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Consider a network with n neurons, k input and ¢ output.
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Learning

Consider a network with n neurons, k input and ¢ output.

» Configuration of a network is a vector of all values of
weights.
(Configurations of a network with m connections are elements of R™)

> Weight-space of a network is a set of all configurations.
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Learning

Consider a network with n neurons, k input and ¢ output.

» Configuration of a network is a vector of all values of
weights.
(Configurations of a network with m connections are elements of R™)

> Weight-space of a network is a set of all configurations.

» initial configuration
weights can be initialized randomly or using some sophisticated
algorithm

37



Learning algorithms

Learning rule for weight adaptation.
(the goal is to find a configuration in which the network computes
a desired function)
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Learning algorithms

Learning rule for weight adaptation.

(the goal is to find a configuration in which the network computes
a desired function)

» Supervised learning
> The desired function is described using training examples
that are pairs of the form (input, output).
> Learning algorithm searches for a configuration which
"corresponds" to the training examples, typically by
minimizing an error function.
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Learning algorithms

Learning rule for weight adaptation.
(the goal is to find a configuration in which the network computes
a desired function)

» Supervised learning
> The desired function is described using training examples
that are pairs of the form (input, output).
> Learning algorithm searches for a configuration which
"corresponds" to the training examples, typically by
minimizing an error function.

» Unsupervised learning

> The training set contains only inputs.
> The goal is to determine distribution of the inputs
(clustering, deep belief networks, etc.)

38



Supervised learning — illustration

» classification in the plane using
a single neuron
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Supervised learning — illustration

» classification in the plane using
a single neuron

» training examples are of the form
(point, value) where the value is
either 1, or 0 depending on whether
the point is either A, or B

[ Jp

B
{

ox®>

B
{

B
{
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Supervised learning — illustration

>

>

classification in the plane using
a single neuron

training examples are of the form
(point, value) where the value is
either 1, or 0 depending on whether
the point is either A, or B

the algorithm considers examples
one after another

whenever an incorrectly classified
point is considered, the learning
algorithm turns the line in

the direction of the point
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» Massive parallelism
> neurons can be evaluated in parallel
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Summary — Advantages of neural networks

» Massive parallelism
> neurons can be evaluated in parallel
» Learning

> many sophisticated learning algorithms used to "program”
neural networks
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> many sophisticated learning algorithms used to "program”
neural networks
> generalization and robustness

> information is encoded in a distributed manned in weights
> "close" inputs typicaly get similar values
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Summary — Advantages of neural networks

> Massive parallelism
> neurons can be evaluated in parallel
» Learning
> many sophisticated learning algorithms used to "program
neural networks
> generalization and robustness
> information is encoded in a distributed manned in weights
> "close" inputs typicaly get similar values
» Graceful degradation

> damage typically causes only a decrease in precision of
results

40



Expressive power of neural networks
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Formal neuron (with bias)

threshold > Xo=1,X1,...,Xn € R are inputs
y > Wo, Wy,..., W, € R are weights
| > £ is an inner potential;
almost always & = wp + Y1, w;X;
> yis an output given by y = (&)
wo=-h /75 \ where ¢ is an activation
\&/

function;

e.g. a unit step function
1 £>0;
wi / we Wa o(8) = {0 £<0.
2

bias

42



, 1 £20;
Activation function: unit step function o(&) = {0 £ <0,



Boolean functions

1 &£>0;

A functi it step function
ctivation function: un Io} a(&) = {0 £ <0,

y = AND(X1,...,X%n) y = OR(X1, -1 Xn)
Xo =1 —_n) Xo =1 —>@
X1 Xo Xn
y = NOT(x4)
,
Xo =1 —>
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Boolean functions

Theorem

Let o be the unit step function. Two layer MLPs, where each
neuron has ¢ as the activation function, are able to compute all
functions of the form F : {0,1}" — {0, 1}.
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Boolean functions

Theorem

Let o be the unit step function. Two layer MLPs, where each
neuron has ¢ as the activation function, are able to compute all
functions of the form F : {0,1}" — {0, 1}.

Proof.

> Given a vector V = (vy,...,Vv,) € {0,1}", consider a neuron
N; whose output is 1 iff the input is V:

n
Wo Wo =—2i_qVi

e e oo . — 1 V’:1
wi,/ W Wi Wi= -1 vi=0

> Now let us connect all outputs of all neurons N satisfying
F(V) = 1 using a neuron implementing OR. O
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Non-linear separation

y
O > Consider a three layer network; each neuron
has the unit step activation function.
/T\ » The network divides the input space in two

O O O subspaces according to the output (0 or 1).

ResN

Q. Q O 0O

N

o O

X1 X2
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Non-linear separation

y
O > Consider a three layer network; each neuron
has the unit step activation function.
/T\ » The network divides the input space in two
O O O subspaces according to the output (0 or 1).

> The first (hidden) layer divides the input
/ \ space into half-spaces.

Q. Q O 0O

N

o O

X1 X2
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Non-linear separation

O > Consider a three layer network; each neuron

y
has the unit step activation function.
/T\ » The network divides the input space in two

subspaces according to the output (0 or 1).

O O O > The first (hidden) layer divides the input
/ \ space into half-spaces.
O O O O > The second layer may e.g. make

intersections of the half-spaces = convex

W sets.
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Non-linear separation

O > Consider a three layer network; each neuron

y
has the unit step activation function.
/T\ » The network divides the input space in two

subspaces according to the output (0 or 1).

O O O > The first (hidden) layer divides the input
/ \ space into half-spaces.
O O O O > The second layer may e.g. make

intersections of the half-spaces = convex

sets.
> The third layer may e.g. make unions of some
convex sets.

o O

45



Non-linear separation — illustration

» Consider three layer networks; each neuron
O has the unit step activation function.

> Three layer nets are capable of
"approximating" any "reasonable" subset A of
O O . O the input space RX.
O
Xk

X1
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Non-linear separation — illustration

» Consider three layer networks; each neuron

O has the unit step activation function.
> Three layer nets are capable of
"approximating" any "reasonable" subset A of
O O . O the input space RX.
> Cover A with hypercubes (in 2D squares, in

TWT 3D cubes, ..
W
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Non-linear separation — illustration

» Consider three layer networks; each neuron
has the unit step activation function.

y
> Three layer nets are capable of
"approximating" any "reasonable" subset A of
O O . O the input space RX.

> Cover A with hypercubes (in 2D squares, in
3D cubes, ...)
> Each hypercube K can be separated using

O O e O a two layer network Ny
(i.e. a function computed by Nk gives 1 for
\ / points in K and 0 for the rest).

X1 Xk
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Non-linear separation — illustration

» Consider three layer networks; each neuron
has the unit step activation function.

y
> Three layer nets are capable of
"approximating" any "reasonable" subset A of
O O . O the input space RX.

> Cover A with hypercubes (in 2D squares, in
3D cubes, ...)
> Each hypercube K can be separated using

O O . O a two layer network Nk

(i.e. a function computed by Nk gives 1 for
\ / points in K and 0 for the rest).
> Finally, connect outputs of the nets Nk

O O satisfying K N A # (0 using a neuron
Xq Xk implementing OR.
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Power of ReLU

y Consider a two layer network
» with a single input and single output;

/ T \ » hidden neurons with the RelLU activation:

O OO (&) = max(&,0);

\T/ > the output neuron with identity activation:
O (&) = £ (linear model)
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Power of ReLU

y Consider a two layer network
» with a single input and single output;

/ T \ » hidden neurons with the RelLU activation:

O OO (&) = max(&,0);

\T/ > the output neuron with identity activation:
O (&) = £ (linear model)

For every continuous function f : [0,1] — [0,1] and ¢ > 0 there
is a network of the above type computing a function
F :[0,1] = R such that |f(x) — F(x)| < ¢ for all x € [0, 1].
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Power of ReLU

y Consider a two layer network
» with a single input and single output;

/ \ » hidden neurons with the RelLU activation:

(&) = max(&,0);

\ / > the output neuron with identity activation:
= ¢ (linear model)

For every continuous function f : [0,1] — [0, 1] and ¢ > 0 there
is a network of the above type computing a function
F :[0,1] = R such that |f(x) — F(x)| < ¢ for all x € [0, 1].

For every open subset A C [0, 1] there is a network of the
above type such that for "most" x € [0, 1] we have that x € A iff
the network’s output is > 0 for the input x.

Just consider a continuous function f where f(x) is the minimum difference
between x and a point on the boundary of A. Then uniformly approximate f
using the networks.
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Non-linear separation - sigmoid

Theorem (Cybenko 1989 - informal version)
Let o be a continuous function which is sigmoidal, i.e. satisfies

o(x) = {1 pro x = oo
0 prox — —oo

For every "reasonable” set A C [0,1]", there is a two layer
network where each hidden neuron has the activation function
o (output neurons are linear), that satisfies the following:
For "most" vectors vV € [0,1]" we have that V € A iff the network
output is > 0 for the input V.
For mathematically oriented:

> "reasonable" means Lebesgue measurable

> "most" means that the set of incorrectly classified vectors has
the Lebesgue measure smaller than a given ¢ > 0
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Non-linear separation - practical illustration

Sharp Straight Sharp
Left Ahead Right

30 Output > ALVINN drives a car
Units

30x32 Sensor
Input Retina

49


http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Non-linear separation - practical illustration

Sharp Straight Sharp
Left Ahead Right

> ALVINN drives a car

> The net has 30 x 32 = 960 inputs
(the input space is thus IR%9)

30x32 Sensor
Input Retina
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Non-linear separation - practical illustration

Sharp Straight Sharp
Left Ahead Right

> ALVINN drives a car

> The net has 30 x 32 = 960 inputs
(the input space is thus IR%9)

> Input values correspond to
shades of gray of pixels.

30x32 Sensor
Input Retina
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Non-linear separation - practical illustration

Sharp Straight Sharp
Left Ahead Right

> ALVINN drives a car

> The net has 30 x 32 = 960 inputs
(the input space is thus IR%9)

> Input values correspond to
shades of gray of pixels.

> Output neurons "classify" images
of the road based on their
"curvature".

30x32 Sensor
Input Retina

Zdroj obrézku: http://jmvidal.cse.sc.edu/talks/ann/alvin.html 49
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Function approximation - two-layer networks

Theorem (Cybenko 1989)

Let o be a continuous function which is sigmoidal, i.e. is
increasing and satisfies

1
a(x):{ pro x — +oo
0 prox — —oo

For every continuous function f : [0,1]" — [0,1] and every ¢ > 0
there is a function F : [0,1]" — [0, 1] computed by a two layer
network where each hidden neuron has the activation function
o (output neurons are linear), that satisfies the following

[f(V) - F(V)l<e  prokazdé v e[0,1]".
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» Consider recurrent networks (i.e. containing cycles)
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Neural networks and computability

» Consider recurrent networks (i.e. containing cycles)
> with real weights (in general);
> one input neuron and one output neuron (the network
computes a function F : A —» R where A C R contains all
inputs on which the network stops);
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> one input neuron and one output neuron (the network
computes a function F : A —» IR where A C R contains all
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> parallel activity rule (output values of all neurons are
recomputed in every step);
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Neural networks and computability

» Consider recurrent networks (i.e. containing cycles)

> with real weights (in general);

> one input neuron and one output neuron (the network
computes a function F : A —» IR where A C R contains all
inputs on which the network stops);

> parallel activity rule (output values of all neurons are
recomputed in every step);

> activation function

1 &E>1;
o(§) =4& 0<&<T;
0 &<0.
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Neural networks and computability

» Consider recurrent networks (i.e. containing cycles)

> with real weights (in general);

> one input neuron and one output neuron (the network
computes a function F : A —» IR where A C R contains all
inputs on which the network stops);

> parallel activity rule (output values of all neurons are
recomputed in every step);

> activation function

1 &E>1;
o(§) =4& 0<&<T;
0 &<0.

» We encode words w € {0, 1}T into numbers as follows:

|| ,
w(i) 1
0@ = )5 + o

i=1

E.g. 0 =11001 gives 5(w) = 3 + 25 + 25 + 2
(= 0.110011 in binary form).
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Neural networks and computability

A network recognizes a language L C {0, 1} if it computes a
function F: A —» R (A C R) such that

w € L iff 5(w) € A and F(6(w)) > 0.
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Neural networks and computability

A network recognizes a language L C {0, 1} if it computes a
function F: A - R (A C R) such that

w € L iff 5(w) € A and F(5(w)) > 0.

> Recurrent networks with rational weights are equivalent to
Turing machines

> For every recursively enumerable language L € {0, 1}t
there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L.

> The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

> There is "universal" network (equivalent of the universal
Turing machine)
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Neural networks and computability

A network recognizes a language L C {0, 1} if it computes a
function F: A - R (A C R) such that

w € L iff 5(w) € A and F(5(w)) > 0.

> Recurrent networks with rational weights are equivalent to
Turing machines

> For every recursively enumerable language L € {0, 1}t
there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L.

> The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

> There is "universal" network (equivalent of the universal
Turing machine)

> Recurrent networks are super-Turing powerful

> For every language L C {0, 1}* there is a recurrent network
with less than 1000 nerons which recognizes L.
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Summary of theoretical results

» Neural networks are very strong from the point of view of
theory:

> All Boolean functions can be expressed using two-layer
networks.

> Two-layer networks may approximate any continuous
function.

> Recurrent networks are at least as strong as Turing
machines.
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Summary of theoretical results

» Neural networks are very strong from the point of view of
theory:
> All Boolean functions can be expressed using two-layer
networks.
> Two-layer networks may approximate any continuous
function.
> Recurrent networks are at least as strong as Turing
machines.
> These results are purely theoretical!

> "Theoretical" networks are extremely huge.
> |t is very difficult to handcraft them even for simplest
problems.

» From practical point of view, the most important advantage
of neural networks are: learning, generalization,
robustness.
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Neural networks vs classical computers

Neural networks

"Classical" computers

training example "similar" to
the input

Data implicitly in weights explicitly
Computation | naturally parallel sequential, localized
Robustness robust w.r.t. input corruption | changing one bit may
& damage completely crash the
computation
Precision imprecise, network recalls a | (typically) precise

Programming

learning

manual
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History & implementations
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History of neurocomputers

» 1951: SNARC (Minski et al)
> the first implementation of neural network
> arat strives to exit a maze
> 40 artificial neurons (300 vacuum tubes, engines, etc.)
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History of heurocomputers

» 1957: Mark | Perceptron (Rosenblatt et al) - the first
successful network for image recognition

Perceptr

- Iw&
>
| 4
| 4

single layer network

image represented by 20 x 20 photocells

intensity of pixels was treated as the input to a perceptron
(basically the formal neuron), which recognized figures
weights were implemented using potentiometers, each set
by its own engine

it was possible to arbitrarily reconnect inputs to neurons to
demonstrate adaptability
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History of heurocomputers
> 1960: ADALINE (Widrow & Hof)

> single layer neural network

> weights stored in a newly invented electronic component
memistor, which remembers history of electric current in
the form of resistance.

> Widrow founded a company Memistor Corporation, which
sold implementations of neural networks.

> 1960-66: several companies concerned with neural

networks were founded.
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History of heurocomputers

» 1967-82: dead still after publication of a book by Minski &
Papert (published 1969, title Perceptrons)

> 1983-end of 90s: revival of neural networks
> many attempts at hardware implementations
> application specific chips (ASIC)
> programmable hardware (FPGA)

> hw implementations typically not better than "software"
implementations on universal computers (problems with
weight storage, size, speed, cost of production etc.)
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History of heurocomputers

» 1967-82: dead still after publication of a book by Minski &
Papert (published 1969, title Perceptrons)

» 1983-end of 90s: revival of neural networks
> many attempts at hardware implementations

> application specific chips (ASIC)
> programmable hardware (FPGA)

> hw implementations typically not better than "software"
implementations on universal computers (problems with
weight storage, size, speed, cost of production etc.)
> end of 90s-cca 2005: NN suppressed by other machine
learning methods (support vector machines (SVM))

» 2006-now: The boom of neural networks!

> deep networks — often better than any other method
» GPU implementations
> ... specialized hw implementations (Google’s TPU)
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Some highlights

Breakthrough in image recognition.

Accuracy of image recognition improved by an order of magnitude in 5
years.

Breakthrough in game playing.

Superhuman results in Go and Chess almost without any human
intervention. Master level in Starcraft, poker, etc.

Breakthrough in machine translation.

Switching to deep learning produced a 60% increase in translation
accuracy compared to the phrase-based approach previously used in
Google Translate (in human evaluation)

Breakthrough in speech processing.

Breakthrough in text generation.

GPT-3 generates pretty realistic articles, short plays (for a theatre) have
been successfully generated, etc.
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History in waves ...

9 0.000250 - : : : : I

E — cybernetics :

- 0000200 _ . (connectionism + neural networks) "’"\\'

= .

g 0.000150

=

% 0.000100

&

=

% 0.000050

o'

o : - : : : :

ﬁ:O-OOOUOO N Nt L X
1940 1950 1960 1970 1980 1990 2000

Year

Figure: The figure shows two of the three historical waves of artificial
neural nets research, as measured by the frequency of the phrases
"cybernetics" and "connectionism" or "neural networks" according to
Google Books (the third wave is too recent to appear).

61



Increasing dataset size ...

10%
108 E
107
106
105 ..
104
103 |
102
10t
100

Dataset size (number examples)

1900 1950 1985 2000 2015

... weakly-supervised pre-training using hashtags from
the Instagram uses 3.6 = 10% images.

Revisiting Weakly Supervised Pre-Training of Visual Perception Models. Singh et al.

https://arxiv.org/pdf/2201.08371.pdf, 2022
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Current hardware — What do we face?

... and thus increasing size of neural networks ...

T 11
7 ——— (i)
i 20

£ W0°F 16/] 19 2 Octopus

E 1F {«—[Octopus

= 7 il

- i

£ 10°F e —= Bee

=

§ 102 F m L

" 10° | =

(5]

2 101 J

i -

Z 1950 1985 2000 2015 2056
ADALINE

PN

. Early back-propagation network (Rumelhart et al., 1986b)
8. Image recognition: LeNet-5 (LeCun et al., 1998b)

10. Dimensionality reduction: Deep belief network (Hinton et al., 2006)
... here the third "wave" of neural networks started

15. Digit recognition: GPU-accelerated multilayer perceptron (Ciresan et al., 2010)
18. Image recognition (AlexNet): Multi-GPU convolutional network (Krizhevsky et al., 2012)
20. Image recognition: GooglLeNet (Szegedy et al., 2014a)
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Model Size (in billions of parameters)
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Current hardware — What do we face?

... as a reward we get this ...

0.30 , ] , T
0.25
0.20
0.15

0.10

0.05

ILSVRC classification error rate

OOU 1 1 1 1
2010 2011 2012 2013 2014 2015

Figure: Since deep networks reached the scale necessary to
compete in the ImageNetLarge Scale Visual Recognition Challenge,
they have consistently won the competition every year, and yielded
lower and lower error rates each time. Data from Russakovsky et al.
(2014b) and He et al. (2015).

65



Current hardware

In 2012, Google trained a large network of 1.7
billion weights and 9 layers

The task was image recognition (10 million
youtube video frames)

The hw comprised a 1000 computer network
(16 000 cores), computation took three days.

GOOGLE DATACENTER

rvers 600 kWatts

1,000 CPU Ser
2,000 CPUs « 16,000 cores | §5 000,000
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Current hardware

In 2012, Google trained a large network of 1.7
billion weights and 9 layers

The task was image recognition (10 million
youtube video frames)

The hw comprised a 1000 computer network
(16 000 cores), computation took three days.

In 2014, similar task performed on Commodity
Off-The-Shelf High Performance Computing
(COTS HPC) technology: a cluster of GPU
servers with Infiniband interconnects and MPI.

Able to train 1 billion parameter networks on
just 3 machines in a couple of days.

Able to scale to 11 billion weights (approx. 6.5
times larger than the Google model) on 16
GPUs.

GOOGLE DATACENTER

1,000 CPU Serve 600 kWatts
2,000 CPUs « 16,000 cores | 5,000,000

3 GPU-Accelerated Servers 4 kWatts
12 GPUs « 18,432 cores 533 000
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Current hardware — NVIDIA DGX Station

> 8x GPU (Nvidia A100 80GB
Tensor Core)

> 5 petaFLOPS
» System memory: 2 TB
> Network: 200 Gb/s InfiniBand

DGX A100 32068 | Upto2X
DeX-1 |
CPU Only ‘ X = Up to B3X
0 10 20 30 40 50 60 70 80 20

Time to Solution - Relative Performance
67



Deep learning in clouds

Big companies offer cloud services for deep learning:
» Amazon Web Services
> Google Cloud
> Deep Cognition
> ..
Advantages:
» Do not have to care (too much) about technical problems.

» Do not have to buy and optimize highend hw/sw, networks etc.

> Scaling & virtually limitless storage.
Disadvatages:

» Do not have full control.

» Performance can vary, connectivity problems.

» Have to pay for services.

> Privacy issues.
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Current software

» TensorFlow (Google)
> open source software library for numerical computation
using data flow graphs
allows implementation of most current neural networks
allows computation on multiple devices (CPUs, GPUs, ...)
Python API
Keras: a part of TensorFlow that allows easy description of
most modern neural networks
> PyTorch (Facebook)
> similar to TensorFlow
> object oriented
> ... majority of new models in research papers implemented
in PyTorch
https://www.cioinsight.com/big-data/pytorch-vs-tensorflow/
» Theano (dead):
> The "academic" grand-daddy of deep-learning frameworks,
written in Python. Strongly inspired TensorFlow (some
people developing Theano moved on to develop
TensorFlow).

> There are others: Caffe, Deeplearning4j, ...

vvyyvyy
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from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD

model

= Sequential()

# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shap
# here, 20-dimensional vectors.

model.
model.
model.
model.
model.
model.
model.
model.

sgd =
model.

model.

score

add (Dense(64, input dim=20, init='uniform'))
add (Activation('tanh'))

add (Dropout(0.5))

add (Dense(64, init='uniform'))

add (Activation('tanh'))

add (Dropout(0.5))

add (Dense(10, init='uniform'))

add (Activation('softmax'))

SGD(lr=0.1, decay=1le-6, momentum=0.9, nesterov=True)
compile(loss='categorical crossentropy',
optimizer=sgd,
metrics=["'accuracy'])

fit(X_train, y train,
nb_epoch=20,
batch size=16)
= model.evaluate(X test, y test, batch size=16)
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from keras.layers import Input, Dense
from keras.models import Model

# This returns a tensor
inputs = Input(shape=(784,))

# a layer instance is callable on a tensor, and returns a tensor
output_1 = Dense(64, activation='relu')(inputs)

output 2 Dense(64, activation='relu')(output 1)

predictions = Dense(10, activation='softmax')(output_2)

# This creates a model that includes

# the Input layer and three Dense layers

model = Model(inputs=inputs, outputs=predictions)

model.compile(optimizer="rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])

model. fit(data, labels) # starts training
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41 # tf Graph input

42 X = tf.placeholder("float", [None, n_input])
4% Y = tf.placeholder("float", [None, n_classes])
44

45  # Store layers weight & bias

46 weights = {

47 'hi': tf.variable(tf.random_normal([n_input, n_hidden_1])),

48 'h2': tf.variable(tf.random_normal([n_hidden_1, n_hidden_2])),
49 'out': tf.variable(tf.random_normal([n_hidden_2, n_classes]))
50}

51  biases = {

52 'b1': tf.variable(tf.random_normal([n_hidden_1])),

53 'b2': tf.variable(tf.random_normal([n_hidden_21)),

54 'out': tf.variable(tf.random_normal([n_classes]))

55 }
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58 # Create model
59  def multilayer_perceptron(x):

60 # Hidden fully connected layer with 256 neurons

61 layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])

62 # Hidden fully connected layer with 256 neurons

63 layer 2 = tf.add(tf.matmul(layer 1, weights['h2']), biases['b2'])
64 # Output fully connected layer with a neuron for each class

65 out_layer = tf.matmul(layer_2, weights['out']) + biases['out']

66 return out_layer

67

68 # Construct model
59 logits = multilayer_perceptron(X)
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36 class Net(nn.Module):

37 def __init_ (self, input_size, hidden_size, num_classes):
38 super (Net, self)._init_ ()

39 self.fcl = nn.Linear(input_size, hidden_size)
40 self.relu = nn.ReLU()

41 self.fc2 = nn.Linear(hidden_size, num_classes)
42

43 def forward(self, x):

44 out = self.fcl(x)

45 out = self.relu(out)

46 out = self.fc2(out)

a7 return out

48

19 net = Net(input_size, hidden_size, num classes)
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Other software implementations

Most "mathematical” software packages contain some support
of neural networks:

MATLAB

> R
STATISTICA
> Weka

> ...

v

\4

The implementations are typically not on par with the previously
mentioned dedicated deep-learning libraries.
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Training linear models
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Linear regression (ADALINE)

Architecture:

Xn

W = (W, Wq,...,Wp) and X = (Xo, X1,...,Xn) Where xo = 1.
Activity:
> inner potential: & = wp + X[L, wiX; = Lo WiXi = W+ X
> activation function: ¢(&) = &
> network function: y[w](X) = o(&) = W - X
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Linear regression (ADALINE)

Learning:
> Given a training dataset

T ={(%,ch), (% &), ..., (%, dbp)]

Here )_()k = (Xko, Xk ...,an) € ]RnJH, Xko = 1, is the k-th
input, and dix € R is the expected output.

Intuition: The network is supposed to compute an affine approximation of the
function (some of) whose values are given in the training set.
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Linear regression (ADALINE)

» Error function:

p n 2
E(W) = %Z(W-Zk—dk)z = %Z[Z W,'Xk,'—dk]
i=0

3 7

> The goal is to find w which minimizes E(w).
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Error function
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Gradient of the error function

Consider gradient of the error function:

JE JE

v w),..., —(W)

VE(#) = ( ud

Intuition: VE(W) is a vector in the weight space which points in
the direction of the steepest ascent of the error function.

Note that the vectors X, are just parameters of the function E, and are thus
fixed!
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Gradient of the error function

Consider gradient of the error function:

VE(#) = (a_E(W),..., j_vi(m

Intuition: VE(W) is a vector in the weight space which points in
the direction of the steepest ascent of the error function.

Note that the vectors X, are just parameters of the function E, and are thus
fixed!

Fact

- =2 - . . .
If VE(w)=0=(0,...,0), then w is a global minimum of E.
For ADALINE, the error function E(w) is a convex paraboloid and thus has
the unique global minimum.
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Caution! This picture just illustrates the notion of gradient ... it is not
the convex paraboloid E(w) !




First, consider n = 1.
Then the model is y = wy + wy - x.



Gradient of the error function
First, consider n = 1.
Then the model is y = wp + wy - X.

Consider a concrete training set:

7 = {((1,2),1),((1,3),2),((1,4),5)}
= ((x10,X11), d1), ((X20, X21), d2), ((X30, X31), 03)
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Gradient of the error function
First, consider n = 1.
Then the model is y = wp + wy - X.

Consider a concrete training set:

7 = {((1,2),1),((1,3),2),((1,4),5)}
= ((x10,X11), d1), ((X20, X21), d2), ((X30, X31), 03)
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Gradient of the error function

First, consider n = 1.

Then the model is y = wp + wy - X.

Consider a concrete training set:

7 = {((1,2),1),((1,3),2),((1,4),5)}
= ((x10,X11), d1), ((X20, X21), d2), ((X30, X31), 03)

E(wo, wy) = S[(wo+wy-2—1)2+(Wo+wy-3-2)%+(Wo+wy-4-5)?]

% =wWo+wi-2-1)-14+(wWo+wy-3-2)-1+(wp+wy-4-5)-1
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Gradient of the error function
First, consider n = 1.
Then the model is y = wp + wy - x

Consider a concrete training set:

7 = {((1,2),1),((1,3),2),((1,4),5)}
= ((x10,X11), d1), ((X20, X21), d2), ((X30, X31), 03)

E(wo, wy) = S[(wo+wy-2—1)2+(Wo+wy-3-2)%+(Wo+wy-4-5)?]

<
5

= (W0+W1-2—1)~1+(W0+W1-3—2)'1—|—(W0—|—W1'4—5)-1

>
m

=
=
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Gradient of the error function

First, consider n = 1.

Then the model is y = wp + wy - x

Consider a concrete training set:

7 = {((1,2),1),((1,3),2),((1,4),5)}
= ((x10,X11), d1), ((X20, X21), d2), ((X30, X31), 03)

E(wo, wy) = S[(wo+wy-2—1)2+(Wo+wy-3-2)%+(Wo+wy-4-5)?]

% =wWo+wi-2-1)-14+(wWo+wy-3-2)-1+(wp+wy-4-5)-1

2B — (Wo+wy-2-1)-24 (Wo+wy -3-2) -3+ (Wo+w; -4-5)-4
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Gradient of the error function

2
IE 1% 6 (v
a—w(W) = EZ::(S—M ZWiin_dk)
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Gradient of the error function

oE . 1 &
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Gradient of the error function
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Gradient of the error function

aa_vi(v_‘)/) = 12 ow, [ZWIXKI dk)
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Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
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Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
The algorithm computes a sequence of weight vectors
w©®, W), W, .
» weights in w(%) are randomly initialized to values close to 0
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Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite

to the gradient.

The algorithm computes a sequence of weight vectors

wO®, W) w@ .
» weights in w(%) are randomly initialized to values close to 0
> in the step t + 1, weights w(*") are computed as follows:

P = g0 — e vEW@®)
p
— W(t)_g.Z(W(t).zk_dk).;k
k=1

Here k = (t mod p)+ 1 and 0 < ¢ < 1 is a learning rate.
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Linear regression - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
The algorithm computes a sequence of weight vectors
w©®, W), W, .
» weights in w(%) are randomly initialized to values close to 0
> in the step t + 1, weights w(*") are computed as follows:
witt) = @ — ¢ . vE(wW®)

p
— W(t)_g.Z(W(t).;k_dk).;k
k=1
Here k = (t mod p)+ 1 and 0 < ¢ < 1 is a learning rate.
Proposition
For sufficiently small ¢ > 0 the sequence w(®, w(1), w(2), .
converges (componentwise) to the global minimum of E (i.e. to
the vector w satisfying VE(w) = 0).
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Linear regression by gradient descent Error function
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Linear regression by gradient descent Error function
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ADALINE - learning

Online algorithm (Delta-rule, Widrow-Hoff rule):
» weights in w(%) initialized randomly close to 0
> in the step t + 1, weights w(*") are computed as follows:

WD = W — ¢(t) - (VT,(t) Ry — dk) - R
Here k =t mod p+1and0 < ¢(t) < 1is alearning rate in

the step t + 1.

Note that the algorithm does not work with the complete gradient but
only with its part determined by the currently considered training
example.
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ADALINE - learning

Online algorithm (Delta-rule, Widrow-Hoff rule):
» weights in w(%) initialized randomly close to 0
> in the step t + 1, weights w(*") are computed as follows:

W(H_1) _ W(t) _ e(t) . (VT/(T) . f(‘k - dk) . )_()k

Here k =t mod p+1and0 < ¢(t) < 1is alearning rate in
the step t + 1.

Note that the algorithm does not work with the complete gradient but

only with its part determined by the currently considered training
example.

Theorem (Widrow & Hoff)
If e(t) = 1, then w®, w(), w2, ... converges to the global
minimum of E.
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Binary classification: Desired outputs 0 and 1.
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Ideally, capture the probability distribution of classes.
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Binary classification: Desired outputs 0 and 1.

'
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... does not capture probability well (it is not a probability at all)
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Binary classification: Desired outputs 0 and 1.
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. . . . 1 . '
... logistic sigmoid o 18 much better!
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Logistic regression

y

5 Wo

ol N\

Xq Xo Xn

w = (wo, Wy,..., W) and X = (xo, X1, ..., Xn) where xg = 1.
Activity:
> inner potential: & = wp + L[L, wiX; = YL WiXi = W - X

> activation function: o(&) = 71=

> network function: y[w](X) = o(&) = m

Intuition: The output y is now interpreted as the probability of the class 1
given the input X.
20



But what is the meaning of the sigmoid?

The model gives a probability y of the class 1 given an input X.
But why we model such a probability using 1/(1 + e™"*) ??
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But what is the meaning of the sigmoid?

The model gives a probability y of the class 1 given an input X.
But why we model such a probability using 1/(1 + e™"*) ??

Let y be the "true" probability of the class 1 to be modeled.
What about odds of the class 17?

odds(y) = y/1 -y

~ odds

y

Resembles an exponential function ...
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But what is the meaning of the sigmoid?

The model gives a probability y of the class 1 given an input X
But why we model such a probability using 1/(1 + e™"*) ??

Let y be the "true" probability of the class 1 to be modeled.
What about log odds (aka logit) of the class 17?

logit(y) = log(y/(1 - 7))

logit

Looks almost linear ...

91



Assume that y is the probability of the class 1. Put

log(y/(1-9)) =w-X
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Assume that y is the probability of the class 1. Put
log(y/(1-9)) =w-X
Then

log((1 - §)/§) =-w-X
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But what is the meaning of the sigmoid?
Assume that y is the probability of the class 1. Put
log(y/(1-9)) =W %
Then
log((1-9)/9) =-w-X

and
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But what is the meaning of the sigmoid?

Assume that y is the probability of the class 1. Put

-

log(§/(1-9)) =w-X

Then

log(1-§)/y) =-w-X
and

(1-9)/y=e
and

o 1

=3 + eWX

That is, if we model log odds using a linear function, the probability is

obtained by applying the logistic sigmoid on the result of the linear function.
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Logistic regression

Learning:
> Given a training dataset

T ={(%,0), (%, &), ..., (%, db)}

Here Xx = (Xko, Xk1 - - -, Xkn) € R™1| x40 = 1, is the k-th
input, and di € {0, 1} is the expected output.
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Logistic regression

Learning:
> Given a training dataset

T ={(%,0), (%, &), ..., (%, db)}

Here Xx = (Xko, Xk1 - - -, Xkn) € R™1| x40 = 1, is the k-th
input, and di € {0, 1} is the expected output.

What error function?

(Binary) cross-entropy:

p
E(W) =Y —(ck log(yx) + (1 — di) log(1 - y&))
k=1

What?!?
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> Let’s have a "coin" (sides 0 and 1).
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> Let’s have a "coin" (sides 0 and 1).
> The probability of 1 is y and is unknown!
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Log likelihood is your friend!

> Let’s have a "coin" (sides 0 and 1).

» The probability of 1 is y and is unknown!

» You have tossed the coin 5 times and got a training
dataset:

7 =1{1,1,0,0,1} = {dy,...,ds}

Consider this to be a very special case where the input dimension is 0
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Log likelihood is your friend!

> Let’s have a "coin" (sides 0 and 1).
» The probability of 1 is y and is unknown!

» You have tossed the coin 5 times and got a training
dataset:

7 =1{1,1,0,0,1} = {dy,...,ds}

Consider this to be a very special case where the input dimension is 0
» What is the best model y of y based on the data?
Answer: The one that generates the data with maximum
probability!

94



Keep in mind our dataset:

T = {1/1101011} — {d1l"'ld5}
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Log likelihood is your friend!
Keep in mind our dataset:

7 =1{1,1,0,0,1} = {dy,..., ds}

Assume that the data was generated by independent trials,
then the probability of getting exactly 7 from our model is
L=y-y-(=y)-(0-y)-y

How to maximize this w.r.t. y?
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Log likelihood is your friend!
Keep in mind our dataset:

7 =1{1,1,0,0,1} = {dy,..., ds}

Assume that the data was generated by independent trials,
then the probability of getting exactly 7 from our model is

L=y-y-(1-y)-(1-y)-y
How to maximize this w.r.t. y?

Maximize

LL = log(L) = log(y)+log(y)+log(1-y)+log(1-y)+log(y)
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Log likelihood is your friend!
Keep in mind our dataset:

7 =1{1,1,0,0,1} = {dy,..., ds}

Assume that the data was generated by independent trials,
then the probability of getting exactly 7 from our model is

L=y-y-(=y)-(0-y)-y
How to maximize this w.r.t. y?
Maximize

LL = log(L) = log(y)+log(y)+log(1-y)+log(1-y)+log(y)
But then

—LL = —1-log(y)—1-log(y)—(1-0)-log(1-y)—(1-0)-log(1-y)—1-log(y)

i.e. —LL is the cross-entropy.
95



Consider our model:
1

Y e



Let the coin depend on the input
Consider our model:
1
T e
The training dataset is now standard:
T ={(%1, 1), (%, &), ..., (%, o)}

Here Xk = (Xko, Xk1 - - -, Xkn) € R™1, xxo = 1, is the k-th input,
and di € {0, 1} is the expected output.
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Let the coin depend on the input
Consider our model:
1
14 e (W)
The training dataset is now standard:
T ={(%1, 1), (%, &), ..., (%, o)}

Here Xk = (Xko, Xk1 - - -, Xkn) € R™1, xxo = 1, is the k-th input,
and di € {0, 1} is the expected output.

The likelihood:
P
L= H ydk- (1 = yi)(17%)
k=1

and LL =log(L) = Z£:1 (dk log(yk) + (1 — dk) log(1 — yk))
and thus —LL = the cross-entropy.

Minimizing the cross-netropy maximizes the log-likelihood
(and vice versa).



Normal Distribution

Distribution of continuous random variables.

Density (one dimensional, that is over R):
oo {_ (x = w)?

oV2m 202

1 is the expected value (the mean), o2 is the variance.

p(x) b= N
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Fix a training set D = {(xi,d1), (x2, &), ..., (Xp, dp )}
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Maximum Likelihood vs Least Squares (Dim 1)

Fix a training set D = {(x1, di),(xe,dbo),... ,(xp, dp)}
Assume that each di has been generated randomly by

dk=(W0+W1 'Xk)+€k

> wp, w; are unknown numbers

> ¢, are normally distributed with mean 0 and an unknown

variance ¢

o ¢
U+ /!K

/3
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Keep in mind:

dk=(W0+W1 -Xk)+€k

Assume that €4, ...,ep were generated independently.
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Maximum Likelihood vs Least Squares (Dim 1)
Keep in mind:

dk = (Wo + Wy - Xk) + €k

Assume that €4, ...,ep were generated independently.

Denote by p(ds, ..., dp | wo, W1,02) the probability density
according to which the values dj, ..., d, were generated
assuming fixed wo, wy, 6%, x1, ..., Xp.
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Maximum Likelihood vs Least Squares (Dim 1)
Keep in mind:

dk = (Wo + Wy - Xk) + €k

Assume that €4, ...,ep were generated independently.

Denote by p(ds, ..., dp | wo, W1,02) the probability density
according to which the values dj, ..., d, were generated
assuming fixed wo, wy, 6%, x1, ..., Xp.

The independence and normality imply

p
p(dy,...,dy | Wo,wy,0%) = H N[Wo + Wi Xk, 62](dk)

k=1

SO {_(dk —Wo—W1Xk)2}

202

99



Maximum Likelihood vs Least Squares

Our goal is to find (wp, wy ) that maximizes the likelihood that the
training set D with fixed values dy, ..., d, has been generated:

L(WOI W1162) = p(d1/---/dp | Wo, W1102)
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Maximum Likelihood vs Least Squares

Our goal is to find (wp, wy ) that maximizes the likelihood that the
training set D with fixed values dy, ..., d, has been generated:

L(WOI W1162) = p(d1/---/dp | Wo, W1102)

Theorem
(wo, wy) maximizes L(wo, wy,c?) for arbitrary o iff (wo, wy)
minimizes squared error E(wy, wy) = Zf():1 (dk — wo — Wy xk)2.
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Maximum Likelihood vs Least Squares

Our goal is to find (wp, wy ) that maximizes the likelihood that the

training set D with fixed values dy, ..., d, has been generated:
L(wo, wi,0?) := p(ds,...,dp | wo, wy,0?)
Theorem

(wo, wy) maximizes L(wo, wy,c?) for arbitrary o iff (wo, wy)
minimizes squared error E(wy, wy) = Zf():1 (dk — wo — Wy xk)2.

Note that maximizing L(wo, wy, ) w.r.t. (wp, wy) does not
depend on o°.
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Maximum Likelihood vs Least Squares

Our goal is to find (wp, wy ) that maximizes the likelihood that the
training set D with fixed values dy, ..., d, has been generated:

L(wo, wi,0?) := p(ds,...,dp | wo, wy,0?)

Theorem
(wo, wy) maximizes L(wo, wy,c?) for arbitrary o iff (wo, wy)
minimizes squared error E(wy, wy) = Zf():1 (dk — wo — Wy xk)2.

Note that maximizing L(wo, wy, ) w.r.t. (wp, wy) does not

depend on o°.

Maximizing o° satisfies 0° = %2‘221 (dk — wo — wy - X¢)2.
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