
(Primitive) Mathematical Model of Neuron

σ

ξ

x1 x2 xn

y

1

Formal neuron

σ

ξ

x1 x2 xn

x0 = 1

y

w1 w2

· · ·
wn

w0

I x1, . . . , xn real inputs

I x0 special input, always 1
I w0,w1, . . . ,wn real weights
I ξ = w0 +

∑n
i=1 wixi inner potential;

In general, other potentials are considered
(e.g. Gaussian), more on this in PV021.

I y output defined by y = σ(ξ)
where σ is an activation function.
We consider several activation functions.

e.g., linear threshold function

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

2

Formal neuron

σ

ξ

x1 x2 xn

x0 = 1

y

w1 w2

· · ·
wn

w0

I x1, . . . , xn real inputs
I x0 special input, always 1

I w0,w1, . . . ,wn real weights
I ξ = w0 +

∑n
i=1 wixi inner potential;

In general, other potentials are considered
(e.g. Gaussian), more on this in PV021.

I y output defined by y = σ(ξ)
where σ is an activation function.
We consider several activation functions.

e.g., linear threshold function

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

2

Formal neuron

σ

ξ

x1 x2 xn

x0 = 1

y

w1 w2

· · ·
wn

w0

I x1, . . . , xn real inputs
I x0 special input, always 1
I w0,w1, . . . ,wn real weights

I ξ = w0 +
∑n

i=1 wixi inner potential;
In general, other potentials are considered
(e.g. Gaussian), more on this in PV021.

I y output defined by y = σ(ξ)
where σ is an activation function.
We consider several activation functions.

e.g., linear threshold function

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

2

Formal neuron

σ

ξ

x1 x2 xn

x0 = 1

y

w1 w2

· · ·
wn

w0

I x1, . . . , xn real inputs
I x0 special input, always 1
I w0,w1, . . . ,wn real weights
I ξ = w0 +

∑n
i=1 wixi inner potential;

In general, other potentials are considered
(e.g. Gaussian), more on this in PV021.

I y output defined by y = σ(ξ)
where σ is an activation function.
We consider several activation functions.

e.g., linear threshold function

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

2

Formal neuron

σ

ξ

x1 x2 xn

x0 = 1

y

w1 w2

· · ·
wn

w0

I x1, . . . , xn real inputs
I x0 special input, always 1
I w0,w1, . . . ,wn real weights
I ξ = w0 +

∑n
i=1 wixi inner potential;

In general, other potentials are considered
(e.g. Gaussian), more on this in PV021.

I y output defined by y = σ(ξ)
where σ is an activation function.
We consider several activation functions.

e.g., linear threshold function

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

2

Formal Neuron vs Linear Models

I If σ is a linear threshold function

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

we obtain a linear classifier.
I If σ is identity, i.e. σ(ξ) = ξ, we obtain a linear (affine)

function.
I If σ(ξ) = 1/(1 + e−ξ) we obtain the logistic regression.

Also, other activation functions are used in neural networks!

3

Sigmoid Functions

4

Multilayer Perceptron (MLP)

Input

Hidden

Output

· · ·

· · ·

I Neurons are organized in layers
(input layer, output layer, possibly
several hidden layers)

I Layers are numbered from 0;
the input is 0-th

I Neurons in the `-th layer are connected
with all neurons in the `+ 1-th layer

Intuition: The network computes a function as follows: Assign input
values to the input neurons and 0 to the rest. Proceed upwards through
the layers, one layer per step. In the `-th step consider output values of
neurons in `− 1-th layer as inputs to neurons of the `-th layer. Compute
output values of neurons in the `-th layer.

5

Multilayer Perceptron (MLP)

Input

Hidden

Output

· · ·

· · ·

I Neurons are organized in layers
(input layer, output layer, possibly
several hidden layers)

I Layers are numbered from 0;
the input is 0-th

I Neurons in the `-th layer are connected
with all neurons in the `+ 1-th layer

Intuition: The network computes a function as follows: Assign input
values to the input neurons and 0 to the rest. Proceed upwards through
the layers, one layer per step. In the `-th step consider output values of
neurons in `− 1-th layer as inputs to neurons of the `-th layer. Compute
output values of neurons in the `-th layer.

5

Example

1 1

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

1 1

σ 11 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

0 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

0 0

σ 01 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

1 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

1 0

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

1 0

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

0 1

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

0 1

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

0 1

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Classical Example – ALVINN

I One of the first autonomous car
driving systems (in 90s)

I ALVINN drives a car
I The net has 30× 32 = 960 input

neurons (the input space is R960).
I The value of each input captures

the shade of gray of
the corresponding pixel.

I Output neurons indicate where to
turn (to the center of gravity).

Source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html 7

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

A Bit of History

I Perceptron (Rosenblatt et al, 1957)

I Single layer (i.e. no hidden layers), the activation function
linear threshold
(i.e., a bit more general linear classifier)

I Perceptron learning algorithm

I Used to recognize digits

I Adaline (Widrow & Hof, 1960)

I Single layer, the activation function identity
(i.e., a bit more linear function)

I Online version of the gradient descent

I Used a new circuitry element called memristor which was able
to "remember" history of current in form of resistance

In both cases, the expressive power is rather limited – can express only
linear decision boundaries and linear (affine) functions.

8

A Bit of History

I Perceptron (Rosenblatt et al, 1957)

I Single layer (i.e. no hidden layers), the activation function
linear threshold
(i.e., a bit more general linear classifier)

I Perceptron learning algorithm

I Used to recognize digits
I Adaline (Widrow & Hof, 1960)

I Single layer, the activation function identity
(i.e., a bit more linear function)

I Online version of the gradient descent

I Used a new circuitry element called memristor which was able
to "remember" history of current in form of resistance

In both cases, the expressive power is rather limited – can express only
linear decision boundaries and linear (affine) functions.

8

A Bit of History

One of the famous (counter)-examples: XOR

0
(0, 0)

1

(0, 1)

1
(0, 1)

0

(1, 1)

x1

x2

No perceptron can distinguish between ones and zeros.

9

XOR vs Multilayer Perceptron

0
(0, 0)

1

(0, 1)

1
(0, 1)

0

(1, 1)

P1 P2

x1

x2

σ1 σ 1

σ1

−22 2 −2

1

−1

1

3

−2

(Here σ is a linear threshold function.)

P1 : −1 + 2x1 + 2x2 = 0 P2 : 3− 2x1 − 2x2 = 0

The output neuron performs an intersection of half-spaces.
10

Boolean functions

Activation function: unit step function σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

σ

x1 x2 xn

x0 = 1

y = AND(x1, . . . , xn)

1 1
· · ·

1

−n
σ

x1 x2 xn

x0 = 1

y = OR(x1, . . . , xn)

1 1
· · ·

1

−1

σ

x1

x0 = 1

y = NOT (x1)

−1

0

11

Boolean functions

Activation function: unit step function σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

σ

x1 x2 xn

x0 = 1

y = AND(x1, . . . , xn)

1 1
· · ·

1

−n
σ

x1 x2 xn

x0 = 1

y = OR(x1, . . . , xn)

1 1
· · ·

1

−1

σ

x1

x0 = 1

y = NOT (x1)

−1

0

11

Non-linear separation

x1 x2

y

I Consider a three layer network; each neuron has
the unit step activation function.

I The network divides the input space in two
subspaces according to the output (0 or 1).

I The first (hidden) layer divides the input space
into half-spaces.

I The second layer may, e.g., make intersections
of the half-spaces ⇒ convex sets.

I The third layer may, e.g., make unions of some
convex sets.

12

Non-linear separation

x1 x2

y

I Consider a three layer network; each neuron has
the unit step activation function.

I The network divides the input space in two
subspaces according to the output (0 or 1).
I The first (hidden) layer divides the input space

into half-spaces.

I The second layer may, e.g., make intersections
of the half-spaces ⇒ convex sets.

I The third layer may, e.g., make unions of some
convex sets.

12

Non-linear separation

x1 x2

y

I Consider a three layer network; each neuron has
the unit step activation function.

I The network divides the input space in two
subspaces according to the output (0 or 1).
I The first (hidden) layer divides the input space

into half-spaces.
I The second layer may, e.g., make intersections

of the half-spaces ⇒ convex sets.

I The third layer may, e.g., make unions of some
convex sets.

12

Non-linear separation

x1 x2

y

I Consider a three layer network; each neuron has
the unit step activation function.

I The network divides the input space in two
subspaces according to the output (0 or 1).
I The first (hidden) layer divides the input space

into half-spaces.
I The second layer may, e.g., make intersections

of the half-spaces ⇒ convex sets.
I The third layer may, e.g., make unions of some

convex sets.

12

Expressive Power of MLP
Cybenko’s theorem:
I Two layer networks with a single output neuron and a single layer of

hidden neurons (with the logistic sigmoid as the activation function)
are able to

I approximate with arbitrarily small error any "reasonable"
boundary
a given input is classified as 1 iff the output value of the network is
≥ 1/2.

I approximate with arbitrarily small error any "reasonable"
function from [0, 1] to (0, 1).

Here "reasonable" means that it is pretty tough to find a function that is
not reasonable.

So multi-layer perceptrons are suffuciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any efficient method for training multilayer networks!

... then an efficient way of using the gradient descent was published in
1986!

13

Expressive Power of MLP
Cybenko’s theorem:
I Two layer networks with a single output neuron and a single layer of

hidden neurons (with the logistic sigmoid as the activation function)
are able to
I approximate with arbitrarily small error any "reasonable"

boundary
a given input is classified as 1 iff the output value of the network is
≥ 1/2.

I approximate with arbitrarily small error any "reasonable"
function from [0, 1] to (0, 1).

Here "reasonable" means that it is pretty tough to find a function that is
not reasonable.

So multi-layer perceptrons are suffuciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any efficient method for training multilayer networks!

... then an efficient way of using the gradient descent was published in
1986!

13

Expressive Power of MLP
Cybenko’s theorem:
I Two layer networks with a single output neuron and a single layer of

hidden neurons (with the logistic sigmoid as the activation function)
are able to
I approximate with arbitrarily small error any "reasonable"

boundary
a given input is classified as 1 iff the output value of the network is
≥ 1/2.

I approximate with arbitrarily small error any "reasonable"
function from [0, 1] to (0, 1).

Here "reasonable" means that it is pretty tough to find a function that is
not reasonable.

So multi-layer perceptrons are suffuciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any efficient method for training multilayer networks!

... then an efficient way of using the gradient descent was published in
1986!

13

Expressive Power of MLP
Cybenko’s theorem:
I Two layer networks with a single output neuron and a single layer of

hidden neurons (with the logistic sigmoid as the activation function)
are able to
I approximate with arbitrarily small error any "reasonable"

boundary
a given input is classified as 1 iff the output value of the network is
≥ 1/2.

I approximate with arbitrarily small error any "reasonable"
function from [0, 1] to (0, 1).

Here "reasonable" means that it is pretty tough to find a function that is
not reasonable.

So multi-layer perceptrons are suffuciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any efficient method for training multilayer networks!

... then an efficient way of using the gradient descent was published in
1986!

13

Expressive Power of MLP
Cybenko’s theorem:
I Two layer networks with a single output neuron and a single layer of

hidden neurons (with the logistic sigmoid as the activation function)
are able to
I approximate with arbitrarily small error any "reasonable"

boundary
a given input is classified as 1 iff the output value of the network is
≥ 1/2.

I approximate with arbitrarily small error any "reasonable"
function from [0, 1] to (0, 1).

Here "reasonable" means that it is pretty tough to find a function that is
not reasonable.

So multi-layer perceptrons are suffuciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any efficient method for training multilayer networks!

... then an efficient way of using the gradient descent was published in
1986!

13

Expressive Power of MLP
Cybenko’s theorem:
I Two layer networks with a single output neuron and a single layer of

hidden neurons (with the logistic sigmoid as the activation function)
are able to
I approximate with arbitrarily small error any "reasonable"

boundary
a given input is classified as 1 iff the output value of the network is
≥ 1/2.

I approximate with arbitrarily small error any "reasonable"
function from [0, 1] to (0, 1).

Here "reasonable" means that it is pretty tough to find a function that is
not reasonable.

So multi-layer perceptrons are suffuciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any efficient method for training multilayer networks!

... then an efficient way of using the gradient descent was published in
1986!

13

MLP – Notation

I X set of input neurons
I Y set of output neurons
I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .
I ξj is the inner potential of the neuron j when the computation

is finished.
I yj is the output value of the neuron j when the computation is

finished.
(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

14

MLP – Notation

I X set of input neurons
I Y set of output neurons
I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .

I ξj is the inner potential of the neuron j when the computation
is finished.

I yj is the output value of the neuron j when the computation is
finished.
(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

14

MLP – Notation

I X set of input neurons
I Y set of output neurons
I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .
I ξj is the inner potential of the neuron j when the computation

is finished.

I yj is the output value of the neuron j when the computation is
finished.
(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

14

MLP – Notation

I X set of input neurons
I Y set of output neurons
I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .
I ξj is the inner potential of the neuron j when the computation

is finished.
I yj is the output value of the neuron j when the computation is

finished.
(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

14

MLP – Notation

I X set of input neurons
I Y set of output neurons
I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .
I ξj is the inner potential of the neuron j when the computation

is finished.
I yj is the output value of the neuron j when the computation is

finished.
(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

14

MLP – Notation

I X set of input neurons
I Y set of output neurons
I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .
I ξj is the inner potential of the neuron j when the computation

is finished.
I yj is the output value of the neuron j when the computation is

finished.
(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

14

MLP – Notation

I X set of input neurons
I Y set of output neurons
I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .
I ξj is the inner potential of the neuron j when the computation

is finished.
I yj is the output value of the neuron j when the computation is

finished.
(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

14

MLP – Notation
I Inner potential of a neuron j :

ξj =
∑
i∈j←

wjiyi

I A value of a non-input neuron j ∈ Z \ X when the computation is
finished is

yj = σj(ξj)

Here σj is an activation function of the neuron j .
(yj is determined by weights ~w and a given input ~x , so it’s sometimes
written as yj [~w](~x))

I Fixing weights of all neurons, the network computes a function
F [~w] : R|X | → R|Y | as follows: Assign values of a given vector
~x ∈ R|X | to the input neurons, evaluate the network, then F [~w](~x)
is the vector of values of the output neurons.
Here we implicitly assume a fixed orderings on input and output vectors.

15

MLP – Notation
I Inner potential of a neuron j :

ξj =
∑
i∈j←

wjiyi

I A value of a non-input neuron j ∈ Z \ X when the computation is
finished is

yj = σj(ξj)

Here σj is an activation function of the neuron j .
(yj is determined by weights ~w and a given input ~x , so it’s sometimes
written as yj [~w](~x))

I Fixing weights of all neurons, the network computes a function
F [~w] : R|X | → R|Y | as follows: Assign values of a given vector
~x ∈ R|X | to the input neurons, evaluate the network, then F [~w](~x)
is the vector of values of the output neurons.
Here we implicitly assume a fixed orderings on input and output vectors.

15

MLP – Notation
I Inner potential of a neuron j :

ξj =
∑
i∈j←

wjiyi

I A value of a non-input neuron j ∈ Z \ X when the computation is
finished is

yj = σj(ξj)

Here σj is an activation function of the neuron j .
(yj is determined by weights ~w and a given input ~x , so it’s sometimes
written as yj [~w](~x))

I Fixing weights of all neurons, the network computes a function
F [~w] : R|X | → R|Y | as follows: Assign values of a given vector
~x ∈ R|X | to the input neurons, evaluate the network, then F [~w](~x)
is the vector of values of the output neurons.
Here we implicitly assume a fixed orderings on input and output vectors.

15

MLP – Learning

I Given a set D of training examples:

D =
{(

~xk , ~dk

) ∣∣ k = 1, . . . , p
}

Here ~xk ∈ R|X | and ~dk ∈ R|Y |. We write dkj to denote the
value in ~dk corresponding to the output neuron j .

I Error Function: E (~w) where ~w is a vector of all weights in
the network. The choice of E depends on the solved task
(classification vs regression etc.).
Example (Squared error):

E (~w) =

p∑
k=1

Ek(~w)

where

Ek(~w) =
1
2

∑
j∈Y

(yj [~w](~xk)− dkj)
2

16

MLP – Learning

I Given a set D of training examples:

D =
{(

~xk , ~dk

) ∣∣ k = 1, . . . , p
}

Here ~xk ∈ R|X | and ~dk ∈ R|Y |. We write dkj to denote the
value in ~dk corresponding to the output neuron j .

I Error Function: E (~w) where ~w is a vector of all weights in
the network. The choice of E depends on the solved task
(classification vs regression etc.).
Example (Squared error):

E (~w) =

p∑
k=1

Ek(~w)

where

Ek(~w) =
1
2

∑
j∈Y

(yj [~w](~xk)− dkj)
2

16

MLP – Batch Gradient Descent

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0

I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as
follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning rate
in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).

17

MLP – Batch Gradient Descent

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0
I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as

follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning rate
in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).

17

MLP – Batch Gradient Descent

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0
I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as

follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning rate
in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).

17

MLP – Batch Gradient Descent

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0
I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as

follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning rate
in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).

17

Illustration of Gradient Descent – XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork 18

Stochastic Gradient Descent (SGD)
Assume that E (~w) =

∑p
k=1 Ek(~w) where Ek(~w) is an error w.r.t.

the single training example (~xk , ~dk).

I weights in ~w (0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0, 1, 2 . . .), weights ~w (t+1) are computed

as follows:
I Choose (randomly) a set of training examples T ⊆ {1, . . . , p}
I Compute

~w (t+1) = ~w (t) + ∆~w (t)

where

∆~w (t) = −ε(t) ·
∑
k∈T

∇Ek(~w (t))

I 0 < ε(t) ≤ 1 is a learning rate in step t + 1
I ∇Ek(~w (t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.

19

Comments on Training Algorithm

I Not guaranteed to converge to zero training error, may converge to
a local minimum or oscillate indefinitely.

I In practice, does converge to low error for many large networks on
(big) real data.

I Many epochs (thousands) may be required, hours or days of training
for large networks.

There are many issues concerning learning efficiency (data normalization,
selection of activation functions, weight initialization, learning rate,
efficiency of the gradient descent itself etc.) – see PV021.

20

Comments on Training Algorithm

I Not guaranteed to converge to zero training error, may converge to
a local minimum or oscillate indefinitely.

I In practice, does converge to low error for many large networks on
(big) real data.

I Many epochs (thousands) may be required, hours or days of training
for large networks.

There are many issues concerning learning efficiency (data normalization,
selection of activation functions, weight initialization, learning rate,
efficiency of the gradient descent itself etc.) – see PV021.

20

Comments on Training Algorithm

I Not guaranteed to converge to zero training error, may converge to
a local minimum or oscillate indefinitely.

I In practice, does converge to low error for many large networks on
(big) real data.

I Many epochs (thousands) may be required, hours or days of training
for large networks.

There are many issues concerning learning efficiency (data normalization,
selection of activation functions, weight initialization, learning rate,
efficiency of the gradient descent itself etc.) – see PV021.

20

Overfitting

I Due to their expressive power, neural networks are quite
sensitive to overfitting.

I Keep a hold-out validation set and test the error of the
network on this set after every epoch. Stop training when
additional epochs actually increase the validation error.
The validation error can be measured by completely different means than
the training error E .

21

Overfitting

I Due to their expressive power, neural networks are quite
sensitive to overfitting.

I Keep a hold-out validation set and test the error of the
network on this set after every epoch. Stop training when
additional epochs actually increase the validation error.
The validation error can be measured by completely different means than
the training error E .

21

Hidden Neurons Representations
Trained hidden neurons can be seen as newly constructed features.
E.g., in a two layer network used for classification, the hidden layer transforms
the input so that important features become explicit (and hence the result may
become linearly separable).

Consider a two-layer MLP, 64-2-3 for classification of letters (three
output neurons, each corresponds to one of the letters).

22

Hidden Neurons Representations
Trained hidden neurons can be seen as newly constructed features.
E.g., in a two layer network used for classification, the hidden layer transforms
the input so that important features become explicit (and hence the result may
become linearly separable).

Consider a two-layer MLP, 64-2-3 for classification of letters (three
output neurons, each corresponds to one of the letters).

22

Optimal Architecture?

I For MLP: Too few hidden neurons prevent the network from
adequately fitting the data. Too many hidden units can result
in overfitting.
(There are advanced methods that prevent overfitting even for rich
models, such as regularization, where the error function penalizes
overfitting – see PV021.)

I There are (almost) infinitely many types of architectures of
neural networks (convolutional, recurrent, transformers,
adversarial, etc.) suitable for various tasks.

I Transfer learning: Start with a known solution to a related
problem.

Simplified view: Preserve lower parts of the network trained to
solve the related problem (feature extractors). Add your own
top part and then train only the new top part (or train
the whole network but carefully).

23

Optimal Architecture?

I For MLP: Too few hidden neurons prevent the network from
adequately fitting the data. Too many hidden units can result
in overfitting.
(There are advanced methods that prevent overfitting even for rich
models, such as regularization, where the error function penalizes
overfitting – see PV021.)

I There are (almost) infinitely many types of architectures of
neural networks (convolutional, recurrent, transformers,
adversarial, etc.) suitable for various tasks.

I Transfer learning: Start with a known solution to a related
problem.

Simplified view: Preserve lower parts of the network trained to
solve the related problem (feature extractors). Add your own
top part and then train only the new top part (or train
the whole network but carefully).

23

Optimal Architecture?

I For MLP: Too few hidden neurons prevent the network from
adequately fitting the data. Too many hidden units can result
in overfitting.
(There are advanced methods that prevent overfitting even for rich
models, such as regularization, where the error function penalizes
overfitting – see PV021.)

I There are (almost) infinitely many types of architectures of
neural networks (convolutional, recurrent, transformers,
adversarial, etc.) suitable for various tasks.

I Transfer learning: Start with a known solution to a related
problem.

Simplified view: Preserve lower parts of the network trained to
solve the related problem (feature extractors). Add your own
top part and then train only the new top part (or train
the whole network but carefully).

23

Applications

I Image recognition, segmentation, etc.
I Machine translation and other text processing
I Text to Speech and vice versa
I Finance, business predictions, fraud detection
I Game playing (backgammon is a classical example, AlphaGo is

the famous one, computer games, bridge)
I (artificial brain and intelligence)
I ...

Text and image processing are possibly the most advanced deep
learning applications.

24

ALVINN

25

ALVINN

I Two layer MLP, 960− 4− 30 (sometimes 960− 5− 30)

I Inputs correspond to pixels.
I Sigmoidal activation function (logistic sigmoid).
I Direction corresponds to the center of gravity.

I.e., output neurons are considered as points of mass evenly distributed
along a line. Weight of each neuron corresponds to its value.

26

ALVINN

I Two layer MLP, 960− 4− 30 (sometimes 960− 5− 30)
I Inputs correspond to pixels.
I Sigmoidal activation function (logistic sigmoid).

I Direction corresponds to the center of gravity.

I.e., output neurons are considered as points of mass evenly distributed
along a line. Weight of each neuron corresponds to its value.

26

ALVINN

I Two layer MLP, 960− 4− 30 (sometimes 960− 5− 30)
I Inputs correspond to pixels.
I Sigmoidal activation function (logistic sigmoid).
I Direction corresponds to the center of gravity.

I.e., output neurons are considered as points of mass evenly distributed
along a line. Weight of each neuron corresponds to its value.

26

ALVINN – Training

Trained while driving.

I A camera captured the road from the front window, approx. 25
pictures per second

I Training examples (~xk , ~dk) where
I ~xk = image of the road
I ~dk ≈ corresponding direction of the steering wheel set by the

driver

I the values ~dk computed using Gaussian distribution:

dki = e−D
2
i /10

where Di is the distance between the i-th output from the one
that corresponds to the real direction of the steering wheel.

(This is better than the binary output because similar road
directions induce similar reaction of the driver.)

27

ALVINN – Training

Trained while driving.
I A camera captured the road from the front window, approx. 25

pictures per second

I Training examples (~xk , ~dk) where
I ~xk = image of the road
I ~dk ≈ corresponding direction of the steering wheel set by the

driver

I the values ~dk computed using Gaussian distribution:

dki = e−D
2
i /10

where Di is the distance between the i-th output from the one
that corresponds to the real direction of the steering wheel.

(This is better than the binary output because similar road
directions induce similar reaction of the driver.)

27

ALVINN – Training

Trained while driving.
I A camera captured the road from the front window, approx. 25

pictures per second
I Training examples (~xk , ~dk) where

I ~xk = image of the road
I ~dk ≈ corresponding direction of the steering wheel set by the

driver

I the values ~dk computed using Gaussian distribution:

dki = e−D
2
i /10

where Di is the distance between the i-th output from the one
that corresponds to the real direction of the steering wheel.

(This is better than the binary output because similar road
directions induce similar reaction of the driver.)

27

ALVINN – Training

Trained while driving.
I A camera captured the road from the front window, approx. 25

pictures per second
I Training examples (~xk , ~dk) where

I ~xk = image of the road

I ~dk ≈ corresponding direction of the steering wheel set by the
driver

I the values ~dk computed using Gaussian distribution:

dki = e−D
2
i /10

where Di is the distance between the i-th output from the one
that corresponds to the real direction of the steering wheel.

(This is better than the binary output because similar road
directions induce similar reaction of the driver.)

27

ALVINN – Training

Trained while driving.
I A camera captured the road from the front window, approx. 25

pictures per second
I Training examples (~xk , ~dk) where

I ~xk = image of the road
I ~dk ≈ corresponding direction of the steering wheel set by the

driver

I the values ~dk computed using Gaussian distribution:

dki = e−D
2
i /10

where Di is the distance between the i-th output from the one
that corresponds to the real direction of the steering wheel.

(This is better than the binary output because similar road
directions induce similar reaction of the driver.)

27

ALVINN – Training

Trained while driving.
I A camera captured the road from the front window, approx. 25

pictures per second
I Training examples (~xk , ~dk) where

I ~xk = image of the road
I ~dk ≈ corresponding direction of the steering wheel set by the

driver

I the values ~dk computed using Gaussian distribution:

dki = e−D
2
i /10

where Di is the distance between the i-th output from the one
that corresponds to the real direction of the steering wheel.

(This is better than the binary output because similar road
directions induce similar reaction of the driver.)

27

Selection of Training Examples

Naive approach: just take images from the camera.

Problems:
I A too good driver never teaches the network how to solve

deviations from the right track. Couple of harsh solutions:
I turn the learning off for a moment, deviate from the right

track, then turn on the learning and let the network learn how
to solve the situation.

I let the driver go crazy! (a bit dangerous, expensive, unreliable)

I Images are very similar (the network basically sees the road
from the right lane), overfitting.

28

Selection of Training Examples

Naive approach: just take images from the camera.

Problems:

I A too good driver never teaches the network how to solve
deviations from the right track. Couple of harsh solutions:
I turn the learning off for a moment, deviate from the right

track, then turn on the learning and let the network learn how
to solve the situation.

I let the driver go crazy! (a bit dangerous, expensive, unreliable)

I Images are very similar (the network basically sees the road
from the right lane), overfitting.

28

Selection of Training Examples

Naive approach: just take images from the camera.

Problems:
I A too good driver never teaches the network how to solve

deviations from the right track. Couple of harsh solutions:

I turn the learning off for a moment, deviate from the right
track, then turn on the learning and let the network learn how
to solve the situation.

I let the driver go crazy! (a bit dangerous, expensive, unreliable)

I Images are very similar (the network basically sees the road
from the right lane), overfitting.

28

Selection of Training Examples

Naive approach: just take images from the camera.

Problems:
I A too good driver never teaches the network how to solve

deviations from the right track. Couple of harsh solutions:
I turn the learning off for a moment, deviate from the right

track, then turn on the learning and let the network learn how
to solve the situation.

I let the driver go crazy! (a bit dangerous, expensive, unreliable)

I Images are very similar (the network basically sees the road
from the right lane), overfitting.

28

Selection of Training Examples

Naive approach: just take images from the camera.

Problems:
I A too good driver never teaches the network how to solve

deviations from the right track. Couple of harsh solutions:
I turn the learning off for a moment, deviate from the right

track, then turn on the learning and let the network learn how
to solve the situation.

I let the driver go crazy! (a bit dangerous, expensive, unreliable)

I Images are very similar (the network basically sees the road
from the right lane), overfitting.

28

Selection of Training Examples

Naive approach: just take images from the camera.

Problems:
I A too good driver never teaches the network how to solve

deviations from the right track. Couple of harsh solutions:
I turn the learning off for a moment, deviate from the right

track, then turn on the learning and let the network learn how
to solve the situation.

I let the driver go crazy! (a bit dangerous, expensive, unreliable)

I Images are very similar (the network basically sees the road
from the right lane), overfitting.

28

Selection of Training Examples
Problem with too good driver were solved as follows:

I every image of the road has been has been transformed to 15
slightly different copies

Repetitiveness of images was solved as follows:
I the system has a buffer of 200 images (including the 15 copies of

the current one), in every round trains on these images
I afterwards, a new image is captured, 15 copies made, and these new

15 substitute 15 selected from the buffer (10 with the smallest
training error, 5 randomly)

29

Selection of Training Examples
Problem with too good driver were solved as follows:
I every image of the road has been has been transformed to 15

slightly different copies

Repetitiveness of images was solved as follows:
I the system has a buffer of 200 images (including the 15 copies of

the current one), in every round trains on these images
I afterwards, a new image is captured, 15 copies made, and these new

15 substitute 15 selected from the buffer (10 with the smallest
training error, 5 randomly)

29

Selection of Training Examples
Problem with too good driver were solved as follows:
I every image of the road has been has been transformed to 15

slightly different copies

Repetitiveness of images was solved as follows:
I the system has a buffer of 200 images (including the 15 copies of

the current one), in every round trains on these images
I afterwards, a new image is captured, 15 copies made, and these new

15 substitute 15 selected from the buffer (10 with the smallest
training error, 5 randomly)

29

Selection of Training Examples
Problem with too good driver were solved as follows:
I every image of the road has been has been transformed to 15

slightly different copies

Repetitiveness of images was solved as follows:

I the system has a buffer of 200 images (including the 15 copies of
the current one), in every round trains on these images

I afterwards, a new image is captured, 15 copies made, and these new
15 substitute 15 selected from the buffer (10 with the smallest
training error, 5 randomly)

29

Selection of Training Examples
Problem with too good driver were solved as follows:
I every image of the road has been has been transformed to 15

slightly different copies

Repetitiveness of images was solved as follows:
I the system has a buffer of 200 images (including the 15 copies of

the current one), in every round trains on these images

I afterwards, a new image is captured, 15 copies made, and these new
15 substitute 15 selected from the buffer (10 with the smallest
training error, 5 randomly)

29

Selection of Training Examples
Problem with too good driver were solved as follows:
I every image of the road has been has been transformed to 15

slightly different copies

Repetitiveness of images was solved as follows:
I the system has a buffer of 200 images (including the 15 copies of

the current one), in every round trains on these images
I afterwards, a new image is captured, 15 copies made, and these new

15 substitute 15 selected from the buffer (10 with the smallest
training error, 5 randomly)

29

ALVINN – Training

I gradient descent

I constant learning rate (possibly different for each neuron – see
PV021)

I some other optimizations (see PV021)
The result:
I Training took 5 minutes, the speed was 4 miles per hour

(The speed was limited by the hydraulic controller of the steering wheel
not the learning algorithm.)

I ALVINN was able to go through roads it never "seen" and in
different weather

30

ALVINN – Training

I gradient descent
I constant learning rate (possibly different for each neuron – see

PV021)

I some other optimizations (see PV021)
The result:
I Training took 5 minutes, the speed was 4 miles per hour

(The speed was limited by the hydraulic controller of the steering wheel
not the learning algorithm.)

I ALVINN was able to go through roads it never "seen" and in
different weather

30

ALVINN – Training

I gradient descent
I constant learning rate (possibly different for each neuron – see

PV021)
I some other optimizations (see PV021)

The result:
I Training took 5 minutes, the speed was 4 miles per hour

(The speed was limited by the hydraulic controller of the steering wheel
not the learning algorithm.)

I ALVINN was able to go through roads it never "seen" and in
different weather

30

ALVINN – Training

I gradient descent
I constant learning rate (possibly different for each neuron – see

PV021)
I some other optimizations (see PV021)

The result:
I Training took 5 minutes, the speed was 4 miles per hour

(The speed was limited by the hydraulic controller of the steering wheel
not the learning algorithm.)

I ALVINN was able to go through roads it never "seen" and in
different weather

30

ALVINN – Training

I gradient descent
I constant learning rate (possibly different for each neuron – see

PV021)
I some other optimizations (see PV021)

The result:
I Training took 5 minutes, the speed was 4 miles per hour

(The speed was limited by the hydraulic controller of the steering wheel
not the learning algorithm.)

I ALVINN was able to go through roads it never "seen" and in
different weather

30

ALVINN – Weight Learning

round 0

round 10

round 20

round 50

h1 h2 h3 h4 h5

Here h1, . . . , h5 are values of hidden neurons.
31

Deep Learning

I Cybenko’s theorem shows that two-layer networks are omnipotent –
such results nearly killed NN when support vector machines were
found to be easier to train in 00’s.

I Later, it has been shown (experimentally) that deep networks (with
many layers) have better represenational properties.

I ... but how to train them? The gradient descent suffers from
so-called vanishing gradient, intuitively, updates of weights in lower
layers are very slow.

I In 2006 a solution was found by Hinton et al:
I Use unsupervised methods to initialize the weights layer by

layer so that they capture important features in data.
More precisely: The lowest hidden layer learns patterns in data,
second lowest learns patterns in data transformed through the first
layer, and so on.

I Then use a supervised learning algorithm to only fine tune
the weights to the desired input-output behavior.

I ... but the true revolution started with convolutional networks
trained on several GPUs.

32

Deep Learning

I Cybenko’s theorem shows that two-layer networks are omnipotent –
such results nearly killed NN when support vector machines were
found to be easier to train in 00’s.

I Later, it has been shown (experimentally) that deep networks (with
many layers) have better represenational properties.

I ... but how to train them? The gradient descent suffers from
so-called vanishing gradient, intuitively, updates of weights in lower
layers are very slow.

I In 2006 a solution was found by Hinton et al:
I Use unsupervised methods to initialize the weights layer by

layer so that they capture important features in data.
More precisely: The lowest hidden layer learns patterns in data,
second lowest learns patterns in data transformed through the first
layer, and so on.

I Then use a supervised learning algorithm to only fine tune
the weights to the desired input-output behavior.

I ... but the true revolution started with convolutional networks
trained on several GPUs.

32

Deep Learning

I Cybenko’s theorem shows that two-layer networks are omnipotent –
such results nearly killed NN when support vector machines were
found to be easier to train in 00’s.

I Later, it has been shown (experimentally) that deep networks (with
many layers) have better represenational properties.

I ... but how to train them? The gradient descent suffers from
so-called vanishing gradient, intuitively, updates of weights in lower
layers are very slow.

I In 2006 a solution was found by Hinton et al:
I Use unsupervised methods to initialize the weights layer by

layer so that they capture important features in data.
More precisely: The lowest hidden layer learns patterns in data,
second lowest learns patterns in data transformed through the first
layer, and so on.

I Then use a supervised learning algorithm to only fine tune
the weights to the desired input-output behavior.

I ... but the true revolution started with convolutional networks
trained on several GPUs.

32

Deep Learning

I Cybenko’s theorem shows that two-layer networks are omnipotent –
such results nearly killed NN when support vector machines were
found to be easier to train in 00’s.

I Later, it has been shown (experimentally) that deep networks (with
many layers) have better represenational properties.

I ... but how to train them? The gradient descent suffers from
so-called vanishing gradient, intuitively, updates of weights in lower
layers are very slow.

I In 2006 a solution was found by Hinton et al:
I Use unsupervised methods to initialize the weights layer by

layer so that they capture important features in data.
More precisely: The lowest hidden layer learns patterns in data,
second lowest learns patterns in data transformed through the first
layer, and so on.

I Then use a supervised learning algorithm to only fine tune
the weights to the desired input-output behavior.

I ... but the true revolution started with convolutional networks
trained on several GPUs.

32

Deep Learning

I Cybenko’s theorem shows that two-layer networks are omnipotent –
such results nearly killed NN when support vector machines were
found to be easier to train in 00’s.

I Later, it has been shown (experimentally) that deep networks (with
many layers) have better represenational properties.

I ... but how to train them? The gradient descent suffers from
so-called vanishing gradient, intuitively, updates of weights in lower
layers are very slow.

I In 2006 a solution was found by Hinton et al:
I Use unsupervised methods to initialize the weights layer by

layer so that they capture important features in data.
More precisely: The lowest hidden layer learns patterns in data,
second lowest learns patterns in data transformed through the first
layer, and so on.

I Then use a supervised learning algorithm to only fine tune
the weights to the desired input-output behavior.

I ... but the true revolution started with convolutional networks
trained on several GPUs. 32

Convolutional network

A specific architecture of neural networks from 80s.

33

Convolutional layers

Every neuron is connected with a (typically small) receptive field of
neurons in the lower layer.

Neuron is "standard": Computes a weighted sum of its inputs,
applies an activation function.

34

Convolutional layers

Neurons grouped into feature
maps sharing weights.

35

Convolutional layers

Each feature map represents a property of the input that is
supposed to be spatially invariant.

Typically, we consider several feature maps in a single layer.

36

Pooling layers

Neurons in the pooling layer compute simple functions of their
receptive fields (the fields are typically disjoint):
I Max-pooling : maximum of inputs
I L2-pooling : square root of the sum of squres
I Average-pooling : mean
I · · · 37

Convolutional network

38

ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC)

ImageNet database (16,000,000 color images, 20,000 categories)

39

ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC)

Competition in classification over a subset of images from
ImageNet.

In 2012: Training se 1,200,000 images, 1000 categories. Validation
set 50,000, Test set 150,000.

Many images contain several objects → typical rule is top-5 highest
probability assigned by the net.

40

KSH síť

ImageNet classification with deep convolutional neural networks, by Alex
Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton (2012).

Trained on two GPUs (NVIDIA GeForce GTX 580)

Results:
I Accuracy 84.7% in top-5 (second best alg. at the time: 73.8%)
I 63.3% in "perfect" classification (top-1)

41

ILSVRC 2014

The same set of images as in 2012, top-5 criterium.

GoogLeNet: deep convolutional net, 22 layers

Results:
I 93.33% in top-5

Superhuman power?

42

Superhuman GoogLeNet?!

Andrej Karpathy: ...the task of labeling images with 5 out of 1000 categories
quickly turned out to be extremely challenging, even for some friends in the lab
who have been working on ILSVRC and its classes for a while. First we thought
we would put it up on [Amazon Mechanical Turk]. Then we thought we could
recruit paid undergrads. Then I organized a labeling party of intense labeling
effort only among the (expert labelers) in our lab. Then I developed a modified
interface that used GoogLeNet predictions to prune the number of categories
from 1000 to only about 100. It was still too hard - people kept missing
categories and getting up to ranges of 13-15% error rates. In the end I realized
that to get anywhere competitively close to GoogLeNet, it was most efficient if
I sat down and went through the painfully long training process and the
subsequent careful annotation process myself... The labeling happened at a rate
of about 1 per minute, but this decreased over time... Some images are easily
recognized, while some images (such as those of fine-grained breeds of dogs,
birds, or monkeys) can require multiple minutes of concentrated effort. I
became very good at identifying breeds of dogs... Based on the sample of
images I worked on, the GoogLeNet classification error turned out to be 6.8%...
My own error in the end turned out to be 5.1%, approximately 1.7% better.

43

ILSVRC 2015

I Microsoft network ResNet: 152
layers, complex architecture

I Trained on 8 GPUs
I 96.43% accuracy in top-5

44

ILSVRC

45

ILSVRC 2016

Trimps-Soushen (The Third Research Institute of Ministry of Public
Security)

There is no new innovative technology or novelty by
Trimps-Soushen.

Ensemble of the pre-trained models from previous years.

Each of the models are strong at classifying some categories, but
also weak at classifying some categories.

Test error: 2.99%

46

Top-k accuracy analyzed

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-

dfbc423111dd
47

Top-20 typical errors

Out of 1458 misclassified images in Top-20:

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-

dfbc423111dd

48

Top-k accuracy analyzed

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-

dfbc423111dd

49

Top-k accuracy analyzed

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-

dfbc423111dd

50

Top-k accuracy analyzed

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-

dfbc423111dd
51

Top-k accuracy analyzed

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-

dfbc423111dd
52

MLP – Batch Gradient Descent

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0

I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as
follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning rate
in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).

53

MLP – Batch Gradient Descent

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0
I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as

follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning rate
in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).

53

MLP – Batch Gradient Descent

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0
I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as

follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning rate
in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).

53

MLP – Batch Gradient Descent

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0
I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as

follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning rate
in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).

53

MLP – Gradient Computation
For every weight wji we have (obviously)

∂E

∂wji
=

p∑
k=1

∂Ek

∂wji

So now it suffices to compute ∂Ek

∂wji
, that is the error for a fixed training

example (~xk , dk).

Applying the chain rule we obtain
∂Ek

∂wji
=
∂Ek

∂yj
· σ′

j (ξj) · yi

where (more applications of the chain rule)

δEk

δyj
is computed directly for the output neurons j ∈ Y

δEk

δyj
=
∑
r∈j→

δEk

δyr
· σ′

r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here yr = y [~w](~xk) where ~w are the current weights and ~xk is the input of the
k-th training example.)

54

MLP – Gradient Computation
For every weight wji we have (obviously)

∂E

∂wji
=

p∑
k=1

∂Ek

∂wji

So now it suffices to compute ∂Ek

∂wji
, that is the error for a fixed training

example (~xk , dk).

Applying the chain rule we obtain
∂Ek

∂wji
=
∂Ek

∂yj
· σ′

j (ξj) · yi

where (more applications of the chain rule)

δEk

δyj
is computed directly for the output neurons j ∈ Y

δEk

δyj
=
∑
r∈j→

δEk

δyr
· σ′

r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here yr = y [~w](~xk) where ~w are the current weights and ~xk is the input of the
k-th training example.)

54

Multilayer Perceptron – Backpropagation
Input: A training set D =

{(
~xk , ~dk

) ∣∣ k = 1, . . . , p
}

and
the current vector of weights ~w .
Note that the backprop. is repeated in every iteration of the gradient descent!

I Evaluate all values yi of neurons using the standard bottom-up
procedure with the input ~xk .

I For every training example (~xk , ~dk) compute δEk

δyj
using

backpropagation through layers top-down :
I For all j ∈ Y compute δEk

δyj
by taking the derivative of the error.

e.g., in the case of the squared error we have δEk
δyj

= yj − dkj .

I In the layer `, assuming that δEk

δyr
has been computed for all

neurons r in the layer `+ 1, compute
δEk

δyj
=
∑
r∈j→

δEk

δyj
· σ′

r (ξr) · wrj

for all j from the `-th layer. Here σ′
r is the derivative of σr .

I Put ∂Ek

∂wji
= δEk

δyj
· σ′

j (ξj) · yi

Output: ∂E
∂wji

=
∑p

k=1
∂Ek

∂wji
.

55

Multilayer Perceptron – Backpropagation
Input: A training set D =

{(
~xk , ~dk

) ∣∣ k = 1, . . . , p
}

and
the current vector of weights ~w .
Note that the backprop. is repeated in every iteration of the gradient descent!

I Evaluate all values yi of neurons using the standard bottom-up
procedure with the input ~xk .

I For every training example (~xk , ~dk) compute δEk

δyj
using

backpropagation through layers top-down :
I For all j ∈ Y compute δEk

δyj
by taking the derivative of the error.

e.g., in the case of the squared error we have δEk
δyj

= yj − dkj .

I In the layer `, assuming that δEk

δyr
has been computed for all

neurons r in the layer `+ 1, compute
δEk

δyj
=
∑
r∈j→

δEk

δyj
· σ′

r (ξr) · wrj

for all j from the `-th layer. Here σ′
r is the derivative of σr .

I Put ∂Ek

∂wji
= δEk

δyj
· σ′

j (ξj) · yi

Output: ∂E
∂wji

=
∑p

k=1
∂Ek

∂wji
.

55

Multilayer Perceptron – Backpropagation
Input: A training set D =

{(
~xk , ~dk

) ∣∣ k = 1, . . . , p
}

and
the current vector of weights ~w .
Note that the backprop. is repeated in every iteration of the gradient descent!

I Evaluate all values yi of neurons using the standard bottom-up
procedure with the input ~xk .

I For every training example (~xk , ~dk) compute δEk

δyj
using

backpropagation through layers top-down :
I For all j ∈ Y compute δEk

δyj
by taking the derivative of the error.

e.g., in the case of the squared error we have δEk
δyj

= yj − dkj .

I In the layer `, assuming that δEk

δyr
has been computed for all

neurons r in the layer `+ 1, compute
δEk

δyj
=
∑
r∈j→

δEk

δyj
· σ′

r (ξr) · wrj

for all j from the `-th layer. Here σ′
r is the derivative of σr .

I Put ∂Ek

∂wji
= δEk

δyj
· σ′

j (ξj) · yi

Output: ∂E
∂wji

=
∑p

k=1
∂Ek

∂wji
.

55

