MLP – architecture

Notation:

- Denote
 - X a set of input neurons
 - Y a set of *output* neurons
 - ► Z a set of all neurons $(X, Y \subseteq Z)$
- individual neurons denoted by indices i, j etc.
 - ξ_j is the inner potential of the neuron j after the computation stops
 - ► y_j is the output of the neuron j after the computation stops
 - (define $y_0 = 1$ is the value of the formal unit input)
- w_{ji} is the weight of the connection from i to j

(in particular, w_{j0} is the weight of the connection from the formal unit input, i.e. $w_{j0} = -b_j$ where b_j is the bias of the neuron j)

- j_← is a set of all *i* such that *j* is adjacent from *i* (i.e. there is an arc to *j* from *i*)
- j[→] is a set of all *i* such that *j* is adjacent to *i* (i.e. there is an arc **from** *j* to *i*)

3

MLP – learning

Learning:

• Given a training dataset \mathcal{T} of the form

 $\left\{ \left(\vec{x}_k, \vec{d}_k \right) \mid k = 1, \dots, p \right\}$

Here, every $\vec{x}_k \in \mathbb{R}^{|X|}$ is an *input vector* end every $\vec{d}_k \in \mathbb{R}^{|Y|}$ is the desired network output. For every $j \in Y$, denote by d_{kj} the desired output of the neuron j for a given network input \vec{x}_k (the vector \vec{d}_k can be written as $(d_{kj})_{i \in Y}$).

Error function:

$$E(\vec{w}) = \sum_{k=1}^{p} E_k(\vec{w})$$

where

$$E_k(\vec{w}) = \frac{1}{2} \sum_{j \in Y} (y_j(\vec{w}, \vec{x}_k) - d_{kj})^2$$

MLP – activity

Activity:

inner potential of neuron j:

$$\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i$$

- activation function σ_i for neuron *j* (arbitrary differentiable)
- State of non-input neuron *j* ∈ *Z* \ *X* after the computation stops:

 $\mathbf{y}_j = \sigma_j(\xi_j)$

 $(y_j \text{ depends on the configuration } \vec{w} \text{ and the input } \vec{x}, \text{ so we sometimes}$ write $y_j(\vec{w}, \vec{x})$)

The network computes a function R^{|X|} do R^{|Y|}. Layer-wise computation: First, all input neurons are assigned values of the input. In the *l*-th step, all neurons of the *l*-th layer are evaluated.

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$

- weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- ▶ in the step t + 1 (here t = 0, 1, 2...), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$w_{ji}^{(t+1)} = w_{ji}^{(t)} + \Delta w_{ji}^{(t)}$$

where

$$\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial \mathbf{E}}{\partial \mathbf{w}_{ji}} (\vec{w}^{(t)})$$

is a weight update of w_{ji} in step t + 1 and $0 < \varepsilon(t) \le 1$ is a learning rate in step t + 1.

Note that $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t)})$ is a component of the gradient ∇E , i.e. the weight update can be written as $\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon(t) \cdot \nabla E(\vec{w}^{(t)})$.