
Deep Reinforcement Learning

Tomáš Brázdil

2016

Based on V. Mnih et al, Human-level control through deep reinforcement
learning. Nature (2015).
Left: https://commons.wikimedia.org/wiki/File:Atari2600a.JPG, Right: http://www.opobotics.com/. 1

https://commons.wikimedia.org/wiki/File:Atari2600a.JPG
http://www.opobotics.com/


Deterministic Markov Decision Processes

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

I set of states S ,
I set of actions A,

each state is assigned a set of enabled actions,
I transition function δ : S × A→ S ,
I reward function R : S × A→ R.

2



Deterministic Markov Decision Processes

Policy π chooses actions based on the current state.

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

3



Deterministic Markov Decision Processes

Policy π chooses actions based on the current state.

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

3



Deterministic Markov Decision Processes

Policy π chooses actions based on the current state.

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

3



Deterministic Markov Decision Processes

Policy π chooses actions based on the current state.

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

3



Deterministic Markov Decision Processes

Policy π chooses actions based on the current state.

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

3



Deterministic Markov Decision Processes

Policy π chooses actions based on the current state.

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

3



Deterministic Markov Decision Processes

Policy π chooses actions based on the current state.

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

3



Deterministic Markov Decision Processes

Policy π chooses actions based on the current state.

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

Notation:
I S1, S2, ... where St is the t-th visited state
I A1,A2, ... where At is the t-th taken action
I R1,R2, ... where Rt is the t-th obtained reward

3



Encoding Atari games

States correspond to preprocessed screenshots.

Original screenshots: 210× 160 in 128 colors.
Preprocessing:
I Rescale and crop to 80× 80,
I convert to gray-scale,
I use 4 most recent frames in a single state.

The states: Real vectors of dimension 80× 80× 4.

Actions correspond to actions of the player: joystick position, position of
fire buttons.

Rewards correspond to changes in the game score.
Sqeezed into three values: 1 for positive, −1 for negative, 0 for 0.

4



Encoding Atari games

States correspond to preprocessed screenshots.

Original screenshots: 210× 160 in 128 colors.
Preprocessing:
I Rescale and crop to 80× 80,
I convert to gray-scale,
I use 4 most recent frames in a single state.

The states: Real vectors of dimension 80× 80× 4.

Actions correspond to actions of the player: joystick position, position of
fire buttons.

Rewards correspond to changes in the game score.
Sqeezed into three values: 1 for positive, −1 for negative, 0 for 0.

4



Encoding Atari games

States correspond to preprocessed screenshots.

Original screenshots: 210× 160 in 128 colors.
Preprocessing:
I Rescale and crop to 80× 80,
I convert to gray-scale,
I use 4 most recent frames in a single state.

The states: Real vectors of dimension 80× 80× 4.

Actions correspond to actions of the player: joystick position, position of
fire buttons.

Rewards correspond to changes in the game score.
Sqeezed into three values: 1 for positive, −1 for negative, 0 for 0.

4



Return and Value Functions

Definition
Return G is the total discounted reward G =

∑∞
k=0 γ

kRk+1.
Here 0 < γ < 1 is a discount factor.

Definition
Action-value function qπ(s, a) is
return starting from state s, taking action a, and then following π.
Optimal action-value function q∗(s, a) is the maximum action-value
function over all policies:

q∗(s, a) = max
π

qπ(s, a)

Theorem
Define a policy π∗ which in every s ∈ S chooses a ∈ A so that

q∗(s, a) = max
a′

q∗(s, a
′)

Then for all s ∈ S and a ∈ A we have that qπ∗(s, a) = q∗(s, a)
(i.e. π∗ is optimal).

5



Return and Value Functions

Definition
Return G is the total discounted reward G =

∑∞
k=0 γ

kRk+1.
Here 0 < γ < 1 is a discount factor.

Definition
Action-value function qπ(s, a) is
return starting from state s, taking action a, and then following π.

Optimal action-value function q∗(s, a) is the maximum action-value
function over all policies:

q∗(s, a) = max
π

qπ(s, a)

Theorem
Define a policy π∗ which in every s ∈ S chooses a ∈ A so that

q∗(s, a) = max
a′

q∗(s, a
′)

Then for all s ∈ S and a ∈ A we have that qπ∗(s, a) = q∗(s, a)
(i.e. π∗ is optimal).

5



Return and Value Functions

Definition
Return G is the total discounted reward G =

∑∞
k=0 γ

kRk+1.
Here 0 < γ < 1 is a discount factor.

Definition
Action-value function qπ(s, a) is
return starting from state s, taking action a, and then following π.
Optimal action-value function q∗(s, a) is the maximum action-value
function over all policies:

q∗(s, a) = max
π

qπ(s, a)

Theorem
Define a policy π∗ which in every s ∈ S chooses a ∈ A so that

q∗(s, a) = max
a′

q∗(s, a
′)

Then for all s ∈ S and a ∈ A we have that qπ∗(s, a) = q∗(s, a)
(i.e. π∗ is optimal).

5



Return and Value Functions

Definition
Return G is the total discounted reward G =

∑∞
k=0 γ

kRk+1.
Here 0 < γ < 1 is a discount factor.

Definition
Action-value function qπ(s, a) is
return starting from state s, taking action a, and then following π.
Optimal action-value function q∗(s, a) is the maximum action-value
function over all policies:

q∗(s, a) = max
π

qπ(s, a)

Theorem
Define a policy π∗ which in every s ∈ S chooses a ∈ A so that

q∗(s, a) = max
a′

q∗(s, a
′)

Then for all s ∈ S and a ∈ A we have that qπ∗(s, a) = q∗(s, a)
(i.e. π∗ is optimal).

5



Value Iteration

Bellman equation (Bellman, 1957):

q∗(s, a) = R(s, a) + γmax
a′

q∗(s
′, a′) here s ′ = δ(s, a) (1)

The true optimal values q∗(s, a) form the unique solution of the above
equation.

Value iteration algorithm:
I Start with q0(s, a) = 0 for all s, a.
I Iteratively apply the right-hand-side of (1):

qk+1(s, a) = R(s, a)+γmax
a′

qk(s
′, a′) here s ′ = δ(s, a)

Then q∗(s, a) = limk→∞ qk(s, a).

6



Value Iteration

Bellman equation (Bellman, 1957):

q∗(s, a) = R(s, a) + γmax
a′

q∗(s
′, a′) here s ′ = δ(s, a) (1)

The true optimal values q∗(s, a) form the unique solution of the above
equation.

Value iteration algorithm:
I Start with q0(s, a) = 0 for all s, a.
I Iteratively apply the right-hand-side of (1):

qk+1(s, a) = R(s, a)+γmax
a′

qk(s
′, a′) here s ′ = δ(s, a)

Then q∗(s, a) = limk→∞ qk(s, a).

6



Deterministic Markov Decision Processes
s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

q0 q1 q2 · · ·
(s1, a) 0 5 5+ γ10 · · ·
(s1, a

′) 0 −3 · · ·
(s2, a) 0 1 · · ·
(s2, a

′′) 0 10 · · ·
(s3, a) 0 4 · · ·

q2(s1, a) = R(s1, a) + γmax{q1(s2, a), q1(s2, a
′′)} = 5+ γmax{1, 10}

7



Criticism

Minor issue: The value iteration can be used only if the transition
relation δ is known.

Major issue: State/action space is typically huge or infinite:
I Atari games: 12884×84×4 = 12828224 possible states!
I Go: 10170 states
I Helicopter control: Infinite!

We solve this problem in two steps:
1. Update our approximation of q∗ only for "relevant"

state-action pairs.
(using reinforcement learning)

2. Represent our approximation of q∗ succinctly.
(using neural networks).

8



Criticism

Minor issue: The value iteration can be used only if the transition
relation δ is known.

Major issue: State/action space is typically huge or infinite:
I Atari games: 12884×84×4 = 12828224 possible states!
I Go: 10170 states
I Helicopter control: Infinite!

We solve this problem in two steps:
1. Update our approximation of q∗ only for "relevant"

state-action pairs.
(using reinforcement learning)

2. Represent our approximation of q∗ succinctly.
(using neural networks).

8



Reinforcement learning (roughly)

The problem:

How to learn q∗ ?

In general:
I Start with a policy π̂ and an estimate Q of q∗.
I While (unhappy with the result) do

I Simulate π̂ and update the estimate Q based on "experience".
I Update the policy π̂ according to Q.

We need to
I have a good rule for learning from experience

(exploit your choice of actions),
I go through important parts of the state-space

(explore the state space).

9



Reinforcement learning (roughly)

The problem:

How to learn q∗ ?

In general:
I Start with a policy π̂ and an estimate Q of q∗.
I While (unhappy with the result) do

I Simulate π̂ and update the estimate Q based on "experience".
I Update the policy π̂ according to Q.

We need to
I have a good rule for learning from experience

(exploit your choice of actions),
I go through important parts of the state-space

(explore the state space).

9



Reinforcement learning (roughly)

The problem:

How to learn q∗ ?

In general:
I Start with a policy π̂ and an estimate Q of q∗.
I While (unhappy with the result) do

I Simulate π̂ and update the estimate Q based on "experience".
I Update the policy π̂ according to Q.

We need to
I have a good rule for learning from experience

(exploit your choice of actions),
I go through important parts of the state-space

(explore the state space).
9



Q-learning
For exploration, consider ε-greedy (randomized) policy π̂:
I With probability 1− ε, choose a = argmaxa′ Q(s, a′).
I With probability ε, choose an arbitrary action uniformly in random.

Q-learning algorithm:
I Always follow π̂.
I In every time instant t update Q by

Q(St ,At)← Q(St ,At) + αt(q∗(St ,At)− Q(St ,At))

But we do not know q∗(St ,At) ... employ a bootstrap estimate:

q∗(St ,At) ≈ Rt + γmax
a′

Q(St+1, a
′)

and obtain

Q(St ,At)← Q(St ,At) + αt

(
Rt + γmax

a′
Q(St+1, a

′)− Q(St ,At)
)

Theorem (Watkins & Dayan 1992)
If S is finite and αt = 1/t, then each Q(s, a) converges to q∗(s, a).

10



Q-learning
For exploration, consider ε-greedy (randomized) policy π̂:
I With probability 1− ε, choose a = argmaxa′ Q(s, a′).
I With probability ε, choose an arbitrary action uniformly in random.

Q-learning algorithm:
I Always follow π̂.
I In every time instant t update Q by

Q(St ,At)← Q(St ,At) + αt(q∗(St ,At)− Q(St ,At))

But we do not know q∗(St ,At) ... employ a bootstrap estimate:

q∗(St ,At) ≈ Rt + γmax
a′

Q(St+1, a
′)

and obtain

Q(St ,At)← Q(St ,At) + αt

(
Rt + γmax

a′
Q(St+1, a

′)− Q(St ,At)
)

Theorem (Watkins & Dayan 1992)
If S is finite and αt = 1/t, then each Q(s, a) converges to q∗(s, a).

10



Q-learning
For exploration, consider ε-greedy (randomized) policy π̂:
I With probability 1− ε, choose a = argmaxa′ Q(s, a′).
I With probability ε, choose an arbitrary action uniformly in random.

Q-learning algorithm:
I Always follow π̂.
I In every time instant t update Q by

Q(St ,At)← Q(St ,At) + αt(q∗(St ,At)− Q(St ,At))

But we do not know q∗(St ,At) ...

employ a bootstrap estimate:

q∗(St ,At) ≈ Rt + γmax
a′

Q(St+1, a
′)

and obtain

Q(St ,At)← Q(St ,At) + αt

(
Rt + γmax

a′
Q(St+1, a

′)− Q(St ,At)
)

Theorem (Watkins & Dayan 1992)
If S is finite and αt = 1/t, then each Q(s, a) converges to q∗(s, a).

10



Q-learning
For exploration, consider ε-greedy (randomized) policy π̂:
I With probability 1− ε, choose a = argmaxa′ Q(s, a′).
I With probability ε, choose an arbitrary action uniformly in random.

Q-learning algorithm:
I Always follow π̂.
I In every time instant t update Q by

Q(St ,At)← Q(St ,At) + αt(q∗(St ,At)− Q(St ,At))

But we do not know q∗(St ,At) ... employ a bootstrap estimate:

q∗(St ,At) ≈ Rt + γmax
a′

Q(St+1, a
′)

and obtain

Q(St ,At)← Q(St ,At) + αt

(
Rt + γmax

a′
Q(St+1, a

′)− Q(St ,At)
)

Theorem (Watkins & Dayan 1992)
If S is finite and αt = 1/t, then each Q(s, a) converges to q∗(s, a).

10



Q-learning
For exploration, consider ε-greedy (randomized) policy π̂:
I With probability 1− ε, choose a = argmaxa′ Q(s, a′).
I With probability ε, choose an arbitrary action uniformly in random.

Q-learning algorithm:
I Always follow π̂.
I In every time instant t update Q by

Q(St ,At)← Q(St ,At) + αt(q∗(St ,At)− Q(St ,At))

But we do not know q∗(St ,At) ... employ a bootstrap estimate:

q∗(St ,At) ≈ Rt + γmax
a′

Q(St+1, a
′)

and obtain

Q(St ,At)← Q(St ,At) + αt

(
Rt + γmax

a′
Q(St+1, a

′)− Q(St ,At)
)

Theorem (Watkins & Dayan 1992)
If S is finite and αt = 1/t, then each Q(s, a) converges to q∗(s, a).

10



Q-learning
For exploration, consider ε-greedy (randomized) policy π̂:
I With probability 1− ε, choose a = argmaxa′ Q(s, a′).
I With probability ε, choose an arbitrary action uniformly in random.

Q-learning algorithm:
I Always follow π̂.
I In every time instant t update Q by

Q(St ,At)← Q(St ,At) + αt(q∗(St ,At)− Q(St ,At))

But we do not know q∗(St ,At) ... employ a bootstrap estimate:

q∗(St ,At) ≈ Rt + γmax
a′

Q(St+1, a
′)

and obtain

Q(St ,At)← Q(St ,At) + αt

(
Rt + γmax

a′
Q(St+1, a

′)− Q(St ,At)
)

Theorem (Watkins & Dayan 1992)
If S is finite and αt = 1/t, then each Q(s, a) converges to q∗(s, a). 10



Deterministic Markov Decision Processes

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

t 0 1 2 · · ·
(s1, a) 0 0+ α(5+ γ0− 0)
(s1, a

′) 0
(s2, a) 0 0+ α(1+ γα5− 0)
(s2, a

′′) 0
(s3, a) 0

Q(St ,At)← Q(St ,At)+α

(
Rt + γmax

a′
Q(St+1, a

′)− Q(St ,At)

)
11



Deterministic Markov Decision Processes

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

t 0 1 2 · · ·
(s1, a) 0 0+ α(5+ γ0− 0)
(s1, a

′) 0 0
(s2, a) 0 0 0+ α(1+ γα5− 0)
(s2, a

′′) 0 0
(s3, a) 0 0

Q(St ,At)← Q(St ,At)+α

(
Rt + γmax

a′
Q(St+1, a

′)− Q(St ,At)

)
11



Deterministic Markov Decision Processes

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

t 0 1 2 · · ·
(s1, a) 0 0+ α(5+ γ0− 0)
(s1, a

′) 0 0
(s2, a) 0 0 0+ α(1+ γα5− 0)
(s2, a

′′) 0 0
(s3, a) 0 0

Q(St ,At)← Q(St ,At)+α

(
Rt + γmax

a′
Q(St+1, a

′)− Q(St ,At)

)
11



Deterministic Markov Decision Processes

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

t 0 1 2 · · ·
(s1, a) 0 0+ α(5+ γ0− 0) α5
(s1, a

′) 0 0 0
(s2, a) 0 0 0+ α(1+ γα5− 0)
(s2, a

′′) 0 0 0
(s3, a) 0 0 0

Q(St ,At)← Q(St ,At)+α

(
Rt + γmax

a′
Q(St+1, a

′)− Q(St ,At)

)
11



Deterministic Markov Decision Processes

s1

a 5 a′−3

s2 s3

a 1 a4

a′′

10

t 0 1 2 · · ·
(s1, a) 0 0+ α(5+ γ0− 0) α5
(s1, a

′) 0 0 0
(s2, a) 0 0 0+ α(1+ γα5− 0)
(s2, a

′′) 0 0 0
(s3, a) 0 0 0

Q(St ,At)← Q(St ,At)+α

(
Rt + γmax

a′
Q(St+1, a

′)− Q(St ,At)

)
11



Q-learning – Markov decision processes
If stochastic actions are allowed:

I Bellman equation: q∗(s, a) = R(s, a) + γ
∑

s′ P
a
ss′ maxa′ q∗(s

′, a′)

Here Pa
ss′ is typically not known and needs to be estimated.

Consider the same Q-learning rule as for nondeterministic processes:

Q(St ,At)← Q(St ,At) + α
(
Rt + γmax

a
Q(St+1, a)− Q(St ,At)

)
Assuming St = s and At = a, the probability of updating Q(St ,At) with

Q(St ,At)← Q(St ,At) + α
(
Rt + γmax

a′
Q(s ′, a′)− Q(St ,At)

)
for a particular s ′ is equal to Pa

ss′ .

Thus if s is visited infinitely many times, then Q-learning can be seen as
a "sampling" version of value iteration.

Theorem
If S is finite, Q(s, a) converges to q∗(s, a) for all (s, a) ∈ S × A.

12



Q-learning

I Always follow πε-greedy.

I In time every time instant t update Q by

Q(St ,At)← Q(St ,At)+α
(
Rt + γmax

a
Q(St+1, a)− Q(St ,At)

)
Theorem
For finite state MDPs, Q(s, a) converges to q∗(s, a) for all (s, a) ∈ S ×A.

The convergence is assured for other exploration policies that almost surely
visit all states infinitely many times.

There are many ways of estimating q∗(St+1,At+1) (Sarsa, TD(λ), etc.)
The original paper on Atari games eployed (slightly modified) Q-learning.

13



Q-learning with Function Approximation

The problem: How to represent Q ?

I linear combinations of (manually created) features [typical]
I decision trees
I SVM
I neural networks
I ...

14



Neural networks

Neural network is a directed graph of interconnected neurons.

σ

ξ

x1 x2 xn

y

w1 w2
· · ·

wn

I w1, . . . ,wn ∈ R are weights

I x1, . . . , xn ∈ R are inputs

I ξ =
∑n

i=1 wixi

I y = σ(ξ)

15



Neural networks
Neural network is a directed graph of interconnected neurons.

σ

ξ

x1 x2 xn

y

w1 w2
· · ·

wn

I w1, . . . ,wn ∈ R are weights

I x1, . . . , xn ∈ R are inputs

I ξ =
∑n

i=1 wixi

I y = σ(ξ)

Input

Hidden

Output

· · ·

· · ·

state s

Q(s, a1;W) Q(s, ak ;W)

I W are weights of all neurons

I Q(s, a;W) the Q value in (s, a)
represented by the network 15



Q-learning with Neural Networks
Q-learning algorithm:
I Always follow ε-greedy π̂.
I In every time instant t consider (St ,At ,Rt ,St+1):

I Freeze the current weights as W−, fix the "target" value
τ := Rt + γmaxa′ Q(St+1, a

′;W−).
I Update weights W so that Q(St ,At ;W) gets closer to τ

W←W + αt(τ − Q(St ,At ;W))∇WQ(St ,At ;W)

How the above rule is derived?

We want to adjust W to minimize the square error (here τ is constant!)

L(W) =
1
2
(τ − Q(St ,At ;W))2

using gradient descent W = W − α∇WL(W) where

∇WL(W) = ∇W
(
(1/2)(τ − Q(St ,At ;W))2

)
= (τ − Q(St ,At ;W))(−∇WQ(St ,At ;W))

∇WQ(St ,At ;W) can be computed using standard backpropagation.

16



Q-learning with Neural Networks
Q-learning algorithm:
I Always follow ε-greedy π̂.
I In every time instant t consider (St ,At ,Rt ,St+1):

I Freeze the current weights as W−, fix the "target" value
τ := Rt + γmaxa′ Q(St+1, a

′;W−).

I Update weights W so that Q(St ,At ;W) gets closer to τ

W←W + αt(τ − Q(St ,At ;W))∇WQ(St ,At ;W)

How the above rule is derived?

We want to adjust W to minimize the square error (here τ is constant!)

L(W) =
1
2
(τ − Q(St ,At ;W))2

using gradient descent W = W − α∇WL(W) where

∇WL(W) = ∇W
(
(1/2)(τ − Q(St ,At ;W))2

)
= (τ − Q(St ,At ;W))(−∇WQ(St ,At ;W))

∇WQ(St ,At ;W) can be computed using standard backpropagation.

16



Q-learning with Neural Networks
Q-learning algorithm:
I Always follow ε-greedy π̂.
I In every time instant t consider (St ,At ,Rt ,St+1):

I Freeze the current weights as W−, fix the "target" value
τ := Rt + γmaxa′ Q(St+1, a

′;W−).
I Update weights W so that Q(St ,At ;W) gets closer to τ

W←W + αt(τ − Q(St ,At ;W))∇WQ(St ,At ;W)

How the above rule is derived?

We want to adjust W to minimize the square error (here τ is constant!)

L(W) =
1
2
(τ − Q(St ,At ;W))2

using gradient descent W = W − α∇WL(W) where

∇WL(W) = ∇W
(
(1/2)(τ − Q(St ,At ;W))2

)
= (τ − Q(St ,At ;W))(−∇WQ(St ,At ;W))

∇WQ(St ,At ;W) can be computed using standard backpropagation.

16



Q-learning with Neural Networks
Q-learning algorithm:
I Always follow ε-greedy π̂.
I In every time instant t consider (St ,At ,Rt ,St+1):

I Freeze the current weights as W−, fix the "target" value
τ := Rt + γmaxa′ Q(St+1, a

′;W−).
I Update weights W so that Q(St ,At ;W) gets closer to τ

W←W + αt(τ − Q(St ,At ;W))∇WQ(St ,At ;W)

How the above rule is derived?

We want to adjust W to minimize the square error (here τ is constant!)

L(W) =
1
2
(τ − Q(St ,At ;W))2

using gradient descent W = W − α∇WL(W) where

∇WL(W) = ∇W
(
(1/2)(τ − Q(St ,At ;W))2

)
= (τ − Q(St ,At ;W))(−∇WQ(St ,At ;W))

∇WQ(St ,At ;W) can be computed using standard backpropagation.

16



Q-learning with Neural Networks
Q-learning algorithm:
I Always follow ε-greedy π̂.
I In every time instant t consider (St ,At ,Rt ,St+1):

I Freeze the current weights as W−, fix the "target" value
τ := Rt + γmaxa′ Q(St+1, a

′;W−).
I Update weights W so that Q(St ,At ;W) gets closer to τ

W←W + αt(τ − Q(St ,At ;W))∇WQ(St ,At ;W)

How the above rule is derived?

We want to adjust W to minimize the square error (here τ is constant!)

L(W) =
1
2
(τ − Q(St ,At ;W))2

using gradient descent W = W − α∇WL(W) where

∇WL(W) = ∇W
(
(1/2)(τ − Q(St ,At ;W))2

)
= (τ − Q(St ,At ;W))(−∇WQ(St ,At ;W))

∇WQ(St ,At ;W) can be computed using standard backpropagation.

16



Q-learning with Neural Networks
Q-learning algorithm:
I Always follow ε-greedy π̂.
I In every time instant t consider (St ,At ,Rt ,St+1):

I Freeze the current weights as W−, fix the "target" value
τ := Rt + γmaxa′ Q(St+1, a

′;W−).
I Update weights W so that Q(St ,At ;W) gets closer to τ

W←W + αt(τ − Q(St ,At ;W))∇WQ(St ,At ;W)

How the above rule is derived?

We want to adjust W to minimize the square error (here τ is constant!)

L(W) =
1
2
(τ − Q(St ,At ;W))2

using gradient descent W = W − α∇WL(W) where

∇WL(W) = ∇W
(
(1/2)(τ − Q(St ,At ;W))2

)
= (τ − Q(St ,At ;W))(−∇WQ(St ,At ;W))

∇WQ(St ,At ;W) can be computed using standard backpropagation.
16



Convolutional Networks

In image processing, classical MLP has been superseded by
convolutional networks.

First introduced in [LeCun et al., 1989d] for handwritten digits
recognition.

Combined with powerful GPU powered computers ⇒
breakthrough in image processing.
Image: D. Silver, UCL Course on RL, http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html 17

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html


DQN

Note that the Q-learning algorithm adapts weights in every step.

May be unstable: The learning may be slow or even diverge since
I training samples obtained along simulations are strongly

correlated,
I their distribution changes.

Replay memory:
I Store history of (state, action, reward, newState) tuples into

a memory M.
I Train the network on training examples obtained by sampling

from M.
Dealyed target values:
I W− is several steps old value of weights.

(Previously W− was the current weight vector.)

Both adjustments considerably improve learning (see results later).

18



DQN

Note that the Q-learning algorithm adapts weights in every step.

May be unstable: The learning may be slow or even diverge since
I training samples obtained along simulations are strongly

correlated,
I their distribution changes.

Replay memory:
I Store history of (state, action, reward, newState) tuples into

a memory M.
I Train the network on training examples obtained by sampling

from M.

Dealyed target values:
I W− is several steps old value of weights.

(Previously W− was the current weight vector.)

Both adjustments considerably improve learning (see results later).

18



DQN

Note that the Q-learning algorithm adapts weights in every step.

May be unstable: The learning may be slow or even diverge since
I training samples obtained along simulations are strongly

correlated,
I their distribution changes.

Replay memory:
I Store history of (state, action, reward, newState) tuples into

a memory M.
I Train the network on training examples obtained by sampling

from M.
Dealyed target values:
I W− is several steps old value of weights.

(Previously W− was the current weight vector.)

Both adjustments considerably improve learning (see results later).
18



Experiments

Training:
I 49 games, the same architecture of network

(trained for each game).
I ε-greedy strategy with ε annealed linearly from 1.0 to 0.1 over

the first million frames.
I Trained for 50 million frames (around 38 days of game

experience in total).

Evaluation:
I Play each game 30 times for up to 5 min each time with

different initial random conditions.
I ε-greedy policy with ε = 0.05.
I A random agent selecting actions at 10Hz used as baseline.
I Pro human tester under the same emulator, average reward for

20 episodes, max 5 minutes, following around 2h of practice
playing each game.

19



Experiments

Training:
I 49 games, the same architecture of network

(trained for each game).
I ε-greedy strategy with ε annealed linearly from 1.0 to 0.1 over

the first million frames.
I Trained for 50 million frames (around 38 days of game

experience in total).
Evaluation:
I Play each game 30 times for up to 5 min each time with

different initial random conditions.
I ε-greedy policy with ε = 0.05.
I A random agent selecting actions at 10Hz used as baseline.
I Pro human tester under the same emulator, average reward for

20 episodes, max 5 minutes, following around 2h of practice
playing each game.

19



Image: V. Mnih et al, Human-level control through deep reinforcement learning. Nature (2015). 20



Results

Sarsa and Contingency are other reinforcement learning methods.

HNeat Best and HNeat Pixel are methods based on evolutionary policy
search.
These methods use a hand-engineered object detector algorithm that outputs
the locations and types of objects on the Atari screen.

Image: D. Silver, UCL Course on RL, http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

21

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html


Conceptual Limitations (as opposed to humans)

I Prior knowledge:
I Humans: Huge amount, such as intuitive physics and intuitive

psychology.
I RL: Starts from scratch which is simultaneously impressive

(because it works) and depressing (because we lack concrete
ideas for how not to).

I Abstraction and planning:
I Humans: Build a rich, abstract model and plan within it.
I RL: Brute force, where the correct actions are eventually

discovered and internalized into a policy.

I Experience acquisition:
I Humans: Can figure out what is likely to give rewards without

ever actually experiencing the rewarding transition.
I RL: Has to actually experience a positive reward.

A. Karpathy, Deep Reinforcement Learning: Pong from Pixels,

http://karpathy.github.io/2016/05/31/rl/.

22

http://karpathy.github.io/2016/05/31/rl/


Conceptual Limitations (as opposed to humans)

I Prior knowledge:
I Humans: Huge amount, such as intuitive physics and intuitive

psychology.
I RL: Starts from scratch which is simultaneously impressive

(because it works) and depressing (because we lack concrete
ideas for how not to).

I Abstraction and planning:
I Humans: Build a rich, abstract model and plan within it.
I RL: Brute force, where the correct actions are eventually

discovered and internalized into a policy.

I Experience acquisition:
I Humans: Can figure out what is likely to give rewards without

ever actually experiencing the rewarding transition.
I RL: Has to actually experience a positive reward.

A. Karpathy, Deep Reinforcement Learning: Pong from Pixels,

http://karpathy.github.io/2016/05/31/rl/.

22

http://karpathy.github.io/2016/05/31/rl/


Conceptual Limitations (as opposed to humans)

I Prior knowledge:
I Humans: Huge amount, such as intuitive physics and intuitive

psychology.
I RL: Starts from scratch which is simultaneously impressive

(because it works) and depressing (because we lack concrete
ideas for how not to).

I Abstraction and planning:
I Humans: Build a rich, abstract model and plan within it.
I RL: Brute force, where the correct actions are eventually

discovered and internalized into a policy.

I Experience acquisition:
I Humans: Can figure out what is likely to give rewards without

ever actually experiencing the rewarding transition.
I RL: Has to actually experience a positive reward.

A. Karpathy, Deep Reinforcement Learning: Pong from Pixels,

http://karpathy.github.io/2016/05/31/rl/.

22

http://karpathy.github.io/2016/05/31/rl/


Conclusions

I Current computers can learn to play games on old computer at
(super)human level.

I The main algorithms used in solution:
I Reinforcement learning
I Convolutional networks

I It is a very active area of research, several better solutions
than DQN have been recently presented.

23



Image: V. Mnih et al, Human-level control through deep reinforcement learning. Nature (2015).
24


