
Probabilistic Classification
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Probabilistic Classification – Idea

Imagine that
I I look out of a window and see a bird,
I it is black, approx. 25 cm long, and has a rather yellow beak.

My daughter asks: What kind of bird is this?

My usual answer: This is probably a kind of blackbird (kos černý in
Czech).

Here probably means that out of my extensive catalogue of four
kinds of birds that I am able to recognize, "blackbird" gets the
highest degree of belief based on features of this particular bird.

Frequentists might say that the largest proportion of birds with similar features
I have ever seen were blackbirds.

The degree of belief (Bayesians), or the relative frequency
(frequentists) is the probability.
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Basic Discrete Probability Theory

I A finite or countably infinite set Ω of possible outcomes, Ω is
called sample space.
Experiment: Roll one dice once. Sample space: Ω = {1, . . . , 6}

I Each element ω of Ω is assigned a "probability" value f (ω),
here f must satisfy
I f (ω) ∈ [0, 1] for all ω ∈ Ω,
I
∑

ω∈Ω f (ω) = 1.
If the dice is fair, then f (ω) = 1

6 for all ω ∈ {1, . . . , 6}.
I An event is any subset E of Ω.
I The probability of a given event E ⊆ Ω is defined as

P(E ) =
∑
ω∈E

f (ω)

Let E be the event that an odd number is rolled, i.e., E = {1, 3, 5}. Then
P(E) = 1

2 .
I Basic laws: P(Ω) = 1, P(∅) = 0, given disjoint sets A,B we

have P(A ∪ B) = P(A) + P(B), P(Ω r A) = 1− P(A).
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Conditional Probability and Independence

I P(A | B) is the probability of A given B (assume P(B) > 0)
defined by

P(A | B) = P(A ∩ B)/P(B)

(We assume that B is all and only information known.)

A fair dice: what is the probability that 3 is rolled assuming that an odd
number is rolled? ... and assuming that an even number is rolled?

I A and B are independent if P(A ∩ B) = P(A) · P(B).

It is easy to show that if P(B) > 0, then
A, B are independent iff P(A | B) = P(A).
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Random Variables and Random Vectors

I A random variable X is a function X : Ω→ R.
A dice: X : {1, . . . , 6} → {0, 1} such that X (n) = n mod 2.

I A random vector is a function X : Ω→ Rd .

We use X = (X1, . . . ,Xd) where Xi is a random variable
returning the i-th component of X .

I Consider random variables X1,X2 and Y . The variables X1,X2
are conditionally independent given Y if for all x1, x2 and y we
have that

P(X1 = x1,X2 = x2 | Y = y) =

P(X1 = x1 | Y = y) · P(X2 = x2 | Y = y)
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Random Vectors – Example

Let Ω be a space of colored geometric shapes that are divided into
two categories (111 and 000).

Assume a random vector X = (Xcolor ,Xshape ,Xcat) where
I Xcolor : Ω→ {red , blue},
I Xshape : Ω→ {circle, square},
I Xcat : Ω→ {111,000}.

Probability distribution of values is given by the following tables:

category 111:
circle square

red 0.2 0.02
blue 0.02 0.01

category 000:
circle square

red 0.05 0.3
blue 0.2 0.2
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Random Vectors – Example

Example:
P(red , circle,111) = P(Xcolor = red ,Xshape = circle,Xcat = 111) = 0.2

"Summing over" all possible values of some variable(s) gives
the distribution of the rest:

P(red , circle) = P(Xcolor = red ,Xshape = circle)

= P(red , circle,111) + P(red , circle,000)

= 0.2 + 0.05 = 0.25

P(red) = 0.2 + 0.02 + 0.05 + 0.3 = 0.57

Thus also all conditional probabilities can be computed:

P(positive | red , circle) =
P(positive, red , circle)

P(red , circle)
=

0.2
0.25

= 0.8

7



Random Vectors – Example

Example:
P(red , circle,111) = P(Xcolor = red ,Xshape = circle,Xcat = 111) = 0.2

"Summing over" all possible values of some variable(s) gives
the distribution of the rest:

P(red , circle) = P(Xcolor = red ,Xshape = circle)

= P(red , circle,111) + P(red , circle,000)

= 0.2 + 0.05 = 0.25

P(red) = 0.2 + 0.02 + 0.05 + 0.3 = 0.57

Thus also all conditional probabilities can be computed:

P(positive | red , circle) =
P(positive, red , circle)

P(red , circle)
=

0.2
0.25

= 0.8

7



Random Vectors – Example

Example:
P(red , circle,111) = P(Xcolor = red ,Xshape = circle,Xcat = 111) = 0.2

"Summing over" all possible values of some variable(s) gives
the distribution of the rest:

P(red , circle) = P(Xcolor = red ,Xshape = circle)

= P(red , circle,111) + P(red , circle,000)

= 0.2 + 0.05 = 0.25

P(red) = 0.2 + 0.02 + 0.05 + 0.3 = 0.57

Thus also all conditional probabilities can be computed:

P(positive | red , circle) =
P(positive, red , circle)

P(red , circle)
=

0.2
0.25

= 0.8

7



Random Vectors – Example

Example:
P(red , circle,111) = P(Xcolor = red ,Xshape = circle,Xcat = 111) = 0.2

"Summing over" all possible values of some variable(s) gives
the distribution of the rest:

P(red , circle) = P(Xcolor = red ,Xshape = circle)

= P(red , circle,111) + P(red , circle,000)

= 0.2 + 0.05 = 0.25

P(red) = 0.2 + 0.02 + 0.05 + 0.3 = 0.57

Thus also all conditional probabilities can be computed:

P(positive | red , circle) =
P(positive, red , circle)

P(red , circle)
=

0.2
0.25

= 0.8

7



Bayesian Classification

Let Ω be a sample space (a universum) of all objects that can be
classified. We assume a probability P on Ω.

We consider the problem of binary classification:
I Let Y be the random variable for the category which takes

values in {000,111}.
I Let X be the random vector describing n features of a given

instance, i.e., X = (X1, . . . ,Xn)
I Denote by ~x ∈ Rn values of X ,
I and by xi ∈ R values of Xi .

Bayes classifier: Given a vector of feature values ~x ,

CBayes(~x) :=

{
111 if P(Y = 111 | X = ~x) ≥ P(Y = 000 | X = ~x)

000 otherwise.

Intuitively, CBayes assigns to ~x the most probable category it might
be in.

8



Bayesian Classification

Let Ω be a sample space (a universum) of all objects that can be
classified. We assume a probability P on Ω.

We consider the problem of binary classification:
I Let Y be the random variable for the category which takes

values in {000,111}.

I Let X be the random vector describing n features of a given
instance, i.e., X = (X1, . . . ,Xn)
I Denote by ~x ∈ Rn values of X ,
I and by xi ∈ R values of Xi .

Bayes classifier: Given a vector of feature values ~x ,

CBayes(~x) :=

{
111 if P(Y = 111 | X = ~x) ≥ P(Y = 000 | X = ~x)

000 otherwise.

Intuitively, CBayes assigns to ~x the most probable category it might
be in.

8



Bayesian Classification

Let Ω be a sample space (a universum) of all objects that can be
classified. We assume a probability P on Ω.

We consider the problem of binary classification:
I Let Y be the random variable for the category which takes

values in {000,111}.
I Let X be the random vector describing n features of a given

instance, i.e., X = (X1, . . . ,Xn)
I Denote by ~x ∈ Rn values of X ,
I and by xi ∈ R values of Xi .

Bayes classifier: Given a vector of feature values ~x ,

CBayes(~x) :=

{
111 if P(Y = 111 | X = ~x) ≥ P(Y = 000 | X = ~x)

000 otherwise.

Intuitively, CBayes assigns to ~x the most probable category it might
be in.

8



Bayesian Classification

Let Ω be a sample space (a universum) of all objects that can be
classified. We assume a probability P on Ω.

We consider the problem of binary classification:
I Let Y be the random variable for the category which takes

values in {000,111}.
I Let X be the random vector describing n features of a given

instance, i.e., X = (X1, . . . ,Xn)
I Denote by ~x ∈ Rn values of X ,
I and by xi ∈ R values of Xi .

Bayes classifier: Given a vector of feature values ~x ,

CBayes(~x) :=

{
111 if P(Y = 111 | X = ~x) ≥ P(Y = 000 | X = ~x)

000 otherwise.

Intuitively, CBayes assigns to ~x the most probable category it might
be in.

8



Bayesian Classification – Example

Imagine a conveyor belt with apples and apricots.

A machine is supposed to correctly distinguish apples from apricots
based on their weight and diameter.

That is,
I Y ∈ {111,000}

(here our interpretation is 111 = apple, 000 = appricot)
I X = (Xweight ,Xdiam)

We are given a fruit of a diameter 5cm that weighs 40g .

The Bayes classifier compares P(Y = 111 | X = (40g , 5cm)) with
P(Y = 000 | X = (40g , 5cm)) and selects the more probable
category given the features.

Crucial question: Is such a classifier good?
There are other classifiers, e.g., one which compares the weight divided by 10
with the diameter and decides based on the answer, or maybe a classifier which
sums the weight and the diameter and compares the result with a constant, etc.
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Bayes Classifier

Let C be an arbitrary classifier, that is a function that to every
feature vector ~x ∈ Rn assigns a class from {000,111}.

Define the error of the classifier C by

EC = P(Y 6= C )

(Here we slightly abuse notation and apply C to samples, technically we apply
the composition C ◦ X of C and X which first determines the features using X

and then classifies according to C).

Věta
The Bayes classifier CBayes minimizes EC , that is

ECBayes = min
C is a classifier

EC
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Practical Use of Bayes Classifier

The crucial problem: The probability P is not known!
In particular, where to get P(Y = 111 | X = ~x) ?
Note that P(Y = 000 | X = ~x) = 1− P(Y = 111 | X = ~x)

Given no other assumptions, this requires a table giving
the probability of the category 111 for each possible feature vector ~x .

Where to get these probabilities?

In some cases the probabilities might come from the knowledge of
the solved problem (e.g. applications in physics might be supported
by theory giving the probabilities).

In most cases, however, P is estimated from sampled data by

P̄(Y = 111 | X = ~x) =
number of samples with Y = 111 and X = ~x

number of samples with X = ~x

(We use P̄ to denote an estimate of P from data.)
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Estimating P

Consider a problem with X = (X1,X2,X3) where each Xi returns
either 0 or 1. What the data might look like?

Part of the data table:

Y X1 X2 X3

111 1 0 1
111 0 1 1
000 1 0 1
000 0 0 1
111 0 0 0
000 1 1 1

· · ·

All data with X1 = 1, X2 = 0, X3 = 1:

Y X1 X2 X3

111 1 0 1
111 1 0 1
000 1 0 1
000 1 0 1
111 1 0 1
111 1 0 1

Estimate: P̄(111 | 1, 0, 1) = 2/3

The probability table and hence also the necessary data are
typically too large!

Concretely, if all X1, . . . ,Xn are binary, there are 2n probabilities
P(Y = 111 | X = ~x), one for each possible ~x ∈ {0, 1}n.
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Let’s Look at It the Other Way Round

Věta (Bayes,1764)

P(A | B) =
P(B | A) · P(A)

P(B)

Důkaz.

P(A | B) =
P(A ∩ B)

P(B)
=

P(A∩B)
P(A) · P(A)

P(B)
=

P(B | A) · P(A)

P(B)
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Bayesian Classification

Determine the category for ~x by computing

P(Y = y | X = ~x) =
P(Y = y) · P(X = ~x | Y = y)

P(X = ~x)

for both y ∈ {000,111} and deciding whether or not the following holds:

P(Y = 111 | X = ~x) ≥ P(Y = 000 | X = ~x)

So in order to make the classifier we need to compute:
I The prior P(Y = 111) (then P(Y = 000) = 1− P(Y = 111))
I The conditionals P(X = ~x | Y = y) for y ∈ {000,111} and for

every ~x
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Estimating the Prior and Conditionals

I P(Y = 111) can be easily estimated from data by

P̄(Y = 111) =
number of samples with Y = 111

number of all samples

I If the dimension of features is small, P(X = ~x | Y = y) can be
estimated from data similarly as P(Y = 111 | X = ~x) by

P̄(X = ~x | Y = y) =
number of samples with Y = y and X = ~x

number of samples with X = ~x

Unfortunately, for higher dimensional data too many samples
are needed to estimate all P(X = ~x | Y = y) (there are too
many ~x ’s).
So where is the advantage of using the Bayes thm.??

We introduce independence assumptions about the features!
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Naive Bayes

I We assume that features are (conditionally) independent given
the category. That is for all ~x = (x1, . . . , xn) and y ∈ {000,111}
we assume:

P(X = x | Y = y) = P(X1 = x1, · · · ,Xn = xn | Y )

=
n∏

i=1

P(Xi = xi | Y = y)

I Therefore, we only need to specify P(Xi = xi | Y = y) for
each possible pair of a feature-value xi and y ∈ {000,111}.

Note that if all Xi are binary (values in {0, 1}), this requires
specifying only 2n parameters:

P(Xi = 1 | Y = 111) and P(Xi = 1 | Y = 000) for each Xi

as P(Xi = 0 | Y = y) = 1−P(Xi = 1 | Y = y) for y ∈ {000,111}.
Compared to specifying 2n parameters without any independence assumption.
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Estimating the marginal probabilities
Estimate the probabilities P(Xi = xi | Y = y) by

P̄(Xi = xi | Y = y) =
number of samples with Xi = xi and Y = y

number of samples with Y = y

Example: Consider a problem with X = (X1,X2,X3) where each
Xi returns either 0 or 1. The data is

Y X1 X2 X3

111 1 0 1
111 0 1 1
000 1 0 1
000 0 0 1
111 0 0 0
000 1 1 1

P̄(X1 = 1 | Y = 111) = 1/3 P̄(X1 = 1 | Y = 000) = 2/3
P̄(X2 = 1 | Y = 111) = 1/3 P̄(X2 = 1 | Y = 000) = 1/3
P̄(X3 = 1 | Y = 111) = 2/3 P̄(X3 = 1 | Y = 000) = 1
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Naive Bayes – Example

Consider classification of geometric shapes:
X1 ∈ {small ,medium, large}
X2 ∈ {red , blue, green}
X3 ∈ {square, triangle, circle}

We have already estimated the following probabilities:
Y = 111 Y = 000

P̄(Y ) 0.5 0.5
P̄(small | Y ) 0.4 0.4
P̄(medium | Y ) 0.1 0.2
P̄(large | Y ) 0.5 0.4
P̄(red | Y ) 0.9 0.3
P̄(blue | Y ) 0.05 0.3
P̄(green | Y ) 0.05 0.4
P̄(square | Y ) 0.05 0.4
P̄(triangle | Y ) 0.05 0.3
P̄(circle | Y ) 0.9 0.3

Does (medium, red , circle) belong to the category 1 ?
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Y = 111 Y = 000
P̄(Y ) 0.5 0.5
P̄(medium | Y ) 0.1 0.2
P̄(red | Y ) 0.9 0.3
P̄(circle | Y ) 0.9 0.3

Denote ~x = (medium, red , circle).

P(Y = 111 | X = ~x) =

= P(111) · P(medium | 111) · P(red | 111) · P(circle | 111) /P(X = ~x)
.

= 0.5 · 0.1 · 0.9 · 0.9 /P(X = ~x) = 0.0405/P(X = ~x)

P(Y = 000 | X = ~x) =

= P(000) · P(medium | 000) · P(red | 000) · P(circle | 000) /P(X = ~x)
.

= 0.5 · 0.2 · 0.3 · 0.3 /P(X = ~x) = 0.009/P(X = ~x)

(Note that we used the estimates P̄ of P to finish the computation above.)
Apparently,

P(Y = 111 | X = ~x) = 0.0405/P(X = ~x) > 0.009/P(X = ~x) = P(0 | X = ~x)

So we classify ~x to the category 111.
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Estimating Probabilities in Practice

We already know that P(Xi = xi | Y = y) can be estimated by

P̄(Xi = xi | Y = y) = `y ,xi / `y

where
I `y ,xi = number of samples with Y = y and Xi = xi
I `y = number of samples with Y = y

A problem: If, by chance, a rare value xi of a feature Xi never
occurs in the training data, we get

P̄(Xi = xi | Y = y) = 0 for both y ∈ {000,111}

But then P̄(X = x) = 0 for x containing the value xi for Xi , and
thus P̄(Y = y | X = x) is not well defined.
Moreover, P̄(Y = y) · P̄(X = x | Y = y) = 0 (for y ∈ {000,111}) so
even this cannot be used for classification.
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Probability Estimation Example

Training data:
Size Color Shape Class
small red circle 111
large red circle 111
small red triangle 000
large blue circle 000

Estimated probabilities:
Y = 111 Y = 000

P̄(Y ) 0.5 0.5
P̄(small | Y ) 0.5 0.5
P̄(medium | Y ) 0 0
P̄(large | Y ) 0.5 0.5
P̄(red | Y ) 1 0.5
P̄(blue | Y ) 0 0.5
P̄(green | Y ) 0 0
P̄(square | Y ) 0 0
P̄(triangle | Y ) 0 0.5
P̄(circle | Y ) 1 0.5

Note that P̄(medium, red , circle) = 0.

So what is P̄(111 | medium, red , circle) ?
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Smoothing

I To account for estimation from small samples, probability
estimates are adjusted or smoothed.

I Laplace smoothing adds one to every count of feature values

P̃(Xi = xi | Y = y) =
`y ,xi + 1
`y + vi

where
I `y = number of training samples with Y = y ,
I `y ,xi = number of training samples with Y = y and Xi = xi ,
I vi is the number of all distinct values of the variable Xi .

To understand note that

`y =
∑

xi is a value of Xi

`y,xi

and thus

P̄(Xi = xi | Y = y) = `y,xi /
∑

xi is a value of Xi

`y,xi

P̃(Xi = xi | Y = y) = (`y,xi + 1) /
∑

xi is a value of Xi

(`y,xi + 1)
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Laplace Smoothing Example

I Assume training set contains 10 samples of category 111:
I 4 small
I 0 medium
I 6 large

I Estimate parameters as follows
I P̄(small | 111) = (4 + 1)/(10 + 3) = 0.384
I P̄(medium | 111) = (0 + 1)/(10 + 3) = 0.0769
I P̄(large | 111) = (6 + 1)/(10 + 3) = 0.538
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Continuous Features

Ω may be (potentially) continuous, Xi may assign a continuum of
values in R.

I The probabilities are computed using probability density
p : R→ R+.
A random variable X : Ω→ R+ has a density p : R→ R+ if for every
interval [a, b] we have

P(a ≤ X ≤ b) =

∫ b

a

p(x)dx

Usually, P(Xi | Y = y) is used to denote the density of Xi

conditioned on Y = y .
I The densities P(Xi | Y = y) are usually estimated using

Gaussian densities as follows:
I Estimate the mean µiy and the standard deviation σiy based on

training data.
I Then put

P̄(Xi | Y = y) =
1

σiy
√

2π
exp

(
−(Xi − µiy )2

2σ2
iy

)
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Comments on Naive Bayes

I Tends to work well despite rather strong assumption of
conditional independence of features.

I Experiments show that it is quite competitive with other
classification methods.
Even if the probabilities are not accurately estimated, it often picks the
correct maximum probability category.

I Directly constructs a hypothesis from parameter estimates that
are calculated from the training data.

I Typically handles outliers and noise well.
I Missing values are easy to deal with (simply average over all

missing values in feature vectors).

25



Comments on Naive Bayes

I Tends to work well despite rather strong assumption of
conditional independence of features.

I Experiments show that it is quite competitive with other
classification methods.
Even if the probabilities are not accurately estimated, it often picks the
correct maximum probability category.

I Directly constructs a hypothesis from parameter estimates that
are calculated from the training data.

I Typically handles outliers and noise well.
I Missing values are easy to deal with (simply average over all

missing values in feature vectors).

25



Comments on Naive Bayes

I Tends to work well despite rather strong assumption of
conditional independence of features.

I Experiments show that it is quite competitive with other
classification methods.
Even if the probabilities are not accurately estimated, it often picks the
correct maximum probability category.

I Directly constructs a hypothesis from parameter estimates that
are calculated from the training data.

I Typically handles outliers and noise well.
I Missing values are easy to deal with (simply average over all

missing values in feature vectors).

25



Comments on Naive Bayes

I Tends to work well despite rather strong assumption of
conditional independence of features.

I Experiments show that it is quite competitive with other
classification methods.
Even if the probabilities are not accurately estimated, it often picks the
correct maximum probability category.

I Directly constructs a hypothesis from parameter estimates that
are calculated from the training data.

I Typically handles outliers and noise well.

I Missing values are easy to deal with (simply average over all
missing values in feature vectors).

25



Comments on Naive Bayes

I Tends to work well despite rather strong assumption of
conditional independence of features.

I Experiments show that it is quite competitive with other
classification methods.
Even if the probabilities are not accurately estimated, it often picks the
correct maximum probability category.

I Directly constructs a hypothesis from parameter estimates that
are calculated from the training data.

I Typically handles outliers and noise well.
I Missing values are easy to deal with (simply average over all

missing values in feature vectors).

25



Bayesian Networks (Basic Information)

In the Naive Bayes we have assumed that all features X1, . . . ,Xn

are independent.

This is usually not realistic.
E.g. Variables "rain" and "grass wet" are (usually) strongly dependent.

What if we return some dependencies back?
(But now in a well-defined sense.)

Bayesian networks are a graphical model that uses a directed
acyclic graph to specify dependencies among variables.
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Bayesian Networks – Example

Now, e.g.,
P(C ,S ,W ,B,A) = P(C) · P(S) · P(W | C) · P(B | C , S) · P(A | B)

Now we may e.g. infer what is the probability P(C = T | A = T ) that we sit in
a bad chair assuming that our back aches.
We have to store only 10 numbers as opposed to 25 − 1 possible
probabilities for all vectors of values of C ,S ,W ,B,A.
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Bayesian Networks – Learning & Naive Bayes

Many algorithms have been developed for learning:
I the structure of the graph of the network,
I the conditional probability tables.

The methods are based on maximum-likelihood estimation,
gradient descent, etc.

Automatic procedures are usually combined with expert knowledge.

Can you express the naive Bayes for Y ,X1, . . . ,Xn using a Bayesian
network?
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