Bayesian Classification

Let Ω be a sample space (a universum) of all objects that can be classified. We assume a probability P on Ω .

We consider the problem of binary classification:

- Let Y be the random variable for the category which takes values in {0,1}.
- Let X be the random vector describing n features of a given instance, i.e., $X = (X_1, \ldots, X_n)$
 - Denote by $\vec{x} \in \mathbb{R}^n$ values of X,
 - and by $x_i \in \mathbb{R}$ values of X_i .

Bayes classifier: Given a vector of feature values \vec{x} ,

$$C^{Bayes}(\vec{x}) := \begin{cases} \mathbf{1} & \text{if } P(Y = \mathbf{1} \mid X = \vec{x}) \ge P(Y = \mathbf{0} \mid X = \vec{x}) \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

Intuitively, C^{Bayes} assigns to \vec{x} the most probable category it might be in.

Bayesian Classification

Determine the category for \vec{x} by computing

$$P(Y = y \mid X = \vec{x}) = \frac{P(Y = y) \cdot P(X = \vec{x} \mid Y = y)}{P(X = \vec{x})}$$

for both $y \in \{0, 1\}$ and deciding whether or not the following holds:

$$P(Y = \mathbf{1} \mid X = \vec{x}) \ge P(Y = \mathbf{0} \mid X = \vec{x})$$

So in order to make the classifier we need to compute:

- The prior P(Y = 1) (then P(Y = 0) = 1 P(Y = 1))
- ► The conditionals $P(X = \vec{x} | Y = y)$ for $y \in \{0, 1\}$ and for every \vec{x}

Naive Bayes

▶ We assume that features are (conditionally) independent given the category. That is for all x = (x₁,...,x_n) and y ∈ {0,1} we assume:

$$P(X = x | Y = y) = P(X_1 = x_1, \cdots, X_n = x_n | Y)$$
$$= \prod_{i=1}^n P(X_i = x_i | Y = y)$$

► Therefore, we only need to specify P(X_i = x_i | Y = y) for each possible pair of a feature-value x_i and y ∈ {0,1}.

Note that if all X_i are binary (values in $\{0, 1\}$), this requires specifying only 2n parameters:

$$P(X_i = 1 | Y = \mathbf{1})$$
 and $P(X_i = 1 | Y = \mathbf{0})$ for each X_i

as $P(X_i = 0 | Y = y) = 1 - P(X_i = 1 | Y = y)$ for $y \in \{0, 1\}$.

Compared to specifying 2^n parameters without any independence assumption.

Linear Function Approximation

• Given a set *D* of training examples:

$$D = \{ (\vec{x}_1, f(\vec{x}_1)), (\vec{x}_2, f(\vec{x}_2)), \dots, (\vec{x}_p, f(\vec{x}_p)) \}$$

Here $\vec{x}_k = (x_{k1} \dots, x_{kn}) \in \mathbb{R}^n$ and $f_k(\vec{x}) \in \mathbb{R}$.

In what follows we use f_k to denote $f(\vec{x}_k)$.

Our goal: Find \vec{w} so that $h[\vec{w}](\vec{x}) = \vec{w} \cdot \tilde{x}$ approximates the function f some of whose values are given by the training set. Recall that $\tilde{x}_k = (x_{k0}, x_{k1} \dots, x_{kn})$.

Squared Error Function:

$$E(\vec{w}) = \frac{1}{2} \sum_{k=1}^{p} (\vec{w} \cdot \tilde{x}_{k} - f_{k})^{2} = \frac{1}{2} \sum_{k=1}^{p} \left(\sum_{i=0}^{n} w_{i} x_{ki} - f_{k} \right)^{2}$$

Gradient of the Error Function

Consider the gradient of the error function:

$$\nabla E(\vec{w}) = \left(\frac{\partial E}{\partial w_0}(\vec{w}), \dots, \frac{\partial E}{\partial w_n}(\vec{w})\right) = \sum_{k=1}^p \left(\vec{w} \cdot \tilde{x}_k - f_k\right) \cdot \tilde{x}_k$$

What is the gradient $\nabla E(\vec{w})$? It is a vector in \mathbb{R}^{n+1} which points in the direction of the steepest *ascent* of *E* (it's length corresponds to the steepness). Note that here the vectors \tilde{x}_k are *fixed* parameters of *E*!

Fakt If $\nabla E(\vec{w}) = \vec{0} = (0, ..., 0)$, then \vec{w} is a global minimum of E.

This follows from the fact that E is a convex paraboloid that has a unique extreme which is a minimum.

Function Approximation – Learning

Gradient Descent:

- Weights $\vec{w}^{(0)}$ are initialized randomly close to $\vec{0}$.
- ► In (t+1)-th step, $\vec{w}^{(t+1)}$ is computed as follows: $\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon \cdot \nabla E(\vec{w}^{(t)})$

$$= \vec{w}^{(t)} - \varepsilon \cdot \sum_{k=1}^{p} \left(\vec{w}^{(t)} \cdot \tilde{\mathbf{x}}_{k} - f_{k} \right) \cdot \tilde{\mathbf{x}}_{k}$$
$$= \vec{w}^{(t)} - \varepsilon \cdot \sum_{k=1}^{p} \left(h[\vec{w}^{(t)}](\vec{x}_{k}) - f_{k} \right) \cdot \tilde{\mathbf{x}}_{k}$$

Here $k = (t \mod p) + 1$ and $0 < \varepsilon \le 1$ is the learning rate.

Note that the algorithm is almost similar to the batch perceptron algorithm!

Tvrzení

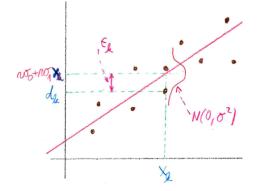
For sufficiently small $\varepsilon > 0$ the sequence $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$ converges (component-wisely) to the global minimum of E.

Maximum Likelihood (GOOD STUDENTS)

Fix a training set $D = \{(x_1, f_1), (x_2, f_2), \dots, (x_p, f_p)\}$ Assume that each f_k has been generated randomly by

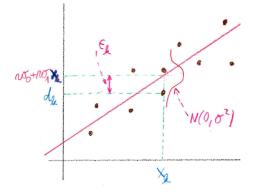
 $f_k = (\mathbf{w}_0 + \mathbf{w}_1 \cdot \mathbf{x}_k) + \epsilon_k$

where w_0, w_1 are **unknown weights**, and ϵ_k are independent, normally distributed noise values with mean 0 and some variance σ^2



How "probable" is it to generate the correct f_1, \ldots, f_p ?

Maximum Likelihood (GOOD STUDENTS)

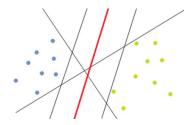


How "probable" is it to generate the correct f_1, \ldots, f_p ?

The following conditions are equivalent:

- \blacktriangleright w₀, w₁ minimize the squared error E
- ▶ w_0, w_1 maximize the likelihood (i.e., the "probability") of generating the correct values f_1, \ldots, f_p using $f_k = (w_0 + w_1 \cdot x_k) + \epsilon_k$

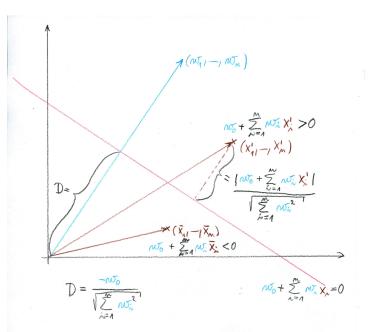
SVM Idea – Which Linear Classifier is the Best?



Benefits of maximum margin:

- Intuitively, maximum margin is good w.r.t. generalization.
- Only the support vectors (those on the magin) matter, others can, in principle, be ignored.

Linear Model – Geometry



Support Vector Machines (SVM)

Notation:

•
$$\vec{w} = (w_0, w_1, \dots, w_n)$$
 a vector of weights,

•
$$\underline{\vec{w}} = (w_1, \ldots, w_n)$$
 a vector of all weights except w_0 ,

• $\vec{x} = (x_1, \dots, x_n)$ a (generic) feature vector.

Consider a linear classifier:

$$h[\vec{w}](\vec{x}) := \begin{cases} 1 & w_0 + \sum_{i=1}^n w_i \cdot x_i = w_0 + \underline{\vec{w}} \cdot \vec{x} \ge 0 \\ -1 & w_0 + \sum_{i=1}^n w_i \cdot x_i = w_0 + \underline{\vec{w}} \cdot \vec{x} < 0 \end{cases}$$

The signed distance of \vec{x} from the decision boundary determined by \vec{w} is

$$d[ec{w}](ec{x}) = rac{w_0 + ec{w} \cdot ec{x_k}}{\|ec{w}\|}$$

Here $\|\underline{\vec{w}}\| = \sqrt{\sum_{i=1}^{n} w_i^2}$ is the Euclidean norm of $\underline{\vec{w}}$.

 $|d[\vec{w}](\vec{x})|$ is the distance of \vec{x} from the decision boundary. $d[\vec{w}](\vec{x})$ is positive for \vec{x} on the side to which $\underline{\vec{w}}$ points and negative on the opposite side.

Support Vectors & Margin

Given a training set

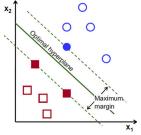
 $D = \{ (\vec{x_1}, y(\vec{x_1})), (\vec{x_2}, y(\vec{x_2})), \dots, (\vec{x_p}, y(\vec{x_p})) \}$

Here $\vec{x}_k = (x_{k1} \dots, x_{kn}) \in X \subseteq \mathbb{R}^n$ and $y(\vec{x}_k) \in \{-1, 1\}$.

We write y_k instead of $y(\vec{x_k})$.

Assume that D is linearly separable, let \vec{w} be consistent with D.

- Support vectors are those x
 k that minimize |d[w](x
 k)|.
- Margin ρ[w] of w is twice the distance between support vectors and the decision boundary.



Our goal is to find \vec{w} that maximizes the margin $\rho[\vec{w}]$.

Maximizing the Margin (GOOD STUDENTS)

For \vec{w} consistent with D (such that no \vec{x}_k lies on the decision boundary) we have

$$\rho[\vec{w}] = 2 \cdot \frac{|w_0 + \underline{\vec{w}} \cdot \vec{x}_k|}{\|\underline{\vec{w}}\|} = 2 \cdot \frac{y_k \cdot (w_0 + \underline{\vec{w}} \cdot \vec{x}_k)}{\|\underline{\vec{w}}\|} > 0$$

where \vec{x}_k is a support vector.

We may safely consider only \vec{w} such that $y_k \cdot (w_0 + \underline{\vec{w}} \cdot \vec{x}_k) = 1$ for the support vectors.

Just adjust the length of \vec{w} so that $y_k \cdot (w_0 + \underline{\vec{w}} \cdot \vec{x}_k) = 1$, the denominator $\|\underline{\vec{w}}\|$ will compensate.

Then maximizing $\rho[\vec{w}]$ is equivalent to maximizing $2/\|\vec{w}\|$.

(In what follows we use a bit looser constraint:

 $y_k \cdot (w_0 + \underline{\vec{w}} \cdot \vec{x}_k) \ge 1$ for all \vec{x}_k

However, the result is the same since even with this looser condition, the support vectors always satisfy $y_k \cdot (w_0 + \underline{\vec{w}} \cdot \vec{x}_k) = 1$ whenever $2/||\underline{w}||$ is maximal.)

SVM – Optimization (BETTER STUDENTS)

Margin maximization can be formulated as a *quadratic optimization problem:*

Find
$$\vec{w} = (w_0, \dots, w_n)$$
 such that
 $\rho = \frac{2}{\|\vec{w}\|}$ is maximized
and for all $(\vec{x}_k, y_k) \in D$ we have $y_k \cdot (w_0 + \underline{\vec{w}} \cdot \vec{x}_k) \ge 1$.

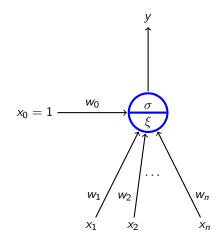
which can be reformulated as:

Find \vec{w} such that

 $\Phi(\vec{w}) = \|\vec{w}\|^2 = \vec{w} \cdot \vec{w}$ is minimized

and for all $(\vec{x}_k, y_k) \in D$ we have $y_k \cdot (w_0 + \underline{\vec{w}} \cdot \vec{x}_k) \ge 1$.

Formal neuron

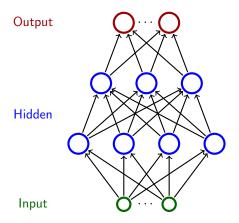


- \blacktriangleright x_1, \ldots, x_n real *inputs*
- x₀ special input, always 1
- \blacktriangleright w₀, w₁, ..., w_n real weights
- ξ = w₀ + ∑ⁿ_{i=1} w_ix_i inner potential; In general, other potentials are considered (e.g. Gaussian), more on this in PV021.
- y output defined by y = σ(ξ) where σ is an activation function.
 We consider several activation functions.

e.g., linear threshold function

$$\sigma(\xi) = sgn(\xi) = egin{cases} 1 & \xi \geq 0 \ 0 & \xi < 0. \end{cases}$$

Multilayer Perceptron (MLP)



- Neurons are organized in *layers* (input layer, output layer, possibly several hidden layers)
- Layers are numbered from 0; the input is 0-th
- Neurons in the ℓ-th layer are connected with all neurons in the ℓ + 1-th layer

Intuition: The network computes a function as follows: Assign input values to the input neurons and 0 to the rest. Proceed upwards through the layers, one layer per step. In the ℓ -th step consider output values of neurons in ℓ – 1-th layer as inputs to neurons of the ℓ -th layer. Compute output values of neurons in the ℓ -th layer.

Expressive Power of MLP

Cybenko's theorem:

Two layer networks with a single output neuron and a single layer of hidden neurons (with the logistic sigmoid as the activation function) are able to

approximate with arbitrarily small error any "reasonable" function from [0, 1] to (0, 1).

Here "reasonable" means that it is pretty tough to find a function that is not reasonable.

So multi-layer perceptrons are suffuciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known knew any efficient method for training multilayer networks!

... then an efficient way of using the gradient descent was published in 1986!

MLP – Notation

- X set of input neurons
- Y set of output neurons
- Z set of all neurons (tedy $X, Y \subseteq Z$)
- individual neurons are denoted by indices, e.g., i, j.
- ξ_j is the inner potential of the neuron *j* when the computation is finished.
- y_j is the output value of the neuron j when the computation is finished.

```
(we formally assume y_0 = 1)
```

- \blacktriangleright w_{ji} is the weight of the arc from the neuron *i* to the neuron *j*.
- *j* ← is the set of all neurons from which there are edges to *j* (i.e. *j* ← is the layer directly below *j*)
- j[→] is the set of all neurons to which there are edges from j.
 (i.e. j[→] is the layer directly above j)

MLP – Notation

Inner potential of a neuron j:

$$\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i$$

▶ A value of a non-input neuron $j \in Z \setminus X$ when the computation is finished is

 $y_j = \sigma_j(\xi_j)$

Here σ_i is an activation function of the neuron *j*.

(y_j is determined by weights \vec{w} and a given input \vec{x} , so it's sometimes written as $y_j[\vec{w}](\vec{x})$)

Fixing weights of all neurons, the network computes a function $F[\vec{w}] : \mathbb{R}^{|X|} \to \mathbb{R}^{|Y|}$ as follows: Assign values of a given vector $\vec{x} \in \mathbb{R}^{|X|}$ to the input neurons, evaluate the network, then $F[\vec{w}](\vec{x})$ is the vector of values of the output neurons.

Here we implicitly assume a fixed orderings on input and output vectors.

MLP – Learning

► Given a set *D* of training examples:

$$D = \left\{ \left(ec{x_k}, ec{d_k}
ight) \mid k = 1, \dots, p
ight\}$$

Here $\vec{x}_k \in \mathbb{R}^{|X|}$ and $\vec{d}_k \in \mathbb{R}^{|Y|}$. We write d_{kj} to denote the value in \vec{d}_k corresponding to the output neuron j.

► Error Function: E(w) where w is a vector of all weights in the network. The choice of E depends on the solved task (classification vs regression etc.).
 Example (Squared error): E(w) = ∑_{k=1}^p E_k(w) where

$$E_k(\vec{w}) = \frac{1}{2} \sum_{j \in Y} (y_j[\vec{w}](\vec{x}_k) - d_{kj})^2$$

GOOD STUDENTS: Distinguish regression (identity output activation & squared error) and classification (logistic sigmoid output activation & cross-entropy error).

MLP – Batch Gradient Descent

The algorithm computes a sequence of weights $\vec{w}^{(0)}, \vec{w}^{(1)}, \dots$

- weights $\vec{w}^{(0)}$ are initialized randomly close to 0
- in the step t + 1 (here t = 0, 1, 2...) is $\vec{w}^{(t+1)}$ computed as follows:

$$w_{ji}^{(t+1)} = w_{ji}^{(t)} + \Delta w_{ji}^{(t)}$$

where

$$\Delta w_{ji}^{(t)} = -arepsilon(t) \cdot rac{\partial E}{\partial w_{ji}} (ec w^{(t)})$$

is the weight change w_{ji} and $0 < \varepsilon(t) \le 1$ is the learning rate in the step t + 1.

Note that $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t)})$ is a component of ∇E , i.e. the weight change in the step t+1 can be written as follows: $\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon(t) \cdot \nabla E(\vec{w}^{(t)})$.

MLP – Gradient Computation

For every weight w_{ji} we have (obviously)

$$\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$$

So now it suffices to compute $\frac{\partial E_k}{\partial w_{ji}}$, that is the error for a fixed training example (\vec{x}_k, d_k) .

Applying the chain rule we obtain

$$\frac{\partial E_k}{\partial w_{ji}} = \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i$$

where (more applications of the chain rule)

$$\frac{\partial E_k}{\partial y_j} \text{ is computed directly for the output neurons } j \in Y$$
$$\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\rightarrow}} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot w_{rj} \qquad \text{for } j \in Z \smallsetminus (Y \cup X)$$

(Here $y_r = y[\vec{w}](\vec{x}_k)$ where \vec{w} are the current weights and \vec{x}_k is the input of the *k*-th training example.)

Multilayer Perceptron – Backpropagation

Input: A training set $D = \left\{ \left(\vec{x_k}, \vec{d_k} \right) \mid k = 1, \dots, p \right\}$ and the current vector of weights \vec{w} .

Note that the backprop. is repeated in every iteration of the gradient descent!

- Evaluate all values y_i of neurons using the standard bottom-up procedure with the input x_k.
- ► For every training example (\$\vec{x}_k\$, \$\vec{d}_k\$) compute \$\frac{\partial E_k}{\partial y_j}\$ using backpropagation through layers top-down :
 - For all j ∈ Y compute ∂E_k/∂y_j by taking the derivative of the error. e.g., in the case of the squared error we have ∂E_k/∂y_i = y_j − d_{kj}.
 - ▶ In the layer ℓ , assuming that $\frac{\partial E_k}{\partial y_r}$ has been computed for all neurons *r* in the layer $\ell + 1$, compute

$$\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\rightarrow}} \frac{\partial E_k}{\partial y_j} \cdot \sigma'_r(\xi_r) \cdot w_{rj}$$

for all j from the ℓ -th layer. Here σ'_r is the derivative of σ_r . Put $\frac{\partial E_k}{\partial w_{ji}} = \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i$ **Output:** $\frac{\partial E}{\partial w_i} = \sum_{k=1}^p \frac{\partial E_k}{\partial w_i}$.