Bayesian Classification

Let © be a sample space (a universum) of all objects that can be
classified. We assume a probability P on Q.
We consider the problem of binary classification:

» Let Y be the random variable for the category which takes
values in {0,1}.
> Let X be the random vector describing n features of a given
instance, i.e., X = (X1,...,Xn)
» Denote by X € R" values of X,
» and by x; € R values of X;.

Bayes classifier: Given a vector of feature values X,

CBayeS(—») 1 ifP(Y:]"X:_;)ZP(Y:O’X:)_(‘)
X) .=
0 otherwise.

Intuitively, CB2 assigns to X the most probable category it might
be in.

Bayesian Classification

Determine the category for X by computing

P(Y=y) - PX=X|Y =y)
P(X = X)

P(Y=y|X=X) =

for both y € {0,1} and deciding whether or not the following holds:

P(Y=1|X=%)>P(Y=0|X=x)

So in order to make the classifier we need to compute:
» The prior P(Y =1) (then P(Y =0)=1—-P(Y =1))
» The conditionals P(X = x| Y =y) for y € {0,1} and for
every X

Naive Bayes

» \We assume that features are (conditionally) independent given
the category. That is for all X = (x1,...,x,) and y € {0,1}
we assume:

PX=x|Y=y)=PXi=x1,- , Xa=xn|Y)

=[[PXi=x1|Y=y)
i=1

» Therefore, we only need to specify P(X; = x; | Y = y) for
each possible pair of a feature-value x; and y € {0,1}.

Note that if all X; are binary (values in {0,1}), this requires
specifying only 2n parameters:

P(Xi=1|Y =1)and P(X;=1|Y =0) for each X;
as P(Xi=0|Y=y)=1-P(Xi=1|Y =y)fory € {0,1}.

Compared to specifying 2" parameters without any independence assumption.

Linear Function Approximation

> Given a set D of training examples:
D ={(x,f(x)),(%, (%)), ., (%, f(%))}

Here X = (Xk1 ..., Xkn) € R™ and f(X) €
In what follows we use fx to denote f(Xk).
Our goal: Find w so that h[w](X) = w - X approximates the

function f some of whose values are given by the training set.

Recall that X, = (Xk()7 Xkl « v vy Xk,,).

» Squared Error Function:

p n
(W Xk — fk Z (WiXki — fk>
k: —

N~
Mv

E(w) =

x
Il

1

Gradient of the Error Function
Consider the gradient of the error function:

4 OF | OE "
VE(w) = (8W0(W)’ ; > > (W% — i) -
k=1

n

What is the gradient VE(w) ? It is a vector in R™™! which points in the
direction of the steepest ascent of E (it's length corresponds to the steepness).

Note that here the vectors Xx are fixed parameters of E!

IfFVE(W) =0=(0,...,0), then w is a global minimum of E.

This follows from the fact that E is a convex

paraboloid that has a unique extreme which is a
minimum.

e

Function Approximation — Learning

Gradient Descent:
> Weights w(®) are initialized randomly close to 0.
» In (t + 1)-th step, w(tt1) is computed as follows:
wttD) =) o vEW()

_ w0 _g.i (.x,(t) Ry — fk) Rk
k=1

P
= W9 -3 (M5 —) -
k=1

Here k = (t mod p)+ 1 and 0 < & < 1 is the learning rate.
Note that the algorithm is almost similar to the batch perceptron algorithm!
Tvrzeni

For sufficiently small € > 0 the sequence w(®, w(1) w(2)
converges (component-wisely) to the global minimum of E.

Maximum Likelihood (GOOD STUDENTYS)
Fix a training set D = {(x1, 1), (X2, 1), ..., (Xp, fp)}
Assume that each f; has been generated randomly by
fie = (wo + wa - Xxi) + €x

where wy, w; are unknown weights, and ¢, are independent, normally
distributed noise values with mean 0 and some variance o2

/A e g

How "probable" is it to generate the correct fi,...,f, 7

Maximum Likelihood (GOOD STUDENTYS)

e
1)

(Uf;"'»ﬂ 1& i \Z‘I L "A"/.'/

A o
] '// |
e :
/,// ° :
X
How "probable" is it to generate the correct f,...,f, ?

The following conditions are equivalent:
» wp, w; minimize the squared error E

» wp, w; maximize the likelihood (i.e., the "probability") of generating
the correct values f1,. .., f, using fx = (wo + wy - xk) + €«

SVM Idea — Which Linear Classifier is the Best?

Benefits of maximum margin:
» Intuitively, maximum margin is good w.r.t. generalization.

» Only the support vectors (those on the magin) matter, others
can, in principle, be ignored.

Linear Model — Geometry

ﬂ(m;/ —) My }
/
/

B
ny+ Z M X' >0
(x,,f, x.)

(’I M \
AN !“U"; +i s X,; {

—_—
d f fu,{"

~=q

Support Vector Machines (SVM)

Notation:
> w = (wo,wi,...,w,) a vector of weights,
> W= (wi,...,w,) a vector of all weights except wp,
» X =(x1,...,Xn) a (generic) feature vector.

Consider a linear classifier:

n
1 Wo + Y i Wi X

HW](%) =w+w-x>0
w](X) ==
-1 wo+> i wi-xi=w+Ww-X

The signed distance of X from the decision boundary determined by w is

i WO+ W Xk
L) (x) = Mot

K]

Here |w|| = {/>""_; w? is the Euclidean norm of w.

|d[w](X)| is the distance of X from the decision boundary.
d[w](X) is positive for X on the side to which w points and negative on the

opposite side.

10

Support Vectors & Margin

» Given a training set
D ={(*,y(*x)), (%2, y(%)) -, (%, y(%))}
Here X = (Xk1 .., Xkn) € X CR" and y(X) € {—1,1}.
We write yj instead of y(x).

» Assume that D is linearly separable, let w be consistent with D.
x| . @)

» Support vectors are those X that
minimize |d[w](Xk)|.

» Margin p[w] of W is twice the
distance between support vectors
and the decision boundary.

Our goal is to find w that maximizes the margin p[w].

11

Maximizing the Margin (GOOD STUDENTYS)

For w consistent with D (such that no Xi lies on the decision
boundary) we have

] — 2. 1m0t

_2.Yk‘(WO+Q‘Yk)

= >0
| w|| W

where X is a support vector.

We may safely consider only w such that yy - (wo + w - xx) = 1 for
the support vectors.
Just adjust the length of W so that yx - (wo + W - Xk) = 1, the denominator ||w||

will compensate.
Then maximizing p[w] is equivalent to maximizing 2/||w||.
(In what follows we use a bit looser constraint:

Yk ~(W0+Q~fk) >1 for all xi

However, the result is the same since even with this looser condition,
the support vectors always satisfy yi - (wo + W - Xk) = 1 whenever 2/||w|| is

maximal.)

12

SVM — Optimization (BETTER STUDENTYS)

Margin maximization can be formulated as a quadratic optimization

problem:
Find w = (wp, ..., w,) such that
2 ..
p = —=— is maximized
|||

and for all (X, yx) € D we have yi - (wp + w - Xx) > 1.

which can be reformulated as:

Find w such that

&(w) = || @]

= w - W is minimized

IS

and for all (X, yx) € D we have yi - (wp + w - Xx) > 1.

Formal neuron

X1,...,Xp real inputs
xo special input, always 1

Wo, Wi, . .., W, real weights

vvyyy

& = wo+ Y. i, wix; inner potential;

In general, other potentials are considered

y
wo m (e.g. Gaussian), more on this in PV021.
\¢/

> y output defined by y = o(¢)

where o is an activation function.
We consider several activation functions.

X():].

e.g., linear threshold function
w1 Wo

1 £>0;

S o o(€) = sgn(c) = {0 2o

14

Multilayer Perceptron (MLP)

Output O e O

» Neurons are organized in layers

(input layer, output layer, possibly

O O O several hidden layers)
Hidden /m » Layers are numbered from 0;
O O O O the input is 0-th

» Neurons in the ¢-th layer are connected
with all neurons in the ¢ + 1-th layer

Input O O

Intuition: The network computes a function as follows: Assign input
values to the input neurons and 0 to the rest. Proceed upwards through
the layers, one layer per step. In the ¢-th step consider output values of
neurons in £ — 1-th layer as inputs to neurons of the ¢-th layer. Compute

output values of neurons in the ¢-th layer.
15

Expressive Power of MLP

Cybenko's theorem:

» Two layer networks with a single output neuron and a single layer of
hidden neurons (with the logistic sigmoid as the activation function)

are able to
» approximate with arbitrarily small error any "reasonable"
boundary
a given input is classified as 1 iff the output value of the network is
>1/2.

» approximate with arbitrarily small error any "reasonable"
function from [0, 1] to (0, 1).
Here "reasonable" means that it is pretty tough to find a function that is
not reasonable.

So multi-layer perceptrons are suffuciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any efficient method for training multilayer networks!

... then an efficient way of using the gradient descent was published in
1986!

16

MLP — Notation

» X set of input neurons

» Y set of output neurons

» Z set of all neurons (tedy X, Y C 2)
>

>

individual neurons are denoted by indices, e.g., i,;.

& is the inner potential of the neuron j when the computation
is finished.

» y; is the output value of the neuron j when the computation is
finished.

(we formally assume yp = 1)
» w;; is the weight of the arc from the neuron i to the neuron j.
» . is the set of all neurons from which there are edges to j
(i.e. j— is the layer directly below j)

> " is the set of all neurons to which there are edges from .
(i.e. j7 is the layer directly above j)

17

MLP — Notation

» Inner potential of a neuron J:

§= Z Wi Yi

i€J—

» A value of a non-input neuron j € Z\ X when the computation is
finished is

yi =0;(&)

Here g; is an activation function of the neuron j.

(yj is determined by weights w and a given input X, so it's sometimes
written as y;[W](X))

» Fixing weights of all neurons, the network computes a function
F[w] : RIXI — RIYI as follows: Assign values of a given vector
X € RXI to the input neurons, evaluate the network, then F[w](X)
is the vector of values of the output neurons.

Here we implicitly assume a fixed orderings on input and output vectors.

18

MLP — Learning

» Given a set D of training examples:

D:{(f{k,cfk) | k:1,...,p}

Here X, € RX| and Jk e RIYI. We write dij to denote the
value in dj corresponding to the output neuron j.

» Error Function: E(w) where w is a vector of all weights in
the network. The choice of E depends on the solved task
(classification vs regression etc.).

Example (Squared error): E(w) = Y 7_, Ex(w) where
- 1 . 2
E(w) =3 > (W(%) — dig)
jey
GOOD STUDENTS: Distinguish regression (identity output activation &
squared error) and classification (logistic sigmoid output activation &

cross-entropy error).

MLP — Batch Gradient Descent

The algorithm computes a sequence of weights w(®, w(1) .

> weights w(%) are initialized randomly close to 0
> in the step t + 1 (here t = 0,1,2...) is w(tt1) computed as

follows:
(t+1) _ (t) (t)
wi = w4 Awy
where
© _ _(p. 9E (50
Awf?) = —<(t) - ()

is the weight change wjj and 0 < (t) < 1 is the learning rate
in the step t + 1.

Note that %(W(t)) is a component of VE, i.e. the weight change in the step
/ji
t + 1 can be written as follows: w(**?) = w(®) —¢(¢) - VE(w®).

20

MLP — Gradient Computation

For every weight wj; we have (obviously)

OE &~ OEk
aWj,' o

BEk

So now it suffices to compute 7« that is the error for a fixed training

example (X, dk).

Applying the chain rule we obtain
OEc _ 0E,

8‘/./1’ ayj (fj) Yi
where (more applications of the chain rule)
E,
% is computed directly for the output neurons j € Y
Yj
OEy OEx o .
E Ezj: oy, &) Wy forje Z~(YUX)

(Here y, = y[W](Xx) where w are the current weights and X, is the input of the

k-th training example.)
21

Multilayer Perceptron — Backpropagation
Input: A training set D = { ()?k7c7;<) | k= 1,...7p} and
the current vector of weights w.
Note that the backprop. is repeated in every iteration of the gradient descent!
» Evaluate all values y; of neurons using the standard bottom-up
procedure with the input Xj.
> For every training example (X, cﬁ) compute %—’;_jk using
backpropagation through layers top-down :
» For all j € Y compute %—ik by taking the derivative of the error.

e.g., in the case of the squared error we have %—55 =y — dy.
J

» In the layer ¢, assuming that ()Ek has been computed for all
neurons r in the layer ¢ + 1, compute
OEy OE.
a. = (gr) Wrj

& S 0y
for all j from the ¢-th layer. Here o/ is the derivative of o,.

> Put gﬁk = OEk -olE) v

. 0E _ NP 8Ek
Output: owy = 2ok=1 dw -

22

