
Bayesian Classification

Let Ω be a sample space (a universum) of all objects that can be
classified. We assume a probability P on Ω.

We consider the problem of binary classification:
I Let Y be the random variable for the category which takes

values in {000,111}.
I Let X be the random vector describing n features of a given

instance, i.e., X = (X1, . . . ,Xn)
I Denote by ~x ∈ Rn values of X ,
I and by xi ∈ R values of Xi .

Bayes classifier: Given a vector of feature values ~x ,

CBayes(~x) :=

{
111 if P(Y = 111 | X = ~x) ≥ P(Y = 000 | X = ~x)

000 otherwise.

Intuitively, CBayes assigns to ~x the most probable category it might
be in.

1

Bayesian Classification

Determine the category for ~x by computing

P(Y = y | X = ~x) =
P(Y = y) · P(X = ~x | Y = y)

P(X = ~x)

for both y ∈ {000,111} and deciding whether or not the following holds:

P(Y = 111 | X = ~x) ≥ P(Y = 000 | X = ~x)

So in order to make the classifier we need to compute:
I The prior P(Y = 111) (then P(Y = 000) = 1− P(Y = 111))
I The conditionals P(X = ~x | Y = y) for y ∈ {000,111} and for

every ~x

2

Naive Bayes

I We assume that features are (conditionally) independent given
the category. That is for all ~x = (x1, . . . , xn) and y ∈ {000,111}
we assume:

P(X = x | Y = y) = P(X1 = x1, · · · ,Xn = xn | Y)

=
n∏

i=1

P(Xi = xi | Y = y)

I Therefore, we only need to specify P(Xi = xi | Y = y) for
each possible pair of a feature-value xi and y ∈ {000,111}.

Note that if all Xi are binary (values in {0, 1}), this requires
specifying only 2n parameters:

P(Xi = 1 | Y = 111) and P(Xi = 1 | Y = 000) for each Xi

as P(Xi = 0 | Y = y) = 1−P(Xi = 1 | Y = y) for y ∈ {000,111}.
Compared to specifying 2n parameters without any independence assumption.

3

Linear Function Approximation

I Given a set D of training examples:

D = {(~x1, f (~x1)) , (~x2, f (~x2)) , . . . , (~xp, f (~xp))}

Here ~xk = (xk1 . . . , xkn) ∈ Rn and fk(~x) ∈ R.

In what follows we use fk to denote f (~xk).

Our goal: Find ~w so that h[~w](~x) = ~w ·~x approximates the
function f some of whose values are given by the training set.
Recall that ~xk = (xk0, xk1 . . . , xkn).

I Squared Error Function:

E (~w) =
1
2

p∑
k=1

(~w ·~xk − fk)2 =
1
2

p∑
k=1

(
n∑

i=0

wixki − fk

)2

4

Gradient of the Error Function

Consider the gradient of the error function:

∇E (~w) =

(
∂E

∂w0
(~w), . . . ,

∂E

∂wn
(~w)

)
=

p∑
k=1

(~w ·~xk − fk) ·~xk

What is the gradient ∇E(~w) ? It is a vector in Rn+1 which points in the
direction of the steepest ascent of E (it’s length corresponds to the steepness).
Note that here the vectors ~xk are fixed parameters of E !

Fakt
If ∇E (~w) = ~0 = (0, . . . , 0), then ~w is a global minimum of E .

This follows from the fact that E is a convex
paraboloid that has a unique extreme which is a
minimum.

5

Function Approximation – Learning

Gradient Descent:
I Weights ~w (0) are initialized randomly close to ~0.
I In (t + 1)-th step, ~w (t+1) is computed as follows:

~w (t+1) = ~w (t) − ε · ∇E (~w (t))

= ~w (t) − ε ·
p∑

k=1

(
~w (t) ·~xk − fk

)
·~xk

= ~w (t) − ε ·
p∑

k=1

(
h[~w (t)](~xk)− fk

)
·~xk

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is the learning rate.
Note that the algorithm is almost similar to the batch perceptron algorithm!

Tvrzení
For sufficiently small ε > 0 the sequence ~w (0), ~w (1), ~w (2), . . .
converges (component-wisely) to the global minimum of E .

6

Maximum Likelihood (GOOD STUDENTS)
Fix a training set D = {(x1, f1) , (x2, f2) , . . . , (xp, fp)}
Assume that each fk has been generated randomly by

fk = (w0 + w1 · xk) + εk

where w0,w1 are unknown weights, and εk are independent, normally
distributed noise values with mean 0 and some variance σ2

How "probable" is it to generate the correct f1, . . . , fp ?
7

Maximum Likelihood (GOOD STUDENTS)

How "probable" is it to generate the correct f1, . . . , fp ?

The following conditions are equivalent:

I w0,w1 minimize the squared error E

I w0,w1 maximize the likelihood (i.e., the "probability") of generating
the correct values f1, . . . , fp using fk = (w0 + w1 · xk) + εk

7

SVM Idea – Which Linear Classifier is the Best?

Benefits of maximum margin:
I Intuitively, maximum margin is good w.r.t. generalization.
I Only the support vectors (those on the magin) matter, others

can, in principle, be ignored.

8

Linear Model – Geometry

9

Support Vector Machines (SVM)
Notation:

I ~w = (w0,w1, . . . ,wn) a vector of weights,

I ~w = (w1, . . . ,wn) a vector of all weights except w0,

I ~x = (x1, . . . , xn) a (generic) feature vector.

Consider a linear classifier:

h[~w](~x) :=

{
1 w0 +

∑n
i=1 wi · xi = w0 + ~w · ~x ≥ 0

−1 w0 +
∑n

i=1 wi · xi = w0 + ~w · ~x < 0

The signed distance of ~x from the decision boundary determined by ~w is

d [~w](~x) =
w0 + ~w · ~xk
‖~w‖

Here ‖~w‖ =
√∑n

i=1 w
2
i is the Euclidean norm of ~w .

|d [~w](~x)| is the distance of ~x from the decision boundary.
d [~w](~x) is positive for ~x on the side to which ~w points and negative on the
opposite side.

10

Support Vectors & Margin

I Given a training set

D = {(~x1, y(~x1)) , (~x2, y(~x2)) , . . . , (~xp, y(~xp))}

Here ~xk = (xk1 . . . , xkn) ∈ X ⊆ Rn and y(~xk) ∈ {−1, 1}.

We write yk instead of y(~xk).

I Assume that D is linearly separable, let ~w be consistent with D.

I Support vectors are those ~xk that
minimize |d [~w](~xk)|.

I Margin ρ[~w] of ~w is twice the
distance between support vectors
and the decision boundary.

Our goal is to find ~w that maximizes the margin ρ[~w].

11

Maximizing the Margin (GOOD STUDENTS)

For ~w consistent with D (such that no ~xk lies on the decision
boundary) we have

ρ[~w] = 2 · |w0 + ~w · ~xk |
‖~w‖

= 2 · yk · (w0 + ~w · ~xk)

‖~w‖
> 0

where ~xk is a support vector.

We may safely consider only ~w such that yk · (w0 + ~w · ~xk) = 1 for
the support vectors.
Just adjust the length of ~w so that yk · (w0 + ~w · ~xk) = 1, the denominator ‖~w‖
will compensate.

Then maximizing ρ[~w] is equivalent to maximizing 2/‖~w‖.
(In what follows we use a bit looser constraint:

yk · (w0 + ~w · ~xk) ≥ 1 for all ~xk

However, the result is the same since even with this looser condition,
the support vectors always satisfy yk · (w0 + ~w · ~xk) = 1 whenever 2/‖w‖ is
maximal.)

12

SVM – Optimization (BETTER STUDENTS)

Margin maximization can be formulated as a quadratic optimization
problem:

Find ~w = (w0, . . . ,wn) such that

ρ =
2
‖~w‖

is maximized

and for all (~xk , yk) ∈ D we have yk · (w0 + ~w · ~xk) ≥ 1.

which can be reformulated as:

Find ~w such that

Φ(~w) = ‖~w‖2 = ~w · ~w is minimized

and for all (~xk , yk) ∈ D we have yk · (w0 + ~w · ~xk) ≥ 1.

13

Formal neuron

σ

ξ

x1 x2 xn

x0 = 1

y

w1 w2

· · ·
wn

w0

I x1, . . . , xn real inputs
I x0 special input, always 1
I w0,w1, . . . ,wn real weights
I ξ = w0 +

∑n
i=1 wixi inner potential;

In general, other potentials are considered
(e.g. Gaussian), more on this in PV021.

I y output defined by y = σ(ξ)
where σ is an activation function.
We consider several activation functions.

e.g., linear threshold function

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

14

Multilayer Perceptron (MLP)

Input

Hidden

Output

· · ·

· · ·

I Neurons are organized in layers
(input layer, output layer, possibly
several hidden layers)

I Layers are numbered from 0;
the input is 0-th

I Neurons in the `-th layer are connected
with all neurons in the `+ 1-th layer

Intuition: The network computes a function as follows: Assign input
values to the input neurons and 0 to the rest. Proceed upwards through
the layers, one layer per step. In the `-th step consider output values of
neurons in `− 1-th layer as inputs to neurons of the `-th layer. Compute
output values of neurons in the `-th layer.

15

Expressive Power of MLP
Cybenko’s theorem:
I Two layer networks with a single output neuron and a single layer of

hidden neurons (with the logistic sigmoid as the activation function)
are able to
I approximate with arbitrarily small error any "reasonable"

boundary
a given input is classified as 1 iff the output value of the network is
≥ 1/2.

I approximate with arbitrarily small error any "reasonable"
function from [0, 1] to (0, 1).

Here "reasonable" means that it is pretty tough to find a function that is
not reasonable.

So multi-layer perceptrons are suffuciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any efficient method for training multilayer networks!

... then an efficient way of using the gradient descent was published in
1986!

16

MLP – Notation

I X set of input neurons
I Y set of output neurons
I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g., i , j .
I ξj is the inner potential of the neuron j when the computation

is finished.
I yj is the output value of the neuron j when the computation is

finished.
(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

17

MLP – Notation
I Inner potential of a neuron j :

ξj =
∑
i∈j←

wjiyi

I A value of a non-input neuron j ∈ Z \ X when the computation is
finished is

yj = σj(ξj)

Here σj is an activation function of the neuron j .
(yj is determined by weights ~w and a given input ~x , so it’s sometimes
written as yj [~w](~x))

I Fixing weights of all neurons, the network computes a function
F [~w] : R|X | → R|Y | as follows: Assign values of a given vector
~x ∈ R|X | to the input neurons, evaluate the network, then F [~w](~x)
is the vector of values of the output neurons.
Here we implicitly assume a fixed orderings on input and output vectors.

18

MLP – Learning

I Given a set D of training examples:

D =
{(

~xk , ~dk

) ∣∣ k = 1, . . . , p
}

Here ~xk ∈ R|X | and ~dk ∈ R|Y |. We write dkj to denote the
value in ~dk corresponding to the output neuron j .

I Error Function: E (~w) where ~w is a vector of all weights in
the network. The choice of E depends on the solved task
(classification vs regression etc.).
Example (Squared error): E (~w) =

∑p
k=1 Ek(~w) where

Ek(~w) =
1
2

∑
j∈Y

(yj [~w](~xk)− dkj)
2

GOOD STUDENTS: Distinguish regression (identity output activation &
squared error) and classification (logistic sigmoid output activation &
cross-entropy error).

19

MLP – Batch Gradient Descent

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0
I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as

follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning rate
in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).

20

MLP – Gradient Computation
For every weight wji we have (obviously)

∂E

∂wji
=

p∑
k=1

∂Ek

∂wji

So now it suffices to compute ∂Ek

∂wji
, that is the error for a fixed training

example (~xk , dk).

Applying the chain rule we obtain
∂Ek

∂wji
=
∂Ek

∂yj
· σ′

j (ξj) · yi

where (more applications of the chain rule)

∂Ek

∂yj
is computed directly for the output neurons j ∈ Y

∂Ek

∂yj
=
∑
r∈j→

∂Ek

∂yr
· σ′

r (ξr) · wrj for j ∈ Z r (Y ∪ X)

(Here yr = y [~w](~xk) where ~w are the current weights and ~xk is the input of the
k-th training example.)

21

Multilayer Perceptron – Backpropagation
Input: A training set D =

{(
~xk , ~dk

) ∣∣ k = 1, . . . , p
}

and
the current vector of weights ~w .
Note that the backprop. is repeated in every iteration of the gradient descent!

I Evaluate all values yi of neurons using the standard bottom-up
procedure with the input ~xk .

I For every training example (~xk , ~dk) compute ∂Ek

∂yj
using

backpropagation through layers top-down :
I For all j ∈ Y compute ∂Ek

∂yj
by taking the derivative of the error.

e.g., in the case of the squared error we have ∂Ek
∂yj

= yj − dkj .

I In the layer `, assuming that ∂Ek

∂yr
has been computed for all

neurons r in the layer `+ 1, compute
∂Ek

∂yj
=
∑
r∈j→

∂Ek

∂yj
· σ′

r (ξr) · wrj

for all j from the `-th layer. Here σ′
r is the derivative of σr .

I Put ∂Ek

∂wji
= ∂Ek

∂yj
· σ′

j (ξj) · yi

Output: ∂E
∂wji

=
∑p

k=1
∂Ek

∂wji
.

22

