
Kernel Methods

1



Quadratic Decision Boundary

Left: The original set,

Right: Transformed using the square of features.
Right: the green line is a separating hyperplane in the transformed space.
Left: the green ellipse maps exactly to the green line.

How to classify (in the original space): First, transform a given feature
vector by squaring the features, then use a linear classifier.

2



Quadratic Decision Boundary

Left: The original set, Right: Transformed using the square of features.

Right: the green line is a separating hyperplane in the transformed space.
Left: the green ellipse maps exactly to the green line.

How to classify (in the original space): First, transform a given feature
vector by squaring the features, then use a linear classifier.

2



Quadratic Decision Boundary

Left: The original set, Right: Transformed using the square of features.
Right: the green line is a separating hyperplane in the transformed space.

Left: the green ellipse maps exactly to the green line.

How to classify (in the original space): First, transform a given feature
vector by squaring the features, then use a linear classifier.

2



Quadratic Decision Boundary

Left: The original set, Right: Transformed using the square of features.
Right: the green line is a separating hyperplane in the transformed space.
Left: the green ellipse maps exactly to the green line.

How to classify (in the original space): First, transform a given feature
vector by squaring the features, then use a linear classifier.

2



Quadratic Decision Boundary

Left: The original set, Right: Transformed using the square of features.
Right: the green line is a separating hyperplane in the transformed space.
Left: the green ellipse maps exactly to the green line.

How to classify (in the original space): First, transform a given feature
vector by squaring the features, then use a linear classifier.

2



Anothe Solution

Mapping from R2 to R3 so that there is "more space" for linear
separation.

3



Do We Need to Map Explicitly?

In general, mapping to (much) higher feature space helps
(there are more "degrees of freedom" so linear separability might
get a chance).

However, complexity of learning grows (quickly) with dimension.

Sometimes its even beneficial to map to infinite-dimensional spaces.

To avoid explicit construction of the higher dimensional feature
space, we use so called kernel trick.

But first we need to dualize our learning algorithm.

4



Do We Need to Map Explicitly?

In general, mapping to (much) higher feature space helps
(there are more "degrees of freedom" so linear separability might
get a chance).

However, complexity of learning grows (quickly) with dimension.

Sometimes its even beneficial to map to infinite-dimensional spaces.

To avoid explicit construction of the higher dimensional feature
space, we use so called kernel trick.

But first we need to dualize our learning algorithm.

4



Do We Need to Map Explicitly?

In general, mapping to (much) higher feature space helps
(there are more "degrees of freedom" so linear separability might
get a chance).

However, complexity of learning grows (quickly) with dimension.

Sometimes its even beneficial to map to infinite-dimensional spaces.

To avoid explicit construction of the higher dimensional feature
space, we use so called kernel trick.

But first we need to dualize our learning algorithm.

4



Do We Need to Map Explicitly?

In general, mapping to (much) higher feature space helps
(there are more "degrees of freedom" so linear separability might
get a chance).

However, complexity of learning grows (quickly) with dimension.

Sometimes its even beneficial to map to infinite-dimensional spaces.

To avoid explicit construction of the higher dimensional feature
space, we use so called kernel trick.

But first we need to dualize our learning algorithm.

4



Do We Need to Map Explicitly?

In general, mapping to (much) higher feature space helps
(there are more "degrees of freedom" so linear separability might
get a chance).

However, complexity of learning grows (quickly) with dimension.

Sometimes its even beneficial to map to infinite-dimensional spaces.

To avoid explicit construction of the higher dimensional feature
space, we use so called kernel trick.

But first we need to dualize our learning algorithm.

4



Linear Regression

▶ Given a set D of training examples:

D = {(x⃗1, f1) , (x⃗2, f2) , . . . , (x⃗p, fp)}

Here x⃗k = (xk1 . . . , xkn) ∈ Rn and fk ∈ R.

▶ Our goal: Find w⃗ so that h[w⃗ ](x⃗k) = w⃗ ·~xk is close to fk for
every k = 1, . . . , p.
Recall that ~xk = (xk0, xk1 . . . , xkn) where xk0 = 1.

▶ Squared Error Function:

E (w⃗) =
1
2

p∑
k=1

(w⃗ ·~xk − fk)
2 =

1
2

p∑
k=1

(
n∑

i=0

wixki − fk

)2

5



Regularized Linear Regression

Regularized Squared Error Function:

E (w⃗) =
1
2

p∑
k=1

(w⃗ ·~xk − fk)
2 + w⃗ · w⃗

Intuition: the added term w⃗ · w⃗ prevents growth of weights.

The Representer Theorem: The weight vector w⃗∗ minimizing
the regularized squared error function can be written as

w⃗∗ =

p∑
i=1

αi fi ~xi Here α1, . . . , αp are suitable coefficients.

Substituting this expression for weights in E gives

E ′(w⃗) =
1
2

p∑
k=1

(
p∑

i=1

αi fi ~xi ·~xk − fk

)2

+

p∑
i=1

p∑
j=1

αiαj fi fj ~xi ·~xj

and we minimize E ′ w.r.t. α1, . . . , αp. What is this good for??

6



Regularized Linear Regression

Regularized Squared Error Function:

E (w⃗) =
1
2

p∑
k=1

(w⃗ ·~xk − fk)
2 + w⃗ · w⃗

Intuition: the added term w⃗ · w⃗ prevents growth of weights.

The Representer Theorem: The weight vector w⃗∗ minimizing
the regularized squared error function can be written as

w⃗∗ =

p∑
i=1

αi fi ~xi Here α1, . . . , αp are suitable coefficients.

Substituting this expression for weights in E gives

E ′(w⃗) =
1
2

p∑
k=1

(
p∑

i=1

αi fi ~xi ·~xk − fk

)2

+

p∑
i=1

p∑
j=1

αiαj fi fj ~xi ·~xj

and we minimize E ′ w.r.t. α1, . . . , αp. What is this good for??

6



Regularized Linear Regression

Regularized Squared Error Function:

E (w⃗) =
1
2

p∑
k=1

(w⃗ ·~xk − fk)
2 + w⃗ · w⃗

Intuition: the added term w⃗ · w⃗ prevents growth of weights.

The Representer Theorem: The weight vector w⃗∗ minimizing
the regularized squared error function can be written as

w⃗∗ =

p∑
i=1

αi fi ~xi Here α1, . . . , αp are suitable coefficients.

Substituting this expression for weights in E gives

E ′(w⃗) =
1
2

p∑
k=1

(
p∑

i=1

αi fi ~xi ·~xk − fk

)2

+

p∑
i=1

p∑
j=1

αiαj fi fj ~xi ·~xj

and we minimize E ′ w.r.t. α1, . . . , αp. What is this good for??
6



Given a set D of training examples:

D = {(x⃗1, f1) , (x⃗2, f2) , . . . , (x⃗p, fp)}
Here x⃗k = (xk1 . . . , xkn) ∈ Rn and fk ∈ R.

Find α1, . . . , αp minimizing dual regularized squared error

E ′(w⃗) =
1
2

p∑
k=1

(
p∑

i=1

αi fi ~xi ·~xk − fk

)2

+

p∑
i=1

p∑
j=1

αiαj fi fj ~xi ·~xj

The resulting coefficients α1, . . . , αp give a weight vector

w⃗∗ =

p∑
i=1

αi fi ~xi

which in turn gives a linear model

h[w⃗∗](x⃗) = w⃗∗~x =

p∑
i=1

αi fi ~xi ·~x

Note that all ~x,~xi ,~xj ,~xk occur in dot products with themselves!
7



Find α⃗ = (α1, . . . , αp) minimizing dual regularized squared error

E ′(w⃗) =
1
2

p∑
k=1

(
p∑

i=1

αi fi ~xi ·~xk − fk

)2

+

p∑
i=1

p∑
j=1

αiαj fi fj ~xi ·~xj

Linear model: h[α⃗](x⃗) =
∑p

i=1 αi fi ~xi ·~x

Do we need to use the dot product in the above procedure? NO!

Find α⃗ = (α1, . . . , αp) minimizing kernel dual regularized squared
error

E ′(w⃗) =
1
2

p∑
k=1

(
p∑

i=1

αi fi κ(~xi ,~xk))− fk

)2

+

p∑
i=1

p∑
j=1

αiαj fi fj κ(~xi ,~xj)

Non-linear model: h[α⃗](x⃗) =
∑p

i=1 αi fi κ(~xi ,~x)

Here κ is a kernel function. But now what is the trick?

The trick is that suitable kernel functions κ correspond to dot products in
transformed spaces!

8



Find α⃗ = (α1, . . . , αp) minimizing dual regularized squared error

E ′(w⃗) =
1
2

p∑
k=1

(
p∑

i=1

αi fi ~xi ·~xk − fk

)2

+

p∑
i=1

p∑
j=1

αiαj fi fj ~xi ·~xj

Linear model: h[α⃗](x⃗) =
∑p

i=1 αi fi ~xi ·~x

Do we need to use the dot product in the above procedure? NO!

Find α⃗ = (α1, . . . , αp) minimizing kernel dual regularized squared
error

E ′(w⃗) =
1
2

p∑
k=1

(
p∑

i=1

αi fi κ(~xi ,~xk))− fk

)2

+

p∑
i=1

p∑
j=1

αiαj fi fj κ(~xi ,~xj)

Non-linear model: h[α⃗](x⃗) =
∑p

i=1 αi fi κ(~xi ,~x)

Here κ is a kernel function. But now what is the trick?

The trick is that suitable kernel functions κ correspond to dot products in
transformed spaces!

8



Find α⃗ = (α1, . . . , αp) minimizing dual regularized squared error

E ′(w⃗) =
1
2

p∑
k=1

(
p∑

i=1

αi fi ~xi ·~xk − fk

)2

+

p∑
i=1

p∑
j=1

αiαj fi fj ~xi ·~xj

Linear model: h[α⃗](x⃗) =
∑p

i=1 αi fi ~xi ·~x

Do we need to use the dot product in the above procedure? NO!

Find α⃗ = (α1, . . . , αp) minimizing kernel dual regularized squared
error

E ′(w⃗) =
1
2

p∑
k=1

(
p∑

i=1

αi fi κ(~xi ,~xk))− fk

)2

+

p∑
i=1

p∑
j=1

αiαj fi fj κ(~xi ,~xj)

Non-linear model: h[α⃗](x⃗) =
∑p

i=1 αi fi κ(~xi ,~x)

Here κ is a kernel function. But now what is the trick?

The trick is that suitable kernel functions κ correspond to dot products in
transformed spaces!

8



Recall the Quadratic Decision Boundary

Left: The original set, Right: Transformed using the square of features.
Right: the green line is a separating hyperplane in the transformed space.
Left: the green ellipse maps exactly to the green line.

How to classify (in the original space): Transform a given feature vector
by squaring the features, then use a linear classifier.

9



Kernel Trick
For simplicity, assume bivariate data: ~xk = (1, xk1, xk2).

The corresponding instance in the quadratic feature space is (1, x2
k1, x

2
k2).

Consider two instances ~xk = (1, xk1, xk2) and ~xℓ = (1, xℓ1, xℓ2). Then
the scalar product of their corresponding instances (1, x2

k1, x
2
k2) and

(1, x2
ℓ1, x

2
ℓ2), resp., in the quadratic feature space is

1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2

which resembles (but is not equal to)

(~xk ·~xℓ)2 = (1 + xk1xℓ1 + xk2xℓ2)
2 =

= 1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2 + 2xk1xℓ1xk2xℓ2 + 2xk1xℓ1 + 2xk2xℓ2

But now consider a mapping ϕ to R6 defined by

ϕ(~xk) = (1, x2
k1, x

2
k2,

√
2xk1xk2,

√
2xk1,

√
2xk2)

Then ϕ(~xk) · ϕ(~xℓ) = (~xk ·~xℓ)2

THE Idea: Using the kernel κ(~xk ,~xℓ) = (~xk ·~xℓ)2 in the kernel dual
regularized squared error corredponds to using the regularized squared
error after the transformation ϕ.

10



Kernel Trick
For simplicity, assume bivariate data: ~xk = (1, xk1, xk2).
The corresponding instance in the quadratic feature space is (1, x2

k1, x
2
k2).

Consider two instances ~xk = (1, xk1, xk2) and ~xℓ = (1, xℓ1, xℓ2). Then
the scalar product of their corresponding instances (1, x2

k1, x
2
k2) and

(1, x2
ℓ1, x

2
ℓ2), resp., in the quadratic feature space is

1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2

which resembles (but is not equal to)

(~xk ·~xℓ)2 = (1 + xk1xℓ1 + xk2xℓ2)
2 =

= 1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2 + 2xk1xℓ1xk2xℓ2 + 2xk1xℓ1 + 2xk2xℓ2

But now consider a mapping ϕ to R6 defined by

ϕ(~xk) = (1, x2
k1, x

2
k2,

√
2xk1xk2,

√
2xk1,

√
2xk2)

Then ϕ(~xk) · ϕ(~xℓ) = (~xk ·~xℓ)2

THE Idea: Using the kernel κ(~xk ,~xℓ) = (~xk ·~xℓ)2 in the kernel dual
regularized squared error corredponds to using the regularized squared
error after the transformation ϕ.

10



Kernel Trick
For simplicity, assume bivariate data: ~xk = (1, xk1, xk2).
The corresponding instance in the quadratic feature space is (1, x2

k1, x
2
k2).

Consider two instances ~xk = (1, xk1, xk2) and ~xℓ = (1, xℓ1, xℓ2).

Then
the scalar product of their corresponding instances (1, x2

k1, x
2
k2) and

(1, x2
ℓ1, x

2
ℓ2), resp., in the quadratic feature space is

1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2

which resembles (but is not equal to)

(~xk ·~xℓ)2 = (1 + xk1xℓ1 + xk2xℓ2)
2 =

= 1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2 + 2xk1xℓ1xk2xℓ2 + 2xk1xℓ1 + 2xk2xℓ2

But now consider a mapping ϕ to R6 defined by

ϕ(~xk) = (1, x2
k1, x

2
k2,

√
2xk1xk2,

√
2xk1,

√
2xk2)

Then ϕ(~xk) · ϕ(~xℓ) = (~xk ·~xℓ)2

THE Idea: Using the kernel κ(~xk ,~xℓ) = (~xk ·~xℓ)2 in the kernel dual
regularized squared error corredponds to using the regularized squared
error after the transformation ϕ.

10



Kernel Trick
For simplicity, assume bivariate data: ~xk = (1, xk1, xk2).
The corresponding instance in the quadratic feature space is (1, x2

k1, x
2
k2).

Consider two instances ~xk = (1, xk1, xk2) and ~xℓ = (1, xℓ1, xℓ2). Then
the scalar product of their corresponding instances (1, x2

k1, x
2
k2) and

(1, x2
ℓ1, x

2
ℓ2), resp., in the quadratic feature space is

1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2

which resembles (but is not equal to)

(~xk ·~xℓ)2 = (1 + xk1xℓ1 + xk2xℓ2)
2 =

= 1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2 + 2xk1xℓ1xk2xℓ2 + 2xk1xℓ1 + 2xk2xℓ2

But now consider a mapping ϕ to R6 defined by

ϕ(~xk) = (1, x2
k1, x

2
k2,

√
2xk1xk2,

√
2xk1,

√
2xk2)

Then ϕ(~xk) · ϕ(~xℓ) = (~xk ·~xℓ)2

THE Idea: Using the kernel κ(~xk ,~xℓ) = (~xk ·~xℓ)2 in the kernel dual
regularized squared error corredponds to using the regularized squared
error after the transformation ϕ.

10



Kernel Trick
For simplicity, assume bivariate data: ~xk = (1, xk1, xk2).
The corresponding instance in the quadratic feature space is (1, x2

k1, x
2
k2).

Consider two instances ~xk = (1, xk1, xk2) and ~xℓ = (1, xℓ1, xℓ2). Then
the scalar product of their corresponding instances (1, x2

k1, x
2
k2) and

(1, x2
ℓ1, x

2
ℓ2), resp., in the quadratic feature space is

1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2

which resembles (but is not equal to)

(~xk ·~xℓ)2 = (1 + xk1xℓ1 + xk2xℓ2)
2 =

= 1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2 + 2xk1xℓ1xk2xℓ2 + 2xk1xℓ1 + 2xk2xℓ2

But now consider a mapping ϕ to R6 defined by

ϕ(~xk) = (1, x2
k1, x

2
k2,

√
2xk1xk2,

√
2xk1,

√
2xk2)

Then ϕ(~xk) · ϕ(~xℓ) = (~xk ·~xℓ)2

THE Idea: Using the kernel κ(~xk ,~xℓ) = (~xk ·~xℓ)2 in the kernel dual
regularized squared error corredponds to using the regularized squared
error after the transformation ϕ.

10



Kernel Trick
For simplicity, assume bivariate data: ~xk = (1, xk1, xk2).
The corresponding instance in the quadratic feature space is (1, x2

k1, x
2
k2).

Consider two instances ~xk = (1, xk1, xk2) and ~xℓ = (1, xℓ1, xℓ2). Then
the scalar product of their corresponding instances (1, x2

k1, x
2
k2) and

(1, x2
ℓ1, x

2
ℓ2), resp., in the quadratic feature space is

1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2

which resembles (but is not equal to)

(~xk ·~xℓ)2 = (1 + xk1xℓ1 + xk2xℓ2)
2 =

= 1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2 + 2xk1xℓ1xk2xℓ2 + 2xk1xℓ1 + 2xk2xℓ2

But now consider a mapping ϕ to R6 defined by

ϕ(~xk) = (1, x2
k1, x

2
k2,

√
2xk1xk2,

√
2xk1,

√
2xk2)

Then ϕ(~xk) · ϕ(~xℓ) = (~xk ·~xℓ)2

THE Idea: Using the kernel κ(~xk ,~xℓ) = (~xk ·~xℓ)2 in the kernel dual
regularized squared error corredponds to using the regularized squared
error after the transformation ϕ.

10



Kernel Trick
For simplicity, assume bivariate data: ~xk = (1, xk1, xk2).
The corresponding instance in the quadratic feature space is (1, x2

k1, x
2
k2).

Consider two instances ~xk = (1, xk1, xk2) and ~xℓ = (1, xℓ1, xℓ2). Then
the scalar product of their corresponding instances (1, x2

k1, x
2
k2) and

(1, x2
ℓ1, x

2
ℓ2), resp., in the quadratic feature space is

1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2

which resembles (but is not equal to)

(~xk ·~xℓ)2 = (1 + xk1xℓ1 + xk2xℓ2)
2 =

= 1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2 + 2xk1xℓ1xk2xℓ2 + 2xk1xℓ1 + 2xk2xℓ2

But now consider a mapping ϕ to R6 defined by

ϕ(~xk) = (1, x2
k1, x

2
k2,

√
2xk1xk2,

√
2xk1,

√
2xk2)

Then ϕ(~xk) · ϕ(~xℓ) = (~xk ·~xℓ)2

THE Idea: Using the kernel κ(~xk ,~xℓ) = (~xk ·~xℓ)2 in the kernel dual
regularized squared error corredponds to using the regularized squared
error after the transformation ϕ.

10



Kernel Trick
For simplicity, assume bivariate data: ~xk = (1, xk1, xk2).
The corresponding instance in the quadratic feature space is (1, x2

k1, x
2
k2).

Consider two instances ~xk = (1, xk1, xk2) and ~xℓ = (1, xℓ1, xℓ2). Then
the scalar product of their corresponding instances (1, x2

k1, x
2
k2) and

(1, x2
ℓ1, x

2
ℓ2), resp., in the quadratic feature space is

1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2

which resembles (but is not equal to)

(~xk ·~xℓ)2 = (1 + xk1xℓ1 + xk2xℓ2)
2 =

= 1 + x2
k1x

2
ℓ1 + x2

k2x
2
ℓ2 + 2xk1xℓ1xk2xℓ2 + 2xk1xℓ1 + 2xk2xℓ2

But now consider a mapping ϕ to R6 defined by

ϕ(~xk) = (1, x2
k1, x

2
k2,

√
2xk1xk2,

√
2xk1,

√
2xk2)

Then ϕ(~xk) · ϕ(~xℓ) = (~xk ·~xℓ)2

THE Idea: Using the kernel κ(~xk ,~xℓ) = (~xk ·~xℓ)2 in the kernel dual
regularized squared error corredponds to using the regularized squared
error after the transformation ϕ.

10



Quadratic Decision Boundary
Given a set D of training examples:

D = {(x⃗1, f1) , (x⃗2, f2) , . . . , (x⃗p, fp)}
Assume that fi ∈ {1,−1} indicates the class of x⃗i .
Yes, I know that squared error regression should not be used for classification!

Considering κ(~xk ,~xℓ) = (~xk ·~xℓ)2 in our kernel dual regularized
squared error we obtain

Find α⃗ = α1, . . . , αp minimizing

E ′(w⃗) =
1
2

p∑
k=1

(
p∑

i=1

αi fi (~xi ·~xk)2 − fk

)2

+

p∑
i=1

p∑
j=1

αiαj fi fj (~xi ·~xj)2

Non-linear classifier: h[α⃗](x⃗) =
∑p

i=1 αi fi (~xi ·~x)2

Intuitively, minimizing E ′ in R2 gives a separating hyperplane for
the input vectors transformed into R5. This means, that in R2 it
searches for a quadratic (i.e., non-linear) boundary.

11



Examples of Kernels
▶ Linear: κ(~xℓ,~xk) = ~xℓ ·~xk

The corresponding mapping ϕ(~x) = ~x is identity (no
transformation).

▶ Polynomial of power m: κ(~xℓ,~xk) = (~xℓ ·~xk)
m

The corresponding mapping assigns to ~x ∈ Rn+1 the vector ϕ(~x) in
R(

n+m
m )+1.

▶ Gaussian (radial-basis function): κ(~xℓ,~xk) = e−
∥~xℓ−~xk∥

2

2σ2

The corresponding mapping ϕ maps ~x to an infinite-dimensional
vector ϕ(~x) which is, in fact, a Gaussian function; combination of
such functions for support vectors is then the separating
hypersurface.

▶ · · ·
Choosing kernels remains to be black magic of kernel methods. They are
usually chosen based on trial and error (of course, experience and
additional insight into data helps).

Similar trick can be done with (soft-margin) support vector machines.

12



Examples of Kernels
▶ Linear: κ(~xℓ,~xk) = ~xℓ ·~xk

The corresponding mapping ϕ(~x) = ~x is identity (no
transformation).

▶ Polynomial of power m: κ(~xℓ,~xk) = (~xℓ ·~xk)
m

The corresponding mapping assigns to ~x ∈ Rn+1 the vector ϕ(~x) in
R(

n+m
m )+1.

▶ Gaussian (radial-basis function): κ(~xℓ,~xk) = e−
∥~xℓ−~xk∥

2

2σ2

The corresponding mapping ϕ maps ~x to an infinite-dimensional
vector ϕ(~x) which is, in fact, a Gaussian function; combination of
such functions for support vectors is then the separating
hypersurface.

▶ · · ·
Choosing kernels remains to be black magic of kernel methods. They are
usually chosen based on trial and error (of course, experience and
additional insight into data helps).

Similar trick can be done with (soft-margin) support vector machines.

12



Examples of Kernels
▶ Linear: κ(~xℓ,~xk) = ~xℓ ·~xk

The corresponding mapping ϕ(~x) = ~x is identity (no
transformation).

▶ Polynomial of power m: κ(~xℓ,~xk) = (~xℓ ·~xk)
m

The corresponding mapping assigns to ~x ∈ Rn+1 the vector ϕ(~x) in
R(

n+m
m )+1.

▶ Gaussian (radial-basis function): κ(~xℓ,~xk) = e−
∥~xℓ−~xk∥

2

2σ2

The corresponding mapping ϕ maps ~x to an infinite-dimensional
vector ϕ(~x) which is, in fact, a Gaussian function; combination of
such functions for support vectors is then the separating
hypersurface.

▶ · · ·

Choosing kernels remains to be black magic of kernel methods. They are
usually chosen based on trial and error (of course, experience and
additional insight into data helps).

Similar trick can be done with (soft-margin) support vector machines.

12



Examples of Kernels
▶ Linear: κ(~xℓ,~xk) = ~xℓ ·~xk

The corresponding mapping ϕ(~x) = ~x is identity (no
transformation).

▶ Polynomial of power m: κ(~xℓ,~xk) = (~xℓ ·~xk)
m

The corresponding mapping assigns to ~x ∈ Rn+1 the vector ϕ(~x) in
R(

n+m
m )+1.

▶ Gaussian (radial-basis function): κ(~xℓ,~xk) = e−
∥~xℓ−~xk∥

2

2σ2

The corresponding mapping ϕ maps ~x to an infinite-dimensional
vector ϕ(~x) which is, in fact, a Gaussian function; combination of
such functions for support vectors is then the separating
hypersurface.

▶ · · ·
Choosing kernels remains to be black magic of kernel methods. They are
usually chosen based on trial and error (of course, experience and
additional insight into data helps).

Similar trick can be done with (soft-margin) support vector machines.
12


