
Numerical features

I Throughout this lecture we assume that all features are
numerical, i.e., feature vectors belong to Rn.

I Most non-numerical features can be conveniently transformed
to numerical ones.
For example:
I Colors {blue, red , yellow} can be represented by

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

(one-hot encoding)

I Words can be embedded into vector spaces by various means
(word2vec etc.)

I A black-and-white picture of x × y pixels can be encoded as
a vector of xy numbers that capture the shades of gray of
the pixels.
(Even though this is possibly not the best way of representing
images.)
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Basic Problems

We consider two basic problems:

I (Binary) classification

Our goal: Classify inputs into
two categories.
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We consider two basic problems:

I (Binary) classification

Our goal: Classify inputs into
two categories.

I Function approximation
(regression)

Our goal: Find a (hypothesized)
functional dependency in data.
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Binary classification in Rn

Assume an unknown categorization function c : Rn → {0, 1}.

Our goal:
I Given a set D of training examples of the form (~x , c(~x)) where
~x ∈ Rn,

I construct a hypothesized categorization function h ∈ H that is
consistent with c on the training examples, i.e.,

h(~x) = c(~x) for all training examples (~x , c(~x)) ∈ D

Comments:
I In practice, we often do not strictly demand h(~x) = c(~x) for all training

examples (~x , c(~x)) ∈ D (often it is impossible)
I We are more interested in good generalization, that is how well h

classifies new instances that do not belong to D.
(Recall that we usually evaluate accuracy of the resulting hypothesized
function h on a test set.)
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Hypothesis Spaces

We consider two kinds of hypothesis spaces:
I Linear (affine) classifiers (this lecture)

I Non-linear classifiers (kernel SVM, neural networks) (next
lectures)
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Linear classifier - example

0

0

0 0

1

1

1

I classification in plane using
a linear classifier

I if a point is incorrectly classified,
the learning algorithm turns the
line (hyperplane) to improve the
classification.
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Length and Scalar Product of Vectors

I We consider vectors ~x = (x1, . . . , xm) ∈ Rm.

I Euclidean metric on vectors: |~x | =
√∑m

i=1 x
2
i

The distance between two vectors (points) ~x , ~y is |~x − ~y |.
I Scalar product ~x · ~y of vectors ~x = (x1, . . . , xm) and
~y = (y1, . . . , ym) defined by

~x · ~y =
m∑
i=1

xiyi

I Recall that ~x · ~y = |~x ||~y | cos θ where θ is the angle between ~x
and ~y . That is ~x · ~y is the length of the projection of ~y on ~x
multiplied by |~x |.

I Note that ~x · ~x = |~x |2

6



Length and Scalar Product of Vectors

I We consider vectors ~x = (x1, . . . , xm) ∈ Rm.

I Euclidean metric on vectors: |~x | =
√∑m

i=1 x
2
i

The distance between two vectors (points) ~x , ~y is |~x − ~y |.

I Scalar product ~x · ~y of vectors ~x = (x1, . . . , xm) and
~y = (y1, . . . , ym) defined by

~x · ~y =
m∑
i=1

xiyi

I Recall that ~x · ~y = |~x ||~y | cos θ where θ is the angle between ~x
and ~y . That is ~x · ~y is the length of the projection of ~y on ~x
multiplied by |~x |.

I Note that ~x · ~x = |~x |2

6



Length and Scalar Product of Vectors

I We consider vectors ~x = (x1, . . . , xm) ∈ Rm.

I Euclidean metric on vectors: |~x | =
√∑m

i=1 x
2
i

The distance between two vectors (points) ~x , ~y is |~x − ~y |.
I Scalar product ~x · ~y of vectors ~x = (x1, . . . , xm) and
~y = (y1, . . . , ym) defined by

~x · ~y =
m∑
i=1

xiyi

I Recall that ~x · ~y = |~x ||~y | cos θ where θ is the angle between ~x
and ~y . That is ~x · ~y is the length of the projection of ~y on ~x
multiplied by |~x |.

I Note that ~x · ~x = |~x |2

6



Linear Classifier

A linear classifier h[~w ] is determined by a vector of weights
~w = (w0,w1, . . . ,wn) ∈ Rn+1 as follows:

Given ~x = (x1, . . . , xn) ∈ Rn,

h[~w ](~x) :=

{
1 w0 +

∑n
i=1 wi · xi ≥ 0

0 w0 +
∑n

i=1 wi · xi < 0

More succinctly:

h(~x) = sgn

(
w0 +

n∑
i=1

wi · xi

)
where sgn(y) =

{
1 y ≥ 0
0 y < 0
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Linear Classifier – Geometry
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Linear Classifier – Notation

Given ~x = (x1, . . . , xn) ∈ Rn we define an augmented feature vector

~x = (x0, x1, . . . , xn) where x0 = 1

This makes the notation for the linear classifier more succinct:

h[~w ](~x) = sgn(~w ·~x)
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Perceptron Learning

I Given a training set

D = {(~x1, c(~x1)) , (~x2, c(~x2)) , . . . , (~xp, c(~xp))}

Here ~xk = (xk1 . . . , xkn) ∈ Rn and c(~xk) ∈ {0, 1}.

We write ck instead of c(~xk).
Note that ~xk = (xk0, xk1 . . . , xkn) where xk0 = 1.

I A weight vector ~w ∈ Rn+1 is consistent with D if

h[~w ](~xk) = sgn(~w ·~xk) = ck for all k = 1, . . . , p

D is linearly separable if there is a vector ~w ∈ Rn+1 which is
consistent with D.

I Our goal is to find a consistent ~w assuming that D is linearly
separable.
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Perceptron – Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it’s correct half-space.

Compute a sequence of weight vectors ~w (0), ~w (1), ~w (2), . . ..
I ~w (0) is randomly initialized close to ~0 = (0, . . . , 0)
I In (t + 1)-th step, ~w (t+1) is computed as follows:

~w (t+1) = ~w (t) − ε ·
(
h[~w (t)](~xk)− ck

)
·~xk

= ~w (t) − ε ·
(
sgn
(
~w (t) ·~xk

)
− ck

)
·~xk

Here k = (t mod p) + 1, i.e., the examples are considered
cyclically, and 0 < ε ≤ 1 is a learning rate.

Věta (Rosenblatt)
If D is linearly separable, then there is t∗ such that ~w (t∗) is
consistent with D.
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Example

Training set:

D = {((2,−1), 1), ((2, 1), 1), ((1, 3), 0)}

That is

~x1 = (2,−1)

~x2 = (2, 1)

~x3 = (1, 3)

~x1 = (1, 2,−1)

~x2 = (1, 2, 1)

~x3 = (1, 1, 3)

c1 = 1
c2 = 1
c3 = 0

Assume that the initial vector ~w (0) is ~w (0) = (0,−1, 1).
Consider ε = 1.
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Example: Separating by ~w (0)

−1 1 2 3

−3

−2

−1

1

2

3

4

~x1

~x2

~x3

Denoting ~w (0) =
(w0,w1,w2) = (0,−1, 1)
the blue separating line is given
by w0 + w1x1 + w2x2 = 0.

The red vector normal to
the blue line is (w1,w2).

The points on the side of
(w1,w2) are assigned 1 by the
classifier, the others zero.
(In this case ~x3 is assigned one
and ~x1, ~x2 are assigned zero, all
of this is inconsistent with
c1 = 1, c2 = 1, c3 = 0.)
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Example: ~w (1)

We have

~w (0) ·~x1 = (0,−1, 1) · (1, 2,−1) = 0− 2− 1 = −3

thus

sgn
(
~w (0) ·~x1

)
= 0

and thus

sgn
(
~w (0) ·~x1

)
− c1 = 0− 1 = −1

(I.e., ~x1 is not correctly classified, and ~w (0) is not consistent with D.)
Hence,

~w (1) = ~w (0) −
(
sgn
(
~w (0) ·~x1

)
− c1

)
·~x1

= ~w (0) +~x1

= (0,−1, 1) + (1, 2,−1)

= (1, 1, 0)

14



Example

−1 1 2 3

−3

−2

−1

1

2

3

4

~x1

~x2

~x3

15



Example: Separating by ~w (1)

We have

~w (1) ·~x2 = (1, 1, 0) · (1, 2, 1) = 1 + 2 = 3

thus

sgn
(
~w (1) ·~x2

)
= 1

and thus

sgn
(
~w (1) ·~x2

)
− c2 = 1− 1 = 0

(I.e., ~x2 is currently correctly classified by ~w (1). However, as we will see, ~x3 is
not well classified.)
Hence,

~w (2) = ~w (1) = (1, 1, 0)

16



Example: ~w (3)

We have

~w (2) ·~x3 = (1, 1, 0) · (1, 1, 3) = 1 + 1 = 2

thus

sgn
(
~w (2) ·~x3

)
= 1

and thus

sgn
(
~w (2) ·~x3

)
− c3 = 1− 0 = 1

(This means that ~x3 is not well classified, and ~w (2) is not consistent with D.)
Hence,

~w (3) = ~w (2) −
(
sgn
(
~w (2) ·~x3

)
− c3

)
·~x3

= ~w (2) −~x3

= (1, 1, 0)− (1, 1, 3)

= (0, 0,−3)
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Example: Separating by ~w (3)
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Example: ~w (4)

We have

~w (3) ·~x1 = (0, 0,−3) · (1, 2,−1) = 3

thus

sgn
(
~w (3) ·~x1

)
= 1

and thus

sgn
(
~w (3) ·~x1

)
− c1 = 1− 1 = 0

(I.e., ~x1 is currently correctly classified by ~w (3). However, we shall see that ~x2 is
not.)
Hence,

~w (4) = ~w (3) = (0, 0,−3)
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Example: ~w (5)

We have

~w (4) ·~x2 = (0, 0,−3) · (1, 2, 1) = −3

thus

sgn
(
~w (4) ·~x2

)
= 0

and thus

sgn
(
~w (4) ·~x2

)
− c2 = 0− 1 = −1

(I.e., ~x2 is not correctly classified, and ~w (4) is not consistent with D.)
Hence,

~w (5) = ~w (4) −
(
sgn
(
~w (4) ·~x2

)
− c2

)
·~x2

= ~w (4) +~x2

= (0, 0,−3) + (1, 2, 1)

= (1, 2,−2)
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Example: Separating by ~w (5)
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Example: The result

The vector ~w (5) is consistent with D:

sgn
(
~w (5) ·~x1

)
= sgn ((1, 2,−2) · (1, 2,−1)) = sgn(7) = 1 = c1

sgn
(
~w (5) ·~x2

)
= sgn ((1, 2,−2) · (1, 2, 1)) = sgn(3) = 1 = c2

sgn
(
~w (5) ·~x3

)
= sgn ((1, 2,−2) · (1, 1, 3)) = sgn(−3) = 0 = c3

22



Perceptron – Learning Algorithm

Batch learning algorithm:
Compute a sequence of weight vectors ~w (0), ~w (1), ~w (2), . . ..

I ~w (0) is randomly initialized close to ~0 = (0, . . . , 0)

I In (t + 1)-th step, ~w (t+1) is computed as follows:

~w (t+1) = ~w (t) − ε ·
p∑

k=1

(
h[~w (t)](~xk)− ck

)
·~xk

= ~w (t) − ε ·
p∑

k=1

(
sgn
(
~w (t) ·~xk

)
− ck

)
·~xk

Here 0 < ε ≤ 1 is a learning rate.
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p∑

k=1

(
h[~w (t)](~xk)− ck

)
·~xk

= ~w (t) − ε ·
p∑

k=1

(
sgn
(
~w (t) ·~xk

)
− ck

)
·~xk

Here 0 < ε ≤ 1 is a learning rate.
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Function Approximation – Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)
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Function Approximation – Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)

NO!
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Function Approximation

Assume an unknown function f : Rn → R.

Our goal:
I Given a set D of training examples of the form (~x , f (~x)) where
~x ∈ Rn,

I construct a hypothesized function h ∈ H such that
h(~x) ≈ f (~x) for all training examples (~x , f (~x)) ∈ D

Here ≈ means that the values are somewhat close to each
other w.r.t. an appropriate error function E .

In what follows we use the squared error defined by

E =
1
2

∑
(~x ,f (~x))∈D

(h(~x)− f (~x))2

Our goal is to minimize E .

The main reason is that this function has nice mathematical properties (as
opposed e.g. to

∑
(~x,f (~x))∈D |h(~x)− f (~x)| ).
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Linear Function Approximation

I Given a set D of training examples:

D = {(~x1, f (~x1)) , (~x2, f (~x2)) , . . . , (~xp, f (~xp))}

Here ~xk = (xk1 . . . , xkn) ∈ Rn and fk(~x) ∈ R.

In what follows we use fk to denote f (~xk).

Our goal: Find ~w so that h[~w ](~x) = ~w ·~x approximates the
function f some of whose values are given by the training set.
Recall that ~xk = (xk0, xk1 . . . , xkn).

I Squared Error Function:

E (~w) =
1
2

p∑
k=1

(~w ·~xk − fk)2 =
1
2

p∑
k=1

(
n∑

i=0

wixki − fk

)2
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Error function

27



Gradient of the Error Function

Consider the gradient of the error function:

∇E (~w) =

(
∂E

∂w0
(~w), . . . ,

∂E

∂wn
(~w)

)
=

p∑
k=1

(~w ·~xk − fk)) ·~xk

What is the gradient ∇E(~w) ? It is a vector in Rn+1 which points in the
direction of the steepest ascent of E (it’s length corresponds to the steepness).
Note that here the vectors ~xk are fixed parameters of E !

Fakt
If ∇E (~w) = ~0 = (0, . . . , 0), then ~w is a global minimum of E .

This follows from the fact that E is a convex
paraboloid that has a unique extreme which is a
minimum.
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Gradient of the error function

Consider n = 1, which means that ~w = (w0,w1) and we write x
instead of ~x since ~x ∈ Rn = R1 = R.

Then the model is h[~w ](x) = w0 + w1 · x .

Consider a concrete training set:

T = {(2, 1), (3, 2), (4, 5)}
= {(x1, f1), (x2, f2), (x3, f3)}

The augmented feature vectors are: (1, 2), (1, 3), (1, 4).

E (w0,w1) = 1
2 [(w0+w1 ·2−1)2+(w0+w1 ·3−2)2+(w0+w1 ·4−5)2]

δE
δw0

= (w0 +w1 ·2−1) ·1+ (w0 +w1 ·3−2) ·1+ (w0 +w1 ·4−5) ·1
δE
δw1

= (w0 +w1 ·2−1) ·2+ (w0 +w1 ·3−2) ·3+ (w0 +w1 ·4−5) ·4

∇E (~w) = ( δEδw0
, δEδw1

) =
(w0+w1 ·2−1)·(1, 2)+(w0+w1 ·3−2)·(1, 3)+(w0+w1 ·4−5)·(1, 4)
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Function Approximation – Learning

Gradient Descent:
I Weights ~w (0) are initialized randomly close to ~0.

I In (t + 1)-th step, ~w (t+1) is computed as follows:
~w (t+1) = ~w (t) − ε · ∇E (~w (t))

= ~w (t) − ε ·
p∑

k=1

(
~w (t) ·~xk − fk

)
·~xk

= ~w (t) − ε ·
p∑

k=1

(
h[~w (t)](~xk)− fk

)
·~xk

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is the learning rate.
Note that the algorithm is almost similar to the batch perceptron algorithm!

Tvrzení
For sufficiently small ε > 0 the sequence ~w (0), ~w (1), ~w (2), . . .
converges (component-wisely) to the global minimum of E .
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Linear regression - animation
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Finding the Minimum in Dimension One

Assume n = 1. Then the error function E is

E (w0,w1) =
1
2

p∑
k=1

(w0 + w1xk − fk)2

Minimize E w.r.t. w0 a w1:

δE

δw0
= 0 ⇔ w0 = f̄ − w1x̄ ⇔ f̄ = w0 + w1x̄

where x̄ = 1
p

∑p
k=1 xk a f̄ = 1

p

∑p
k=1 fk

δE

δw1
= 0 ⇔ w1 =

1
p

∑p
k=1(fk − f̄ )(xk − x̄)

1
p

∑p
k=1(xk − x̄)2

i.e. w1 = cov(f , x)/var(x)
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Maximum Likelihood vs Least Squares (Dim 1)
Fix a training set D = {(x1, f1) , (x2, f2) , . . . , (xp, fp)}
Assume that each fk has been generated randomly by

fk = (w0 + w1 · xk) + εk

where w0,w1 are unknown weights, and εk are independent, normally
distributed noise values with mean 0 and some variance σ2

How "probable" is it to generate the correct f1, . . . , fp ?
34



Maximum Likelihood vs Least Squares (Dim 1)

How "probable" is it to generate the correct f1, . . . , fp ?

The following conditions are equivalent:

I w0,w1 minimize the squared error E

I w0,w1 maximize the likelihood (i.e., the "probability") of generating
the correct values f1, . . . , fp using fk = (w0 + w1 · xk) + εk
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Comments on Linear Models

I Linear models are parametric, i.e., they have a fixed form with
a small number of parameters that need to be learned from
data (as opposed, e.g., to decision trees where the structure is
not fixed in advance).

I Linear models are stable, i.e., small variations in the training
data have only limited impact on the learned model. (tree
models typically vary more with the training data).

I Linear models are less likely to overfit (low variance) the
training data but sometimes tend to underfit (high bias).

I Linear models are prone to outliers.
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