Probabilistic Classification

Probabilistic Classification - Idea

Imagine that

- ▶ I look out of a window and see a bird,
- it is black, approx. 25 cm long, and has a rather yellow beak.

Probabilistic Classification - Idea

Imagine that

- ▶ I look out of a window and see a bird,
- it is black, approx. 25 cm long, and has a rather yellow beak.

My daughter asks: What kind of bird is this?

Probabilistic Classification - Idea

Imagine that

- I look out of a window and see a bird,
- it is black, approx. 25 cm long, and has a rather yellow beak.

My daughter asks: What kind of bird is this?

My usual answer: This is *probably* a kind of blackbird (kos černý in Czech).

Probabilistic Classification – Idea

Imagine that

- I look out of a window and see a bird,
- it is black, approx. 25 cm long, and has a rather yellow beak.

My daughter asks: What kind of bird is this?

My usual answer: This is *probably* a kind of blackbird (kos černý in Czech).

Here *probably* means that out of my extensive catalogue of four kinds of birds that I am able to recognize, "blackbird" gets the highest degree of belief based on *features* of this particular bird.

Frequentists might say that the largest proportion of birds with similar features I have ever seen were blackbirds.

Probabilistic Classification – Idea

Imagine that

- I look out of a window and see a bird,
- it is black, approx. 25 cm long, and has a rather yellow beak.

My daughter asks: What kind of bird is this?

My usual answer: This is *probably* a kind of blackbird (kos černý in Czech).

Here *probably* means that out of my extensive catalogue of four kinds of birds that I am able to recognize, "blackbird" gets the highest degree of belief based on *features* of this particular bird.

Frequentists might say that the largest proportion of birds with similar features I have ever seen were blackbirds.

The degree of belief (Bayesians), or the relative frequency (frequentists) is the *probability*.

A finite or countably infinite set Ω of *possible outcomes*, Ω is called *sample space*.

Experiment: Roll one dice once. Sample space: $\Omega = \{1, \dots, 6\}$

A finite or countably infinite set Ω of *possible outcomes*, Ω is called *sample space*.

Experiment: Roll one dice once. Sample space: $\Omega = \{1, \dots, 6\}$

- ► Each element ω of Ω is assigned a "probability" value f(ω), here f must satisfy
 - ▶ $f(\omega) \in [0,1]$ for all $\omega \in \Omega$,

If the dice is fair, then $f(\omega) = \frac{1}{6}$ for all $\omega \in \{1, \dots, 6\}$.

A finite or countably infinite set Ω of *possible outcomes*, Ω is called *sample space*.

Experiment: Roll one dice once. Sample space: $\Omega = \{1, \dots, 6\}$

- ► Each element ω of Ω is assigned a "probability" value f(ω), here f must satisfy
 - ▶ $f(\omega) \in [0,1]$ for all $\omega \in \Omega$,

If the dice is fair, then $f(\omega) = \frac{1}{6}$ for all $\omega \in \{1, \dots, 6\}$.

- \triangleright An *event* is any subset *E* of Ω.
- ▶ The *probability* of a given event $E \subseteq \Omega$ is defined as

$$P(E) = \sum_{\omega \in E} f(\omega)$$

Let E be the event that an odd number is rolled, i.e., $E=\{1,3,5\}$. Then $P(E)=\frac{1}{2}$.

A finite or countably infinite set Ω of *possible outcomes*, Ω is called *sample space*.

Experiment: Roll one dice once. Sample space: $\Omega = \{1, \dots, 6\}$

- ► Each element ω of Ω is assigned a "probability" value f(ω), here f must satisfy
 - ▶ $f(\omega) \in [0,1]$ for all $\omega \in \Omega$,

If the dice is fair, then $f(\omega) = \frac{1}{6}$ for all $\omega \in \{1, \dots, 6\}$.

- \triangleright An *event* is any subset *E* of Ω.
- ▶ The *probability* of a given event $E \subseteq \Omega$ is defined as

$$P(E) = \sum_{\omega \in E} f(\omega)$$

Let E be the event that an odd number is rolled, i.e., $E=\{1,3,5\}$. Then $P(E)=\frac{1}{2}$.

▶ Basic laws: $P(\Omega) = 1$, $P(\emptyset) = 0$, given disjoint sets A, B we have $P(A \cup B) = P(A) + P(B)$, $P(\Omega \setminus A) = 1 - P(A)$.

Conditional Probability and Independence

▶ $P(A \mid B)$ is the probability of A given B (assume P(B) > 0) defined by

$$P(A \mid B) = P(A \cap B)/P(B)$$

(We assume that B is all and only information known.)

A fair dice: what is the probability that 3 is rolled assuming that an odd number is rolled? ... and assuming that an even number is rolled?

Conditional Probability and Independence

▶ $P(A \mid B)$ is the probability of A given B (assume P(B) > 0) defined by

$$P(A \mid B) = P(A \cap B)/P(B)$$

(We assume that B is all and only information known.)

A fair dice: what is the probability that 3 is rolled assuming that an odd number is rolled? ... and assuming that an even number is rolled?

▶ A and B are independent if $P(A \cap B) = P(A) \cdot P(B)$. It is easy to show that if P(B) > 0, then
A, B are independent iff $P(A \mid B) = P(A)$.

Random Variables and Random Vectors

- A random variable X is a function $X : \Omega \to \mathbb{R}$. A dice: $X : \{1, ..., 6\} \to \{0, 1\}$ such that $X(n) = n \mod 2$.
- ▶ A *random vector* is a function $X : \Omega \to \mathbb{R}^d$.

Random Variables and Random Vectors

- A random variable X is a function $X : \Omega \to \mathbb{R}$. A dice: $X : \{1, ..., 6\} \to \{0, 1\}$ such that $X(n) = n \mod 2$.
- ► A random vector is a function $X : \Omega \to \mathbb{R}^d$. We use $X = (X_1, \dots, X_d)$ where X_i is a random variable returning the *i*-th component of X.
- Consider random variables X_1, X_2 and Y. The variables X_1, X_2 are *conditionally independent given* Y if for all x_1, x_2 and y we have that

$$P(X_1 = x_1, X_2 = x_2 \mid Y = y) =$$

 $P(X_1 = x_1 \mid Y = y) \cdot P(X_2 = x_2 \mid Y = y)$

Let Ω be a space of colored geometric shapes that are divided into two categories (1 and 0).

Assume a random vector $X = (X_{color}, X_{shape}, X_{cat})$ where

- $ightharpoonup X_{color}: \Omega \rightarrow \{red, blue\},$
- $ightharpoonup X_{shape}: \Omega \to \{circle, square\},\$
- $ightharpoonup X_{cat}: \Omega \rightarrow \{1,0\}.$

Probability distribution of values is given by the following tables:

category 1:

	circle	square
red	0.2	0.02
blue	0.02	0.01

category 0:

	circle	square
red	0.05	0.3
blue	0.2	0.2

Example:

$$P(red, circle, \mathbf{1}) = P(X_{color} = red, X_{shape} = circle, X_{cat} = \mathbf{1}) = 0.2$$

Example:

$$P(red, circle, \mathbf{1}) = P(X_{color} = red, X_{shape} = circle, X_{cat} = \mathbf{1}) = 0.2$$

"Summing over" all possible values of some variable(s) gives the distribution of the rest:

$$P(red, circle) = P(X_{color} = red, X_{shape} = circle)$$

= $P(red, circle, \mathbf{1}) + P(red, circle, \mathbf{0})$
= $0.2 + 0.05 = 0.25$

Example:

$$P(red, circle, \mathbf{1}) = P(X_{color} = red, X_{shape} = circle, X_{cat} = \mathbf{1}) = 0.2$$

"Summing over" all possible values of some variable(s) gives the distribution of the rest:

$$P(red, circle) = P(X_{color} = red, X_{shape} = circle)$$

= $P(red, circle, \mathbf{1}) + P(red, circle, \mathbf{0})$
= $0.2 + 0.05 = 0.25$

$$P(red) = 0.2 + 0.02 + 0.05 + 0.3 = 0.57$$

Example:

$$P(red, circle, \mathbf{1}) = P(X_{color} = red, X_{shape} = circle, X_{cat} = \mathbf{1}) = 0.2$$

"Summing over" all possible values of some variable(s) gives the distribution of the rest:

$$P(red, circle) = P(X_{color} = red, X_{shape} = circle)$$

= $P(red, circle, \mathbf{1}) + P(red, circle, \mathbf{0})$
= $0.2 + 0.05 = 0.25$

$$P(red) = 0.2 + 0.02 + 0.05 + 0.3 = 0.57$$

Thus also all conditional probabilities can be computed:

$$P(\mathbf{1} \mid red, circle) = \frac{P(red, circle, \mathbf{1})}{P(red, circle)} = \frac{0.2}{0.25} = 0.8$$

Let Ω be a sample space (a universum) of all objects that can be classified. We assume a probability P on Ω .

Let Ω be a sample space (a universum) of all objects that can be classified. We assume a probability P on Ω .

We consider the problem of binary classification:

Let Y be the random variable for the category which takes values in $\{0,1\}$.

Let Ω be a sample space (a universum) of all objects that can be classified. We assume a probability P on Ω .

We consider the problem of binary classification:

- Let Y be the random variable for the category which takes values in $\{0,1\}$.
- Let X be the random vector describing n features of a given instance, i.e., $X = (X_1, \dots, X_n)$
 - ▶ Denote by $\vec{x} \in \mathbb{R}^n$ values of X.
 - ▶ and by $x_i \in \mathbb{R}$ values of X_i .

Let Ω be a sample space (a universum) of all objects that can be classified. We assume a probability P on Ω .

We consider the problem of binary classification:

- Let Y be the random variable for the category which takes values in $\{0,1\}$.
- Let X be the random vector describing n features of a given instance, i.e., $X = (X_1, \dots, X_n)$
 - ▶ Denote by $\vec{x} \in \mathbb{R}^n$ values of X,
 - ▶ and by $x_i \in \mathbb{R}$ values of X_i .

Bayes classifier: Given a vector of feature values \vec{x} ,

$$C^{Bayes}(\vec{x}) :=$$

$$\begin{cases} \mathbf{1} & \text{if } P(Y = \mathbf{1} \mid X = \vec{x}) \ge P(Y = \mathbf{0} \mid X = \vec{x}) \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

Intuitively, C^{Bayes} assigns to \vec{x} the most probable category it might be in.

Bayesian Classification – Example

Imagine a conveyor belt with apples and apricots.

A machine is supposed to correctly distinguish apples from apricots based on their weight and diameter.

Bayesian Classification - Example

Imagine a conveyor belt with apples and apricots.

A machine is supposed to correctly distinguish apples from apricots based on their weight and diameter.

That is,

- ▶ $Y \in \{1,0\}$ (here our interpretation is 1 = apple, 0 = appricot)
- $ightharpoonup X = (X_{weight}, X_{diam})$

Bayesian Classification - Example

Imagine a conveyor belt with apples and apricots.

A machine is supposed to correctly distinguish apples from apricots based on their weight and diameter.

That is,

- ▶ $Y \in \{1,0\}$ (here our interpretation is 1 = apple, 0 = appricot)
- $ightharpoonup X = (X_{weight}, X_{diam})$

We are given a fruit of a diameter 5cm that weighs 40g.

Bayesian Classification – Example

Imagine a conveyor belt with apples and apricots.

A machine is supposed to correctly distinguish apples from apricots based on their weight and diameter.

That is,

- ▶ $Y \in \{1,0\}$ (here our interpretation is 1 = apple, 0 = appricot)
- $ightharpoonup X = (X_{weight}, X_{diam})$

We are given a fruit of a diameter 5cm that weighs 40g.

The Bayes classifier compares $P(Y = 1 \mid X = (40g, 5cm))$ with $P(Y = 0 \mid X = (40g, 5cm))$ and selects the more probable category given the features.

Crucial question: Is such a classifier good?

There are other classifiers, e.g., one which compares the weight divided by 10 with the diameter and decides based on the answer, or maybe a classifier which sums the weight and the diameter and compares the result with a constant, etc.

Bayes Classifier

Let C be an arbitrary *classifier*, that is a function that to every feature vector $\vec{x} \in \mathbb{R}^n$ assigns a class from $\{0,1\}$.

Bayes Classifier

Let C be an arbitrary *classifier*, that is a function that to every feature vector $\vec{x} \in \mathbb{R}^n$ assigns a class from $\{0,1\}$.

Define the error of the classifier C by

$$E_C = P(Y \neq C)$$

(Here we slightly abuse notation and apply C to samples, technically we apply the composition $C \circ X$ of C and X which first determines the features using X and then classifies according to C).

Bayes Classifier

Let C be an arbitrary *classifier*, that is a function that to every feature vector $\vec{x} \in \mathbb{R}^n$ assigns a class from $\{0,1\}$.

Define the error of the classifier C by

$$E_C = P(Y \neq C)$$

(Here we slightly abuse notation and apply C to samples, technically we apply the composition $C \circ X$ of C and X which first determines the features using X and then classifies according to C).

Theorem

The Bayes classifier C^{Bayes} minimizes E_C , that is

$$E_{C^{Bayes}} = \min_{C \text{ is a classifier}} E_{C}$$

Practical Use of Bayes Classifier

The crucial problem: The probability P is not known! In particular, where to get $P(Y = \mathbf{1} \mid X = \vec{x})$? Note that $P(Y = \mathbf{0} \mid X = \vec{x}) = 1 - P(Y = \mathbf{1} \mid X = \vec{x})$

Practical Use of Bayes Classifier

The crucial problem: The probability P is not known! In particular, where to get $P(Y = 1 \mid X = \vec{x})$? Note that $P(Y = 0 \mid X = \vec{x}) = 1 - P(Y = 1 \mid X = \vec{x})$

Given no other assumptions, this requires a table giving the probability of the category $\mathbf{1}$ for each possible feature vector \vec{x} .

Where to get these probabilities?

Practical Use of Bayes Classifier

The crucial problem: The probability P is not known! In particular, where to get $P(Y = 1 \mid X = \vec{x})$?

Note that $P(Y = 0 \mid X = \vec{x}) = 1 - P(Y = 1 \mid X = \vec{x})$

Given no other assumptions, this requires a table giving the probability of the category $\mathbf{1}$ for each possible feature vector \vec{x} .

Where to get these probabilities?

In some cases the probabilities might come from the knowledge of the solved problem (e.g., applications in physics might be supported by a theory giving the probabilities).

In most cases, however, P is estimated from sampled data by

$$\bar{P}(Y = 1 \mid X = \vec{x}) = \frac{\text{number of samples with } Y = 1 \text{ and } X = \vec{x}}{\text{number of samples with } X = \vec{x}}$$

(We use \bar{P} to denote an estimate of P from data.)

Estimating P

Consider a problem with $X = (X_1, X_2, X_3)$ where each X_i returns either 0 or 1. What the data might look like?

Estimating *P*

Consider a problem with $X = (X_1, X_2, X_3)$ where each X_i returns either 0 or 1. What the data might look like?

Part of the data table:

Y	X ₁	X_2	<i>X</i> ₃
1	1	0	1
1	0	1	1
0	1	0	1
0	0	0	1
1	0	0	0
0	1	1	1

All data with $X_1 = 1$, $X_2 = 0$, $X_3 = 1$:

Y	X_1	X_2	X_3
1	1	0	1
1	1	0	1
0	1	0	1
0	1	0	1
1	1	0	1
1	1	0	1

Estimate: $\bar{P}(\mathbf{1} | 1, 0, 1) = 2/3$

Estimating P

Consider a problem with $X = (X_1, X_2, X_3)$ where each X_i returns either 0 or 1. What the data might look like?

Part of the data table:

Y	X ₁	X_2	<i>X</i> ₃
1	1	0	1
1	0	1	1
0	1	0	1
0	0	0	1
1	0	0	0
0	1	1	1

All data with $X_1 = 1$, $X_2 = 0$, $X_3 = 1$:

Y	X_1	<i>X</i> ₂	X_3
1	1	0	1
1	1	0	1
0	1	0	1
0	1	0	1
1	1	0	1
1	1	0	1

Estimate: $\bar{P}(\mathbf{1} | 1, 0, 1) = 2/3$

The probability table and hence also the necessary data are typically too large!

Concretely, if all X_1, \ldots, X_n are binary, there are 2^n probabilities $P(Y = \mathbf{1} \mid X = \vec{x})$, one for each possible $\vec{x} \in \{0, 1\}^n$.

Let's Look at It the Other Way Round

Theorem (Bayes, 1764)

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Let's Look at It the Other Way Round

Theorem (Bayes, 1764)

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Proof.

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{P(A \cap B)}{P(A)} \cdot P(A)}{P(B)} = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

13

Bayesian Classification

Determine the category for \vec{x} by computing

$$P(Y = y \mid X = \vec{x}) = \frac{P(Y = y) \cdot P(X = \vec{x} \mid Y = y)}{P(X = \vec{x})}$$

for both $y \in \{0,1\}$ and deciding whether or not the following holds:

$$P(Y = 1 \mid X = \vec{x}) \ge P(Y = 0 \mid X = \vec{x})$$

Bayesian Classification

Determine the category for \vec{x} by computing

$$P(Y = y \mid X = \vec{x}) = \frac{P(Y = y) \cdot P(X = \vec{x} \mid Y = y)}{P(X = \vec{x})}$$

for both $y \in \{0,1\}$ and deciding whether or not the following holds:

$$P(Y = 1 \mid X = \vec{x}) \ge P(Y = 0 \mid X = \vec{x})$$

So in order to make the classifier we need to compute:

- ▶ The prior P(Y = 1) (then P(Y = 0) = 1 P(Y = 1))
- ► The conditionals $P(X = \vec{x} \mid Y = y)$ for $y \in \{0, 1\}$ and for every \vec{x}

Estimating the Prior and Conditionals

ightharpoonup P(Y=1) can be easily estimated from data by

$$\bar{P}(Y = 1) = \frac{\text{number of samples with } Y = 1}{\text{number of all samples}}$$

Estimating the Prior and Conditionals

ightharpoonup P(Y=1) can be easily estimated from data by

$$\bar{P}(Y = 1) = \frac{\text{number of samples with } Y = 1}{\text{number of all samples}}$$

▶ If the dimension of features is small, $P(X = \vec{x} \mid Y = y)$ can be estimated from data similarly as $P(Y = \mathbf{1} \mid X = \vec{x})$ by

$$\bar{P}(X = \vec{x} \mid Y = y) = \frac{\text{number of samples with } Y = y \text{ and } X = \vec{x}}{\text{number of samples with } Y = y}$$

Unfortunately, for higher dimensional data too many samples are needed to estimate all $P(X = \vec{x} \mid Y = y)$ (there are too many \vec{x} 's).

So where is the advantage of using the Bayes thm.??

Estimating the Prior and Conditionals

ightharpoonup P(Y=1) can be easily estimated from data by

$$\bar{P}(Y = 1) = \frac{\text{number of samples with } Y = 1}{\text{number of all samples}}$$

▶ If the dimension of features is small, $P(X = \vec{x} \mid Y = y)$ can be estimated from data similarly as $P(Y = \mathbf{1} \mid X = \vec{x})$ by

$$\bar{P}(X = \vec{x} \mid Y = y) = \frac{\text{number of samples with } Y = y \text{ and } X = \vec{x}}{\text{number of samples with } Y = y}$$

Unfortunately, for higher dimensional data too many samples are needed to estimate all $P(X = \vec{x} \mid Y = y)$ (there are too many \vec{x} 's).

So where is the advantage of using the Bayes thm.??

We introduce independence assumptions about the features!

Naive Bayes

We assume that features are (conditionally) independent *given* the category. That is for all $\vec{x} = (x_1, \dots, x_n)$ and $y \in \{0, 1\}$ we assume:

$$P(X = x \mid Y = y) = P(X_1 = x_1, \dots, X_n = x_n \mid Y)$$

$$= \prod_{i=1}^{n} P(X_i = x_i \mid Y = y)$$

Naive Bayes

We assume that features are (conditionally) independent *given* the category. That is for all $\vec{x} = (x_1, \dots, x_n)$ and $y \in \{0, 1\}$ we assume:

$$P(X = x \mid Y = y) = P(X_1 = x_1, \dots, X_n = x_n \mid Y)$$

$$= \prod_{i=1}^{n} P(X_i = x_i \mid Y = y)$$

Therefore, we only need to specify $P(X_i = x_i \mid Y = y)$ for each possible pair of a feature-value x_i and $y \in \{0, 1\}$.

Naive Bayes

We assume that features are (conditionally) independent *given* the category. That is for all $\vec{x} = (x_1, \dots, x_n)$ and $y \in \{0, 1\}$ we assume:

$$P(X = x \mid Y = y) = P(X_1 = x_1, \dots, X_n = x_n \mid Y)$$

$$= \prod_{i=1}^{n} P(X_i = x_i \mid Y = y)$$

► Therefore, we only need to specify $P(X_i = x_i \mid Y = y)$ for each possible pair of a feature-value x_i and $y \in \{0, 1\}$.

Note that if all X_i are binary (values in $\{0,1\}$), this requires specifying only 2n parameters:

$$P(X_i = 1 \mid Y = \mathbf{1}) \text{ and } P(X_i = 1 \mid Y = \mathbf{0}) \text{ for each } X_i$$
 as $P(X_i = 0 \mid Y = y) = 1 - P(X_i = 1 \mid Y = y) \text{ for } y \in \{\mathbf{0}, \mathbf{1}\}.$

Compared to specifying 2^n parameters without any independence assumption.

Estimating the marginal probabilities

Estimate the probabilities $P(X_i = x_i \mid Y = y)$ by

$$\bar{P}(X_i = x_i \mid Y = y) = \frac{\text{number of samples with } X_i = x_i \text{ and } Y = y}{\text{number of samples with } Y = y}$$

Estimating the marginal probabilities

Estimate the probabilities $P(X_i = x_i \mid Y = y)$ by

$$\bar{P}(X_i = x_i \mid Y = y) = \frac{\text{number of samples with } X_i = x_i \text{ and } Y = y}{\text{number of samples with } Y = y}$$

Example: Consider a problem with $X = (X_1, X_2, X_3)$ where each X_i returns either 0 or 1. The data is

Y	X_1	X_2	<i>X</i> ₃
1	1	0	1
1	0	1	1
0	1	0	1
0	0	0	1
1	0	0	0
0	1	1	1

$$ar{P}(X_1 = 1 \mid Y = 1) = 1/3$$
 $ar{P}(X_1 = 1 \mid Y = 0) = 2/3$
 $ar{P}(X_2 = 1 \mid Y = 1) = 1/3$ $ar{P}(X_2 = 1 \mid Y = 0) = 1/3$
 $ar{P}(X_3 = 1 \mid Y = 1) = 2/3$ $ar{P}(X_3 = 1 \mid Y = 0) = 1$

Naive Bayes - Example

Consider classification of geometric shapes:

```
X_1 \in \{small, medium, large\}
X_2 \in \{red, blue, green\}
```

 $X_3 \in \{square, triangle, circle\}$

Naive Bayes - Example

Consider classification of geometric shapes:

 $X_1 \in \{small, medium, large\}$

 $X_2 \in \{red, blue, green\}$

 $X_3 \in \{ square, triangle, circle \}$

We have already estimated the following probabilities:

	Y = 1	Y = 0
$\bar{P}(Y)$	0.5	0.5
$\bar{P}(small \mid Y)$	0.4	0.4
$\bar{P}(medium \mid Y)$	0.1	0.2
$\bar{P}(large \mid Y)$	0.5	0.4
$\bar{P}(red \mid Y)$	0.9	0.3
$\bar{P}(blue \mid Y)$	0.05	0.3
$\bar{P}(green \mid Y)$	0.05	0.4
$\bar{P}(square \mid Y)$	0.05	0.4
$\bar{P}(triangle \mid Y)$	0.05	0.3
P(circle Y)	0.9	0.3

Does (*medium*, *red*, *circle*) belong to the category **1**?

	Y = 1	Y = 0
$\bar{P}(Y)$	0.5	0.5
$\bar{P}(medium \mid Y)$	0.1	0.2
$\bar{P}(red \mid Y)$	0.9	0.3
$\bar{P}(circle \mid Y)$	0.9	0.3

	Y = 1	Y = 0
$\bar{P}(Y)$	0.5	0.5
$\bar{P}(medium \mid Y)$	0.1	0.2
$\bar{P}(red \mid Y)$	0.9	0.3
$\bar{P}(circle \mid Y)$	0.9	0.3

$$P(Y = 1 \mid X = \vec{x}) = = P(1) \cdot P(medium \mid 1) \cdot P(red \mid 1) \cdot P(circle \mid 1) / P(X = \vec{x}) = 0.5 \cdot 0.1 \cdot 0.9 \cdot 0.9 / P(X = \vec{x}) = 0.0405 / P(X = \vec{x})$$

	Y = 1	Y = 0
$\bar{P}(Y)$	0.5	0.5
$\bar{P}(medium \mid Y)$	0.1	0.2
$\bar{P}(red \mid Y)$	0.9	0.3
$\bar{P}(circle \mid Y)$	0.9	0.3

$$P(Y = 1 \mid X = \vec{x}) = = P(1) \cdot P(medium \mid 1) \cdot P(red \mid 1) \cdot P(circle \mid 1) / P(X = \vec{x}) = 0.5 \cdot 0.1 \cdot 0.9 \cdot 0.9 / P(X = \vec{x}) = 0.0405 / P(X = \vec{x})$$

$$P(Y = \mathbf{0} \mid X = \vec{x}) =$$

= $P(\mathbf{0}) \cdot P(medium \mid \mathbf{0}) \cdot P(red \mid \mathbf{0}) \cdot P(circle \mid \mathbf{0}) / P(X = \vec{x})$
= $0.5 \cdot 0.2 \cdot 0.3 \cdot 0.3 / P(X = \vec{x}) = 0.009 / P(X = \vec{x})$

(Note that we used the estimates \bar{P} of P to finish the computation above.)

	Y = 1	Y = 0
$\bar{P}(Y)$	0.5	0.5
$\bar{P}(medium \mid Y)$	0.1	0.2
$\bar{P}(red \mid Y)$	0.9	0.3
$\bar{P}(circle \mid Y)$	0.9	0.3

$$P(Y = \mathbf{1} \mid X = \vec{x}) =$$

$$= P(\mathbf{1}) \cdot P(medium \mid \mathbf{1}) \cdot P(red \mid \mathbf{1}) \cdot P(circle \mid \mathbf{1}) / P(X = \vec{x})$$

$$= 0.5 \cdot 0.1 \cdot 0.9 \cdot 0.9 / P(X = \vec{x}) = 0.0405 / P(X = \vec{x})$$

$$P(Y = \mathbf{0} \mid X = \vec{x}) =$$

= $P(\mathbf{0}) \cdot P(medium \mid \mathbf{0}) \cdot P(red \mid \mathbf{0}) \cdot P(circle \mid \mathbf{0}) / P(X = \vec{x})$
= $0.5 \cdot 0.2 \cdot 0.3 \cdot 0.3 / P(X = \vec{x}) = 0.009 / P(X = \vec{x})$

(Note that we used the estimates \bar{P} of P to finish the computation above.) Apparently,

$$P(Y = 1 \mid X = \vec{x}) \doteq 0.0405/P(X = \vec{x}) > 0.009/P(X = \vec{x}) \doteq P(0 \mid X = \vec{x})$$

So we classify \vec{x} to the category **1**.

Estimating Probabilities in Practice

We already know that $P(X_i = x_i \mid Y = y)$ can be estimated by

$$\bar{P}(X_i = x_i \mid Y = y) = \ell_{y,x_i} / \ell_y$$

where

Estimating Probabilities in Practice

We already know that $P(X_i = x_i \mid Y = y)$ can be estimated by

$$\bar{P}(X_i = x_i \mid Y = y) = \ell_{y,x_i} / \ell_y$$

where

- $ightharpoonup \ell_y = \text{number of samples with } Y = y$

Problem: If, by chance, a rare value x_i of a feature X_i never occurs in the training data, we get

$$\bar{P}(X_i = x_i \mid Y = y) = 0$$
 for both $y \in \{0,1\}$

But then $\bar{P}(X = x) = 0$ for x containing the value x_i for X_i , and thus $\bar{P}(Y = y \mid X = x)$ is not well defined.

Moreover, $\bar{P}(Y = y) \cdot \bar{P}(X = x \mid Y = y) = 0$ (for $y \in \{0, 1\}$) so even this cannot be used for classification.

Probability Estimation Example

Training data:

Training data.			
Size	Color	Shape	Class
small	red	circle	1
large	red	circle	1
small	red	triangle	0
large	blue	circle	0

Estimated probabilities:

Estimated probabilities:		
	Y = 1	Y = 0
$\bar{P}(Y)$	0.5	0.5
$\bar{P}(small \mid Y)$	0.5	0.5
$\bar{P}(medium \mid Y)$	0	0
$\overline{P}(large \mid Y)$	0.5	0.5
$\bar{P}(red \mid Y)$	1	0.5
$\bar{P}(blue \mid Y)$	0	0.5
$\bar{P}(green \mid Y)$	0	0
$\bar{P}(square \mid Y)$	0	0
$\bar{P}(triangle \mid Y)$	0	0.5
P(circle Y)	1	0.5

Note that $\bar{P}(medium \mid \mathbf{1}) = P(medium \mid \mathbf{0}) = 0$ and thus also $\bar{P}(medium, red, circle) = 0$.

So what is $\bar{P}(1 \mid medium, red, circle)$?

Smoothing

► To account for estimation from small samples, probability estimates are adjusted or *smoothed*.

Smoothing

- ► To account for estimation from small samples, probability estimates are adjusted or *smoothed*.
- Laplace smoothing adds one to every count of feature values

$$\tilde{P}(X_i = x_i \mid Y = y) = \frac{\ell_{y,x_i} + 1}{\ell_y + \nu_i}$$

where

- \triangleright ℓ_v = number of training samples with Y = y,
- ℓ_{v,x_i} = number of training samples with Y = y and $X_i = x_i$,
- \triangleright v_i is the number of all distinct values of the variable X_i .

To understand note that

$$\ell_y = \sum_{x_i \text{ is a value of } X_i} \ell_{y,x_i}$$

and thus

$$\begin{split} \bar{P}(X_i = x_i \mid Y = y) &= \ell_{y, x_i} / \sum_{x_i \text{ is a value of } X_i} \ell_{y, x_i} \\ \tilde{P}(X_i = x_i \mid Y = y) &= (\ell_{y, x_i} + 1) / \sum_{x_i \text{ is a value of } X_i} (\ell_{y, x_i} + 1) \end{split}$$

Laplace Smoothing Example

- ► Assume training set contains 10 samples of category 1:
 - ► 4 small
 - 0 medium
 - ► 6 large

Laplace Smoothing Example

- ► Assume training set contains 10 samples of category 1:
 - ▶ 4 small
 - 0 medium
 - ► 6 large
- Estimate parameters as follows
 - $\tilde{P}(small \mid \mathbf{1}) = (4+1)/(10+3) = 0.384$
 - $\tilde{P}(medium \mid \mathbf{1}) = (0+1)/(10+3) = 0.0769$
 - $P(large \mid \mathbf{1}) = (6+1)/(10+3) = 0.538$

Continuous Features

 Ω may be (potentially) continuous, X_i may assign a continuum of values in \mathbb{R} .

Continuous Features

 Ω may be (potentially) continuous, X_i may assign a continuum of values in \mathbb{R} .

The probabilities are computed using *probability density* $p : \mathbb{R} \to \mathbb{R}^+$.

A random variable $X: \Omega \to \mathbb{R}^+$ has a density $p: \mathbb{R} \to \mathbb{R}^+$ if for every interval [a,b] we have

$$P(a \le X \le b) = \int_a^b p(x) dx$$

Usually, $P(X_i | Y = y)$ is used to denote the *density* of X_i conditioned on Y = y.

Continuous Features

 Ω may be (potentially) continuous, X_i may assign a continuum of values in \mathbb{R} .

The probabilities are computed using *probability density* $p : \mathbb{R} \to \mathbb{R}^+$.

A random variable $X: \Omega \to \mathbb{R}^+$ has a density $p: \mathbb{R} \to \mathbb{R}^+$ if for every interval [a,b] we have

$$P(a \le X \le b) = \int_a^b p(x) dx$$

Usually, $P(X_i | Y = y)$ is used to denote the *density* of X_i conditioned on Y = y.

- ► The densities $P(X_i \mid Y = y)$ are usually estimated using Gaussian densities as follows:
 - Estimate the mean μ_{iy} and the standard deviation σ_{iy} based on training data.
 - ► Then put

$$ar{P}(X_i \mid Y = y) = rac{1}{\sigma_{iy}\sqrt{2\pi}} \exp\left(rac{-(X_i - \mu_{iy})^2}{2\sigma_{iy}^2}
ight)$$

► Tends to work well despite rather strong assumption of conditional independence of features.

- Tends to work well despite rather strong assumption of conditional independence of features.
- Experiments show that it is quite competitive with other classification methods.
 - Even if the probabilities are not accurately estimated, it often picks the correct maximum probability category.

- Tends to work well despite rather strong assumption of conditional independence of features.
- Experiments show that it is quite competitive with other classification methods.
 - Even if the probabilities are not accurately estimated, it often picks the correct maximum probability category.
- ▶ Directly constructs a hypothesis from parameter estimates that are calculated from the training data.

- Tends to work well despite rather strong assumption of conditional independence of features.
- Experiments show that it is quite competitive with other classification methods.
 - Even if the probabilities are not accurately estimated, it often picks the correct maximum probability category.
- ▶ Directly constructs a hypothesis from parameter estimates that are calculated from the training data.
- Typically handles outliers and noise well.

- Tends to work well despite rather strong assumption of conditional independence of features.
- Experiments show that it is quite competitive with other classification methods.
 - Even if the probabilities are not accurately estimated, it often picks the correct maximum probability category.
- ▶ Directly constructs a hypothesis from parameter estimates that are calculated from the training data.
- Typically handles outliers and noise well.
- Missing values are easy to deal with (simply average over all missing values in feature vectors).

In the Naive Bayes we have assumed that *all* features X_1, \ldots, X_n are independent.

In the Naive Bayes we have assumed that *all* features X_1, \ldots, X_n are independent.

This is usually not realistic.

E.g. Variables "rain" and "grass wet" are (usually) strongly dependent.

In the Naive Bayes we have assumed that *all* features X_1, \ldots, X_n are independent.

This is usually not realistic.

E.g. Variables "rain" and "grass wet" are (usually) strongly dependent.

What if we return some dependencies back?

(But now in a well-defined sense.)

In the Naive Bayes we have assumed that *all* features X_1, \ldots, X_n are independent.

This is usually not realistic.

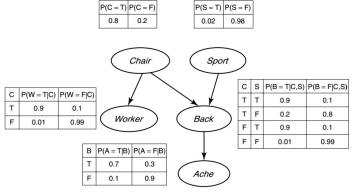
E.g. Variables "rain" and "grass wet" are (usually) strongly dependent.

What if we return some dependencies back?

(But now in a well-defined sense.)

Bayesian networks are a graphical model that uses a directed acyclic graph to specify dependencies among variables.

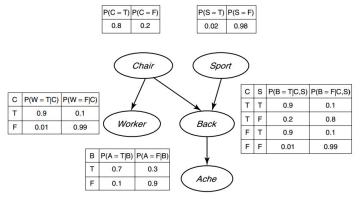
Bayesian Networks - Example



Now, e.g.,

$$P(C, S, W, B, A) = P(C) \cdot P(S) \cdot P(W \mid C) \cdot P(B \mid C, S) \cdot P(A \mid B)$$

Bayesian Networks - Example

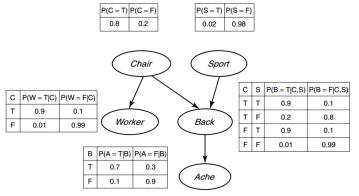


Now, e.g.,

$$P(C, S, W, B, A) = P(C) \cdot P(S) \cdot P(W \mid C) \cdot P(B \mid C, S) \cdot P(A \mid B)$$

Now we may, e.g., infer what is the probability $P(C = T \mid A = T)$ that we sit in a bad chair assuming that our back aches.

Bayesian Networks - Example



Now, e.g.,

$$P(C, S, W, B, A) = P(C) \cdot P(S) \cdot P(W \mid C) \cdot P(B \mid C, S) \cdot P(A \mid B)$$

Now we may, e.g., infer what is the probability $P(C = T \mid A = T)$ that we sit in a bad chair assuming that our back aches.

We have to store only 10 numbers as opposed to $2^5 - 1$ possible probabilities for all vectors of values of C, S, W, B, A.

Bayesian Networks – Learning & Naive Bayes

Many algorithms have been developed for learning:

- ▶ the structure of the graph of the network,
- ▶ the conditional probability tables.

The methods are based on maximum-likelihood estimation, gradient descent, etc.

Automatic procedures are usually combined with expert knowledge.

Bayesian Networks – Learning & Naive Bayes

Many algorithms have been developed for learning:

- ▶ the structure of the graph of the network,
- ▶ the conditional probability tables.

The methods are based on maximum-likelihood estimation, gradient descent, etc.

Automatic procedures are usually combined with expert knowledge.

Can you express the naive Bayes for $Y, X_1, ..., X_n$ using a Bayesian network?